

 Navigation

 	
 index

 	DotnetCore latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dotnet/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dotnet/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	DotnetCore latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _images/portability-solution-explorer.png
Run Code Analysis
Analyze Assembly Portability
Calculate Code Metrics

I

Build
Rebuild
Deploy
Clean

Scope to This
New Solution Explorer View
Show on Code Map

& Solution "HubApp1’ (3 projects)
4« HubApp1
pp1.Windows (Windows

lage.apprmanifest
onPage.xaml
p1.WindowsPhone (Wind
erties

_images/portability-report.png
.NET Portability Report

Summary
Assembly Mono 45
HubAppl.Windows 94.84%

HubApp1.Windows

Missing assemblies

‘Windows, Version=255.255.255.255, Cuhure=neutral, PublicKeyToken=null

Target type o Recommenied
‘Windows.Foundation.Rect (]
get Width [x]
get Height [x]
o List
Y - [®0Erors | |4 0Warings | [@ 25 Messages
Code Description Project File
“ 0 System.Runtime.InteropServices WindowsRuntime.WindowsRuntimeMarshal.A HubApp1.Windows. Appxaml.cs

ddEventHandler1(System.Func

{°0,System.Runtime InteropServices WindowsRuntime.EventRegistrationToken}
System.Action

{System Runtime InteropServices WindowsRuntime EventRegistrationToken), "0

Yo

System Runtime InteropServices WindowsRuntime WindowsRuntimeMarshal AddEventHandler™1(System. Func{ 0 System Runtime.InteropServices. WindowsRuntime EventRegistrationToken), System Action
{System RuntimeInteropServices WindowsRuntime.EventRegistrationToken), 0)
Not supported on Mono 4.5

_images/dotnet-test-discover.png
Test
Runner

Dotnet
o
!
»
‘
e

Run dome.test - prt

st ~gesgntimeportZ—]

| detnetes runver ssembhUnderTest

Testsession Terminate-

[2

_images/corefx-platforms-loc.png
~ Lines of CoreFX C# Code

6% 4%

90%

= Shared = Windows ®=Unix = Linux = OSX

~ Lines of Platform-specific

CoreFX C# Code

35000

30000 28775

25000
20000 17538
15000
10000 I
5000
0 | -—

Windows Unix Linux

= Windows = Unix = Linux = OSX

standard/frameworks.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Frameworks
description: Frameworks
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6ef56a2e-593d-497b-925a-1e25bb6df2e6

Frameworks

The .NET ecosystem has a concept of frameworks. Frameworks define the API that you can use to target a particular platform. The .NET Framework 4.6 is one of those platforms. Frameworks are used in Visual Studio and other IDEs and editors to provide you with the correct set of APIs. They are also used by NuGet, for both production and consumption of NuGet packages, to ensure that you produce and use appropriate packages (and underlying assets) for the framework you are targeting. One can think of frameworks as one of the key currencies in the .NET ecosystem. The concept is there for correctness, to help you and your customers seeing MissingMethodException [https://docs.microsoft.com/dotnet/core/api/System.MissingMethodException] and friends at runtime.

Framework Versions

The table below defines the set of frameworks that you can use, how they are referred to and which version of the .NET Standard Library that they implement.

Framework	Latest Version	Target Framework Moniker (TFM)	Compact Target Framework Moniker (TFM)	.NET Standard Version	Metapackage	
:——–:	:–:	:–:	:–:	:–:	:–:	:–:
.NET Standard	1.6	.NETStandard,Version=1.6	netstandard1.6	N/A	NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library]	
.NET Core Application	1.0	.NETCoreApp,Version=1.0	netcoreapp1.0	1.5	Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App]	
.NET Framework	4.6.1	.NETFramework,Version=4.6.1	net461	1.4	N/A	

Note: These framework versions are the latest stable versions. There may be pre-released versioned as well that are not described by this table.

Writing about Frameworks

There are multiple ways to refer to frameworks in written form, most of which are used in this documentation. They are described below, both as a legend for interpreting the documentation but also to guide use in other documents.

Using .NET Framework 4.6.1 as an example, the following forms can be used:

Referring to a product

You can refer to a .NET platform or runtime.

		”.NET Framework 4.6.1”

Referring to a Framework

You can refer to a framework or targeting of a framework using long- or short-forms of the TFM. Both are equally valid in the general case.

		.NETFramework,Version=4.6.1

		net461

Referring to a family of Frameworks

You can refer to a family of frameworks using long- or short-forms of the framework ID. Bother are equally valid in the general case.

		.NETFramework

		net

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/clr.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Common Language Runtime (CLR)
description: Common Language Runtime (CLR)
keywords: .NET, .NET Core
author: rpetrusha
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 7704d9c9-e5fa-4969-a423-081cce0e21e6

Common Language Runtime (CLR)

The .NET Framework provides a run-time environment called the common language runtime, which runs the code and provides services that make the development process easier.

Compilers and tools expose the common language runtime’s functionality and enable you to write code that benefits from this managed execution environment. Code that you develop with a language compiler that targets the runtime is called managed code; it benefits from features such as cross-language integration, cross-language exception handling, enhanced security, versioning and deployment support, a simplified model for component interaction, and debugging and profiling services.

[!NOTE]
Compilers and tools are able to produce output that the common language runtime can consume because the type system, the format of metadata, and the runtime environment (the virtual execution system) are all defined by a public standard, the ECMA Common Language Infrastructure specification. For more information, see ECMA C# and Common Language Infrastructure Specifications [https://www.visualstudio.com/en-us/mt639507].

To enable the runtime to provide services to managed code, language compilers must emit metadata that describes the types, members, and references in your code. Metadata is stored with the code; every loadable common language runtime portable executable (PE) file contains metadata. The runtime uses metadata to locate and load classes, lay out instances in memory, resolve method invocations, generate native code, enforce security, and set run-time context boundaries.

The runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. Objects whose lifetimes are managed in this way are called managed data. Garbage collection eliminates memory leaks as well as some other common programming errors. If your code is managed, you can use managed data, unmanaged data, or both managed and unmanaged data in your .NET Framework application. Because language compilers supply their own types, such as primitive types, you might not always know (or need to know) whether your data is being managed.

The common language runtime makes it easy to design components and applications whose objects interact across languages. Objects written in different languages can communicate with each other, and their behaviors can be tightly integrated. For example, you can define a class and then use a different language to derive a class from your original class or call a method on the original class. You can also pass an instance of a class to a method of a class written in a different language. This cross-language integration is possible because language compilers and tools that target the runtime use a common type system defined by the runtime, and they follow the runtime’s rules for defining new types, as well as for creating, using, persisting, and binding to types.

As part of their metadata, all managed components carry information about the components and resources they were built against. The runtime uses this information to ensure that your component or application has the specified versions of everything it needs, which makes your code less likely to break because of some unmet dependency. Information about the types you define (and their dependencies) is stored with the code as metadata, making the tasks of component replication and removal much less complicated.

Language compilers and tools expose the runtime’s functionality in ways that are intended to be useful and intuitive to developers. This means that some features of the runtime might be more noticeable in one environment than in another. How you experience the runtime depends on which language compilers or tools you use. The runtime provides the following benefits:

		The ability to easily use components developed in other languages.

		Extensible types provided by a class library.

		Language features such as inheritance, interfaces, and overloading for object-oriented programming.

		Support for explicit free threading that allows creation of multithreaded, scalable applications.

		Support for structured exception handling.

		Support for custom attributes.

		Garbage collection.

		Use of delegates instead of function pointers for increased type safety and security.

Versions of the Common Language Runtime

The version number of the .NET Framework doesn’t necessarily correspond to the version number of the CLR it includes. The following table shows how the two version numbers correlate.

.NET Framework version | Includes CLR version
———————- | ——————–
1.0 | 1.0
1.1 | 1.1
2.0 | 2.0
3.0 | 2.0
3.5 | 2.0
4 | 4
4.5 (including 4.5.1 and 4.5.2) | 4
4.6 (including 4.6.1 and 4.6.2) | 4

See Also

Automatic Memory Management

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/framework-libraries.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Framework Libraries
description: Framework Libraries
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 7b77b6c1-8367-4602-bff3-91e4c05ac643

Framework Libraries

.NET has an expansive standard set of class libraries, referred to as either the base class libraries (core set) or framework class libraries (complete set). These libraries provide implementations for many general and app-specific types, algorithms and utility functionality. Both commercial and community libraries build on top of the framework class libraries, providing easy to use off-the-shelf libraries for a wide set of computing tasks.

A subset of these libraries are provided with each .NET implementation. Base Class Library (BCL) APIs are expected with any .NET implementation, both because developers will want them and because popular libraries will need them to run. App-specific libraries above the BCL, such as ASP.NET, will not be available on all .NET implementations.

Base Class Libraries

The BCL provides the most foundational types and utility functionality and are the base of all other .NET class libraries. They aim to provide very general implementations without any bias to any workload. Performance is always an important consideration, since apps might prefer a particular policy, such as low-latency to high-throughput or low-memory to low-CPU usage. These libraries are intended to be high-performance generally, and take a middle-ground approach according to these various performance concerns. For most apps, this approach has been quite successful.

Primitive Types

.NET includes a set of primitive types, which are used (to varying degrees) in all programs. These types contain data, such as numbers, strings, bytes and arbitrary objects. The C# language includes keywords for these types. A sample set of these types is listed below, with the matching C# keywords.

		System.Object [https://msdn.microsoft.com/library/system.object.aspx] (object [https://msdn.microsoft.com/library/9kkx3h3c.aspx]) - The ultimate base class in the CLR type system. It is the root of the type hierarchy.

		System.Int16 [https://msdn.microsoft.com/library/system.int16.aspx] (short [https://msdn.microsoft.com/library/ybs77ex4.aspx]) - A 16-bit signed integer type. The unsigned UInt16 [https://msdn.microsoft.com/library/system.uint16.aspx] also exists.

		System.Int32 [https://msdn.microsoft.com/library/system.int32.aspx] (int [https://msdn.microsoft.com/library/5kzh1b5w.aspx]) - A 32-bit signed integer type. The unsigned UInt32 [https://msdn.microsoft.com/library/x0sksh43.aspx] also exists.

		System.Single [https://msdn.microsoft.com/library/system.single.aspx] (float [https://msdn.microsoft.com/library/b1e65aza.aspx]) - A 32-bit floating-point type.

		System.Decimal [https://msdn.microsoft.com/library/system.decimal.aspx] (decimal [https://msdn.microsoft.com/library/364x0z75.aspx]) - A 128-bit decimal type.

		System.Byte [https://msdn.microsoft.com/library/system.byte.aspx] (byte [https://msdn.microsoft.com/library/5bdb6693.aspx]) - An unsigned 8-bit integeger that represents a byte of memory.

		System.Boolean [https://msdn.microsoft.com/library/system.boolean.aspx] (bool [https://msdn.microsoft.com/library/c8f5xwh7.aspx]) - A boolean type that represents ‘true’ or ‘false’.

		System.Char [https://msdn.microsoft.com/library/system.char.aspx] (char [https://msdn.microsoft.com/library/x9h8tsay.aspx]) - A 16-bit numeric type that represents a Unicode character.

		System.String [https://msdn.microsoft.com/library/system.string.aspx] (string [https://msdn.microsoft.com/library/362314fe.aspx]) - Represents a series of characters. Different than a char[], but enables indexing into each individual char in the string.

Data Structures

.NET includes a set of data structures that are the workhorses of almost any .NET apps. These are mostly collections, but also include other types.

		Array [https://msdn.microsoft.com/library/system.array.aspx] - Represents an array of strongly types objects that can be accessed by index. Has a fixed size, per its construction.

		List [https://msdn.microsoft.com/library/6sh2ey19.aspx] - Represents a strongly typed list of objects that can be accessed by index. Is automatically resized as needed.

		Dictionary [https://msdn.microsoft.com/library/xfhwa508.aspx] - Represents a collection of values that are indexed by a key. Values can be accessed via key. Is automatically resized as needed.

		Uri [https://msdn.microsoft.com/library/system.uri.aspx] - Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.

		DateTime [https://msdn.microsoft.com/library/system.datetime.aspx] - Represents an instant in time, typically expressed as a date and time of day.

Utility APIs

.NET includes a set of utility APIs that provide functionality for many important tasks.

		HttpClient [https://msdn.microsoft.com/library/system.net.http.httpclient.aspx] - An API for sending HTTP requests and receiving HTTP responses from a resource identified by a URI.

		XDocument [https://msdn.microsoft.com/library/system.xml.linq.xdocument.aspx] - An API for loading, and querying XML documents with LINQ.

		StreamReader [https://msdn.microsoft.com/library/system.io.streamreader.aspx] - An API for reading files (StreamWriter [https://msdn.microsoft.com/library/system.io.stringwriter.aspx]) Can be used to write files.

App-Model APIs

There are many app-models that can be used with .NET, provided by several companies.

		ASP.NET [http://asp.net] - Provides a web framework for building Web sites and services. Supported on Windows, Linux and macOS (depends on ASP.NET version).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/new-project-dialog-class-library-portable.png
New Project
b Recent
4 Installed

4 Templates
4 Visual €2
b Windows
Web
Android
Cloud.
Extensibility
s
LightSwitch
Office/SharePoint
Silverlight
Test
wer
Workflow
b Other Languages
b Other Project Types

NET Framework 452 = Sort by: | Default

o
[windows Forms Appiication
s
=] wer appiication

oo
Bl conole Appicsion

e
P aseeT web Appication
o
B sheredproject

- .

g Closs Library (Package)
Console Application (Package)

Class Library

Class Library (Portable)

ck here to go online and find templates.

§ B closs iy ool
Modeling Prjects
Samples o .
@ Silverlight Application
» Onie
Neme Clastibrery10
Location: \users\wesh!documentvisus stuio 015\ Projects
Soluion: Creste new soution

Solution name: ClassLibrary10

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

7 x
Search Instlled Templates (Ctief) -

Type: Visual C#

A project for creating a managed class
library (.l for Windows, Windows Phone
and Silverlight apps.

Create directory for solution
[] Add to source control

[ox J[coneer |

csharp/interop.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Native interoperability
description: Native interoperability
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 54485caa-09e0-466c-86fa-6a9aab6c332b

🔧 Native interoperability

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/492] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/async.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Async Overview
description: Async Overview
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1e38e9d9-8284-46ee-a15f-199adc4f26f4

Async Overview

Not so long ago, apps got faster simply by buying a newer PC or server and then that trend stopped. In fact, it reversed. Mobile phones appeared with 1ghz single core ARM chips and server workloads transitioned to VMs. Users still want responsive UI and business owners want servers that scale with their business. The transition to mobile and cloud and an internet-connected population of >3B users has resulted in a new set of software patterns.

		Client applications are expected to be always-on, always-connected and constantly responsive to user interaction (e.g. touch) with high app store ratings!

		Services are expected to handle spikes in traffic by gracefully scaling up and down.

Async programming is a key technique that makes it straightforward to handle blocking I/O and concurrent operations on multiple cores. .NET provides the capability for apps and services to be responsive and elastic with easy-to-use, language-level asynchronous programming models in C#, VB, and F#.

Why Write Async Code?

Modern apps make extensive use of file and networking I/O. I/O APIs traditionally block by default, resulting in poor user experiences and hardware utilization unless you want to learn and use challenging patterns. Async APIs and the language-level asynchronous programming model invert this model, making async execution the default with few new concepts to learn.

Async code has the following characteritics:

		Handles more server requests by yielding threads to handle more requests while waiting for I/O requests to return.

		Enables UIs to be more responsive by yielding threads to UI interaction while waiting for I/O requests and by transitioning long-running work to other CPU cores.

		Many of the newer .NET APIs are asynchronous.

		It’s super easy to write async code in .NET!

What’s next?

For a deep dive into async concepts and programming, see Async in depth.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/dotnet-test-execute.png
Adapter

Run dome.test - prt

T
|
r
|
|
|
|
!
i<
|

S e
- VersonCheck Verson:) - 4

| Testbxecution.GetTestRunnerProcessStatinto (Testsl— b
__Testesecution.GetTestiumerprocessSiartnfo____|
< (FileName:XvZ Arguments X1Z} 1

ettt runner ssemby UndeTest desgntime —partZ-viat-

‘
‘
‘
‘
‘
‘
‘
‘
3
r
‘
‘
‘

N

TestExecution TestResult-

i
!
. Testecuton compleed

N

! Testsesion Terminte
!

~TestRunner.WaitingCommand —

“TestExecution TestStarted— —

TestExecution. TestResult-

TestRunner.Completed- —

standard/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Primer
description: .NET Primer
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bbfe6465-329d-4982-869d-472e7ef85d93

.NET Primer

Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.

.NET is a general purpose development platform. It can be used for any kind of app type or workload where general purpose solutions are used. It has several key features that are attractive to many developers, including automatic memory management and modern programming languages, that make it easier to efficiently build high-quality applications. .NET enables a high-level programming environment with many convenience features, while providing low-level access to native memory and APIs.

Multiple implementations of .NET are available, based on open .NET Standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that specify the fundamentals of the platform. They are separately optimized for different application types (e.g. desktop, mobile, gaming, cloud) and support many chips (e.g. x86/x64, ARM) and operating systems (e.g. Windows, Linux, iOS, Android, macOS). Open source is also an important part of the .NET ecosystem, with multiple .NET implementations and many libraries available under OSI-approved licenses.

You can take a look at the Overview of .NET implementations document to figure out all of the different editions of the .NET Framework that are available, both Microsoft’s and others.

This Primer will help you understand some of the key concepts in the .NET Platform and point you to more resources
for each given topic. By the end of it, you should have enough information to be able to recognize significant terms and
concepts in the .NET Platform and to know how to further your knowledge about them.

Key .NET Concepts

There is a certain number of concepts that are very important to understand if you are new to the .NET Platform. These concepts are the cornerstone of the entire platform, and understanding them at the outset is important for general understanding of how .NET works.

Most of these concepts are defined in the What is .NET? article.

A stroll through .NET

As any mature and advanced application development framework, .NET has many powerful features that make the developer’s job easier and aim to make writing code more powerful and expressive. This section will outline the basics of the most salient features and provide pointers to more detailed discussions where needed. After finishing this stroll, you should have enough information to be able to read the samples on our GitHub repos as well as other code and understand what is going on.

		Programming languages

		Automatic memory management

		Type safety

		Delegates and lambdas

		Generic Types (Generics)

		Language Integrated Query (LINQ)

		Async Programming

		Native interoperability

		Unsafe Code

Programming languages

As a developer, you can choose any programming language that supports .NET to create your application. Because .NET provides language independence and interoperability, you can interact with other .NET applications and components regardless of the language with which they were developed.

Languages that allow you to develop applications for the .NET Platform adhere to the Common Language Infrastructure (CLI) specification [https://www.visualstudio.com/en-us/mt639507].

Microsoft languages that .NET supports include C#, F#, and Visual Basic.

		C# is simple, powerful, type-safe, and object-oriented while retaining the expressiveness and elegance of C-style languages. Anyone familiar with C and similar languages will find few problems in adapting to C#.

		F# is a cross-platform, functional-first programming language that also supports traditional object-oriented and imperative programming.

		Visual Basic is an easy language to learn that you can use to build a variety of applications that run on .NET.

Note

In the current release of .NET Core, only C# is fully supported.

Automatic memory management

Garbage collection is the most well-known of .NET features. Developers do not need to actively manage memory, although there are mechanisms to provide more information to the garbage collector (GC). C# includes the new keyword to allocate memory in terms of a particular type, and the using keyword to provide scope for the usage of the object. The GC operates on a lazy approach to memory management, preferring application throughput to the immediate collection of memory.

The following two lines both allocate memory:

var title = ".NET Primer";
var list = new List<string>;

There is no analogous keyword to de-allocate memory, as de-allocation happens automatically when the garbage collector reclaims the memory through its scheduled running.

Method variables normally go out of scope once a method completes, at which point they can be collected. However, you can indicate to the GC that a particular object is out of scope sooner than method exit using the using statement.

using(FileStream stream = GetFileStream(context))
{
 //operations on the stream
}

Once the using block completes, the GC will know that the stream object in the example above is free to be collected and its memory reclaimed.

One of the less obvious but quite far-reaching features that a garbage collector enables is memory safety. The invariant of memory safety is very simple: a program is memory safe if it accesses only memory that has been allocated (and not freed). Dangling pointers are always bugs, and tracking them down is often quite difficult.

The .NET runtime provides additional services, to complete the promise of memory safety, not naturally offered by a GC. It ensures that programs do not index off the end of an array or accessing a phantom field off the end of an object.

The following example will throw an exception as a result of memory safety.

int[] numbers = new int[42];
int number = numbers[42]; // will throw (indexes are 0-based)

Type Safety

Objects are allocated in terms of types. The only operations allowed for a given object, and the memory it consumes, are those of its type. A Dog type may have Jump and WagTail methods, but not likely a SumTotal method. A program can only call the declared methods of a given type. All other calls will result either in a compile-time error or a run-time exception (in case of using dynamic features or object).

.NET languages are object-oriented, with hierarchies of base and derived classes. The .NET runtime will only allow object casts and calls that align with the object hierarchy. Remember that every type defined in any .NET language derives from the base object type.

Dog dog = Dog.AdoptDog(); // Returns a Dog type
Pet pet = (Pet)dog; // Dog derives from Pet
pet.ActCute();
Car car = (Car)dog; // will throw - no relationship between Car and Dog
object temp = (object)dog; // legal - a Dog is an object
car = (Car)temp; // will throw - the runtime isn't fooled
car.Accelerate() // the dog won't like this, nor will the program get this far

Type safety is also used to help enforce encapsulation by guaranteeing the fidelity of the accessor keywords. Accessor keywords are artifacts which control access to members of a given type by other code. These are usually used for various kinds of data within a type that are used to manage its behavior.

Dog dog = Dog._nextDogToBeAdopted; // will throw - this is a private field

Some .NET languages support type inference. Type inference means that the compiler will deduce the type of the expression on the left-hand side from the expression on the right-hand side. This doesn’t mean that the type safety is broken or avoided. The resulting type has a strong type with everything that implies. Let’s rewrite the first two lines of the previous example to introduce type inference. You will note that the rest of the example is completely the same.

 var dog = Dog.AdoptDog();
 var pet = (Pet)dog;
 pet.ActCute();
 Car car = (Car)dog; // will throw - no relationship between Car and Dog
 object temp = (object)dog; // legal - a Dog is an object
 car = (Car)temp; // will throw - the runtime isn't fooled
 car.Accelerate() // the dog won't like this, nor will the program get this far

Delegates and Lambdas

Delegates are like C++ function pointers, with a big difference that they are type safe. They are a kind of disconnected method within the CLR type system. Regular methods are attached to a class and only directly callable through static or instance calling conventions.

Delegates are used in various APIs and places in the .NET world, especially through lambda expressions, which are a cornerstone of LINQ.

Read more about it in the Delegates and lambdas document.

Generic Types (Generics)

Generic types, also commonly called “generics” are a feature that was added in .NET Framework 2.0. In short, generics allow the programmer to introduce a “type parameter” when designing their classes, that will allow the client code (the users of the type) to specify the exact type to use in place of the type parameter.

Generics were added in order to help programmers implement generic data structures. Before their arrival, in order for a, say, List type to be generic, it would have to work with elements that were of type object. This would have various performance as well as semantic problems, not to mention possible subtle runtime errors. The most notorious of the latter is when a data structure contains, for instance, both integers and strings, and an InvalidCastException is thrown on working with the list’s members.

The below sample shows a basic program running using an instance of List types.

using System;
using System.Collections.Generic;

namespace GenericsSampleShort {
 public static void Main(string[] args){
 // List<string> is the client way of specifying the actual type for the type parameter T
 List<string> listOfStrings = new List<string> { "First", "Second", "Third" };

 // listOfStrings can accept only strings, both on read and write.
 listOfStrings.Add("Fourth");

 // Below will throw a compile-time error, since the type parameter
 // specifies this list as containing only strings.
 listOfStrings.Add(1);

 }
}

Read more about it in the Generic Types (Generics) Overview document.

Async Programming

Async programming is a first-class concept within .NET, with async support in the runtime, the framework libraries, and .NET language constructs. Internally, they are based off of objects (such as Task) which take advantage of the operating system to perform I/O-bound jobs as efficiently as possible.

To learn more about async programming in .NET, start with the Async Overview.

Language Integrated Query (LINQ)

LINQ is a powerful set of features for C# and VB that allow you to write simple, declarative code for operating on data. The data can be in many forms (such as in-memory objects, in a SQL database, or an XML document), but the LINQ code you write typically won’t look different for each data source!

To learn more and see some samples, check out LINQ (Language Integrated Query).

Native Interoperability

Every operating system in current use provides a lot of platform support for various programming tasks. .NET provides several ways to tap into those APIs. Collectively, this support is called “native interoperability” and in this section we will take a look at how to access native APIs from managed, .NET code.

The main way to do native interoperability is via “platform invoke” or P/Invoke for short. This support in .NET Core is available across Linux and Windows platforms. Another, Windows-only way of doing native interoperability is known as “COM interop” which is used to work with COM components [https://msdn.microsoft.com/library/bwa2bx93.aspx] in managed code. It is built on top of P/Invoke infrastructure, but it works in subtly different ways.

Most of Mono’s (and thus Xamarin’s) interoperability support for Java and Objective-C are built similarly, that is, they use the same principles.

Read more about it in the Native interoperability document.

Unsafe Code

The CLR enables the ability to access native memory and do pointer arithmetic via unsafe code. These operations are needed for certain algorithms and system interoperability. Although powerful, use of unsafe code is discouraged unless it is necessary to interop with system APIs or implement the most efficient algorithm. Unsafe code may not execute the same way in different environments, and also loses the benefits of a garbage collector and type safety. It’s recommended to confine and centralize unsafe code as much as possible, and test that code thoroughly.

The ToString() method from the StringBuilder class [https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Text/StringBuilder.cs#L327] illustrates how using unsafe code can efficiently implement an algorithm by moving around chunks of memory directly:

public override String ToString() {
 Contract.Ensures(Contract.Result<String>() != null);

 VerifyClassInvariant();

 if (Length == 0)
 return String.Empty;

 string ret = string.FastAllocateString(Length);
 StringBuilder chunk = this;
 unsafe {
 fixed (char* destinationPtr = ret)
 {
 do
 {
 if (chunk.m_ChunkLength > 0)
 {
 // Copy these into local variables so that they are stable even in the presence of ----s (hackers might do this)
 char[] sourceArray = chunk.m_ChunkChars;
 int chunkOffset = chunk.m_ChunkOffset;
 int chunkLength = chunk.m_ChunkLength;

 // Check that we will not overrun our boundaries.
 if ((uint)(chunkLength + chunkOffset) <= ret.Length && (uint)chunkLength <= (uint)sourceArray.Length)
 {
 fixed (char* sourcePtr = sourceArray)
 string.wstrcpy(destinationPtr + chunkOffset, sourcePtr, chunkLength);
 }
 else
 {
 throw new ArgumentOutOfRangeException("chunkLength", Environment.GetResourceString("ArgumentOutOfRange_Index"));
 }
 }
 chunk = chunk.m_ChunkPrevious;
 } while (chunk != null);
 }
 }
 return ret;
 }

Notes

The term ”.NET runtime” is used throughout the document to accommodate for the multiple implementations of .NET, such as CLR, Mono, IL2CPP and others. The more specific names are only used if needed.

This document is not intended to be historical in nature, but describe the .NET platform as it is now. It isn’t important whether a .NET feature has always been available or was only recently introduced, only that it is important enough to highlight and discuss.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/modern-events.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: The Updated .NET Core Event Pattern
description: The Updated .NET Core Event Pattern
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9aa627c3-3222-4094-9ca8-7e88e1071e06

The Updated .NET Core Event Pattern

Previous

The previous article discussed the most common event patterns. .NET
Core has a more relaxed pattern. In this version, the
EventHandler<TEventArgs> definition no longer has the constraint that
TEventArgs must be a class derived from System.EventArgs.

This increases flexibility for you, and is backwards compatible. Let’s
start with the flexibility. The class System.EventArgs introduces one
method: MemberwiseClone(), which creates a shallow copy of the object.
That method must use reflection in order to implement
its functionality for any class derived from EventArgs. That
functionality is easier to create in a specific derived class. That
effectively means that deriving from System.EventArgs is a constraint
that limits your designs, but does not provide any additional benefit.
In fact, you can changes the definitions of FileFoundArgs and
SearchDirectoryArgs so that they do not derive from EventArgs.
The program will work exactly the same.

You could also change the SearchDirectoryArgs to a struct, if you
also make one more change:

internal struct SearchDirectoryArgs
{
 internal string CurrentSearchDirectory { get; }
 internal int TotalDirs { get; }
 internal int CompletedDirs { get; }

 internal SearchDirectoryArgs(string dir, int totalDirs,
 int completedDirs) : this()
 {
 CurrentSearchDirectory = dir;
 TotalDirs = totalDirs;
 CompletedDirs = completedDirs;
 }
}

The additional change is to call the default constructor before
entering the constructor that initializes all the fields. Without
that addition, the rules of C# would report that the properties are
being accessed before they have been assigned.

You should not change the FileFoundArgs from a class (reference
type) to a struct (value type). That’s because the protocol for
handling cancel requires that the event arguments are passed by reference. If you made the same change, the file search class could
never observe any changes made by any of the event subscribers. A new
copy of the structure would be used for each subscriber, and that
copy would be a different copy than the one seen by the file search
object.

Next, let’s consider how this change can be backwards compatible.
The removal of the constraint does not affect any existing code. Any
existing event argument types do still derive from System.EventArgs.
Backwards compatibility is one major reason why they will continue
to derive from System.EventArgs. Any existing event subscribers will
be subscribers to an event that followed the classic pattern.

Following similar logic, any event argument type created now would
not have any subscribers in any existing codebases. New event types
that do not derive from System.EventArgs will not break those
codebases.

Events with Async subscribers

You have one final pattern to learn: How to correctly write event
subscribers that call async code. The challenge is described in
the article on async and await. Async methods can
have a void return type, but that is strongly discouraged. When your
event subscriber code calls an async method, you have no choice but
to create an async void method. The event handler signature requires
it.

You need to reconcile this opposing guidance. Somehow, you must
create a safe async void method. The basics of the pattern you need
to implement are below:

worker.OnStartWorking += async (sender, eventArgs) =>
{
 try
 {
 await DoWorkAsync();
 }
 catch (Exception e)
 {
 //Some form of logging.
 Console.WriteLine($"Async task failure: {e.ToString()}");
 // Consider gracefully, and quickly exiting.
 }
};

First, notice that the handler is marked as an async handler. Because
it is being assigned to an event handler delegate type, it will have
a void return type. That means you must follow the pattern shown in the
handler, and not allow any exceptions to be thrown out of the context
of the async handler. Because it does not return a task, there is no
task that can report the error by entering the faulted state. Because
the method is async, the method can’t simply throw the exception. (The
calling method has continued execution because it is async.) The
actual runtime behavior will be defined differently for different
environments. It may terminate the thread, it may terminate the program,
or it may leave the program in an undetermined state. None of those
are good outcomes.

That’s why you should wrap the await statement for the async Task
in your own try block. If it does cause a faulted task, you can
log the error. If it is an error from which your application cannot
recover, you can exit the program quickly and gracefully

Those are the major updates to the .NET event pattern. You will see many
examples of the earlier versions in the libraries you work with. However,
you should understand what the latest patterns are as well.

The next article in this series helps you distinguish between using
delegates and events in your designs. They are similar concepts,
and that article will help you make the best decision for your
programs.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/async-in-depth.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Async in depth
description: In-depth explanation of how asynchronous code works in .NET
keywords: .NET, .NET Core, .NET Standard
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1e38f9d9-8f84-46ee-a15f-199aec4f2e34

Async in depth

Writing I/O- and CPU-bound asynchronous code is straightforward using the .NET Task-based async model. The model is exposed by the Task and Task<T> types and the async and await language keywords. This article explains how to use .NET async and provides insight into the async framework used under the covers.

Task and Task<

T>

Tasks are constructs used to implement what is known as the Promise Model of Concurrency [https://en.wikipedia.org/wiki/Futures_and_promises]. In short, they offer you a “promise” that work will be completed at a later point, letting you coordinate with the promise with a clean API.

		Task represents a single operation which does not return a value.

		Task<T> represents a single operation which returns a value of type T.

It’s important to reason about tasks as abstractions of work happening asynchronously, and not an abstraction over threading. By default, tasks execute on the current thread and delegate work to the Operating System, as appropriate. Optionally, tasks can be be explicitly requested to run on a separate thread via the Task.Run API.

Tasks expose an API protocol for monitoring, waiting upon and accessing the result value (in the case of Task<T>) of a task. Language integration, with the await keyword, provides a higher-level abstraction for using tasks.

Using await allows your application or service to perform useful work while a task is running by yielding control to its caller until the task is done. Your code does not need to rely on callbacks or events to continue execution after the task has been completed. The language and task API integration does that for you. If you’re using Task<T>, the await keyword will additionally “unwrap” the value returned when the Task is complete. The details of how this works are explained further below.

You can learn more about tasks and the different ways to interact with them in the Task-based Asynchronous Pattern (TAP) Article [https://msdn.microsoft.com/en-us/library/hh873175(v=vs.110).aspx].

Deeper Dive into Tasks for an I/O-Bound Operation

The following section describes a 10,000 foot view of what happens with a typical async I/O call. Let’s start with a couple examples.

The first example calls an async method and returns an active task, likely yet to complete.

public Task<string> GetHtmlAsync()
{
 // Execution is synchronous here
 var client = new HttpClient();

 return client.GetStringAsync("http://www.dotnetfoundation.org");
}

The second example adds the use of he async and await keywords to operate on the task.

public async Task<string> GetFirstCharactersCountAsync(string url, int count)
{
 // Execution is synchronous here
 var client = new HttpClient();

 // Execution of GetFirstCharactersCountAsync() is yielded to the caller here
 // GetStringAsync returns a Task<string>, which is *awaited*
 var page = await client.GetStringAsync("http://www.dotnetfoundation.org");

 // Execution resumes when the client.GetStringAsync task completes,
 // becoming synchronous again.

 if (count > page.Length)
 {
 return page;
 }
 else
 {
 return page.Substring(0, count);
 }
}

The call to GetStringAsync() calls through lower-level .NET libraries (perhaps calling other async methods) until it reaches a P/Invoke interop call into a native networking library. The native library may subsequently call into a System API call (such as write() to a socket on Linux). A task object will be created at the native/managed boundary, possibly using TaskCompletionSource [https://msdn.microsoft.com/en-us/library/dd449202(v=vs.110).aspx]. The task object will be passed up through the layers, possibly operated on or directly returned, eventually returned to the initial caller.

In the second example above, a Task<T> object will be returned from GetStringAsync. The use of the await keyword causes the method to return a newly created task object. Control returns to the caller from this location in the GetFirstCharactersCountAsync method. The methods and properties of the Task

<

T>

 [http://docs.microsoft.com/dotnet/core/api/System.Threading.Tasks.Task-1] object enable callers to monitor the progress of the task, which will complete when the remaining code in GetFirstCharactersCountAsync has executed.

After the System API call, the request is now in kernel space, making its way to the networking subsystem of the OS (such as /net in the Linux Kernel). Here the OS will handle the networking request asynchronously. Details may be different depending on the OS used (the device driver call may be scheduled as a signal sent back to the runtime, or a device driver call may be made and then a signal sent back), but eventually the runtime will be informed that the networking request is in progress. At this time, the work for the device driver will either be scheduled, in-progress, or already finished (the request is already out “over the wire”) - but because this is all happening asynchronously, the device driver is able to immediately handle something else!

For example, in Windows an OS thread makes a call to the network device driver and asks it to perform the networking operation via an Interrupt Request Packet (IRP) which represents the operation. The device driver recieves the IRP, makes the call to the network, marks the IRP as “pending”, and returns back to the OS. Because the OS thread now knows that the IRP is “pending”, it doesn’t have any more work to do for this job and “returns” back so that it can be used to perform other work.

When the request is fulfilled and data comes back through the device driver, it notifies the CPU of new data received via an interrupt. How this interrupt gets handled will vary depending on the OS, but eventually the data will be passed through the OS until it reaches a system interop call (for example, in Linux an interrupt handler will schedule the bottom half of the IRQ to pass the data up through the OS asynchronously). Note that this also happens asynchronously! The result is queued up until the next available thread is able execute the async method and “unwrap” the result of the completed task.

Throughout this entire process, a key takeaway is that no thread is dedicated to running the task. Although work is executed in some context (i.e. the OS does have to pass data to a device driver and respond to an interrupt), there is no thread dedicated to waiting for data from the request to come back. This allows the system to handle a much larger volume of work rather than waiting for some I/O call to finish.

Although the above may seem like a lot of work to be done, when measured in terms of wall clock time, it’s miniscule compared to the time it takes to do the actual I/O work. Although not at all precise, a potential timeline for such a call would look like this:

0-1——–2-3

		Time spent from points 0 to 1 is everything up until an async method yields control to its caller.

		Time spent from points 1 to 2 is the time spent on I/O, with no CPU cost.

		Finally, time spent from points 2 to 3 is passing control back (and potentially a value) to the async method, at which point it is executing again.

What does this mean for a server scenario?

This model works well with a typical server scenario workload. Because there are no threads dedicated to blocking on unfinished tasks, the server threadpool can service a much higher volume of web requests.

Consider two servers: one that runs async code, and one that does not. For the purpose of this example, each server only has 5 threads available to service requests. Note that these numbers are imaginarily small and serve only in a demonstrative context.

Assume both servers receive 6 concurrent requests. Each request performs an I/O operation. The server without async code has to queue up the 6th request until one of the 5 threads have finished the I/O-bound work and written a response. At the point that the 20th request comes in, the server might start to slow down, because the queue is getting too long.

The server with async code running on it still queues up the 6th request, but because it uses async and await, each of its threads are freed up when the I/O-bound work starts, rather than when it finishes. By the time the 20th request comes in, the queue for incoming requests will be far smaller (if it has anything in it at all), and the server won’t slow down.

Although this is a contrived example, it works in a very similar fashion in the real world. In fact, you can expect a server to be able to handle an order of magnitude more requests using async and await than if it were dedicating a thread for each request it receives.

What does this mean for client scenario?

The biggest gain for using async and await for a client app is an increase in responsiveness. Although you can make an app responsive by spawning threads manually, the act of spawning a thread is an expensive operation relative to just using async and await. Especially for something like a mobile game, impacting the UI thread as little as possible where I/O is concerned is crucial.

More importantly, because I/O-bound work spends virtually no time on the CPU, dedicating an entire CPU thread to perform barely any useful work would be a poor use of resources.

Additionally, dispatching work to the UI thread (such as updating a UI) is very simple with async methods, and does not require extra work (such as calling a thread-safe delegate).

Deeper Dive into Task and Task for a CPU-Bound Operation

CPU-bound async code is a bit different than I/O-bound async code. Because the work is done on the CPU, there’s no way to get around dedicating a thread to the computation. The use of async and await provides you with a clean way to interact with a background thread and keep the caller of the async method responsive. Note that this does not provide any protection for shared data. If you are using shared data, you will still need to apply an appropriate synchronization strategy.

Here’s a 10,000 foot view of a CPU-bound async call:

public async Task<int> CalculateResult(InputData data)
{
 // This queues up the work on the threadpool.
 var expensiveResultTask = Task.Run(() => DoExpensiveCalculation(data));

 // Note that at this point, you can do some other work concurrently,
 // as CalculateResult() is still executing!

 // Execution of CalculateResult is yielded here!
 var result = await expensiveResultTask;

 return result;
}

CalculateResult() executes on the thread it was called on. When it calls Task.Run, it queues the expensive CPU-bound operation, DoExpensiveCalculation(), on the thread pool and receives a Task<int> handle. DoExpensiveCalculation() is eventually run concurrently on the next available thread, likely on another CPU core. It’s possible to do concurrent work while DoExpensiveCalculation() is busy on another thread, because the thread which called CalculateResult() is still executing.

Once await is encountered, the execution of CalculateResult() is yielded to its caller, allowing other work to be done with the current thread while DoExpensiveCalculation() is churning out a result. Once it has finished, the result is queued up to run on the main thread. Eventually, the main thread will return to executing CalculateResult(), at which point it will have the result of DoExpensiveCalculation().

Why does async help here?

async and await are the best practice managing CPU-bound work when you need responsiveness. There are multiple patterns for using async with CPU-bound work. It’s important to note that there is a small cost to using async and it’s not recommended for tight loops. It’s up to you to determine how you write your code around this new capability.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-summary.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Expression Trees Summary
description: Expression Trees Summary
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: eb687ebd-1149-4453-9fc1-12a084495a66

Expression Trees Summary

Previous – Translating Expressions

In this series, you’ve seen how you can use expression trees to
create dynamic programs that interpret code as data and build
new functionality based on that code.

You can examine expression trees to understand the intent of
an algorithm. You can not only examine that code. You can build new
expression trees that represent modified versions of the original code.

You can also use expression trees to look at an algorithm, and
translate that algorithm into another language or environment.

Limitations

There are some newer C# language elements that don’t translate
well into expression trees. Expression trees cannot contain
await expressions, or async lambda expressions. Many of the
features added in the C# 6 release don’t appear exactly as written
in expression trees. Instead, newer features will be exposed
in expressions trees in the equivalent, earlier syntax. This
may not be as much of a limitation as you might think. In fact,
it means that your code that interprets expression trees will likely
still work the same when new language features are introduced.

Even with these limitations, expression trees do enable you to
create dynamic algorithms that rely on interpreting and modifying
code that is represetned as a data structure. It’s a powerful
tool, and it’s one of the features of the .NET ecosystem that
enables rich libraries such as Entity Framework to accomplish
what they do.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/numerics.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Numerics in .NET Core
description: Numerics in .NET Core
keywords: .NET, .NET Core
author: rpetrusha
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6b8696be-55f5-4b66-98f3-69ff827c2c49

Numerics in .NET Core

.NET Core supports the standard numeric integral and floating-point primitives, as well as System.Numerics.BigInteger [https://docs.microsoft.com/dotnet/core/api/System.Numerics.BigInteger], an integral type with no theoretical upper or lower bound, System.Numerics.Complex [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Complex], a type that represents complex numbers, and a set of Single Instruction Multiple Data (SIMD [https://en.wikipedia.org/wiki/SIMD])-enabled vector types in the System.Numerics [https://docs.microsoft.com/dotnet/core/api/System.Numerics] namespace.

Integral types

.NET Core supports both signed and unsigned integers ranging from one byte to eight bytes in length. The following table lists the integral types and their size, indicates whether they are signed or unsigned, and documents their range. All integers are value types.

Type | Signed/Unsigned | Size (bytes) | Minimum Value | Maximum Value
—- | ————— | ———— | ————- | ————-
System.Byte [https://docs.microsoft.com/dotnet/core/api/System.Byte] | Unsigned | 1 | 0 | 255
System.Int16 [https://docs.microsoft.com/dotnet/core/api/System.Int16] | Signed | 2 | -32,768 | 32,767
System.Int32 [https://docs.microsoft.com/dotnet/core/api/System.Int32] | Signed | 4 | -2,147,483,648 | 2,147,483,647
System.Int64 [https://docs.microsoft.com/dotnet/core/api/System.Int64] | Signed | 8 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807
System.SByte [https://docs.microsoft.com/dotnet/core/api/System.SByte] | Signed | 1 | -128 | 127
System.UInt16 [https://docs.microsoft.com/dotnet/core/api/System.UInt16] | Unsigned | 2 | 0 | 65,535
System.UInt32 [https://docs.microsoft.com/dotnet/core/api/System.UInt32] | Unsigned | 4 | 0 | 4,294,967,295
System.UInt64 [https://docs.microsoft.com/dotnet/core/api/System.UInt64] | Unsigned | 8 | 0 | 18,446,744,073,709,551,615

Each integral type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each integer also includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a number to that integer, and to convert an integer to its string representation. Some additional mathematical operations beyond those handled by the standard operators, such as rounding and identifying the smaller or larger value of two integers, are available from the System.Math [https://docs.microsoft.com/dotnet/core/api/System.Math] class. You can also work with the individual bits in an integer value by using the System.BitConverter [https://docs.microsoft.com/dotnet/core/api/System.BitConverter] class.

Note that the unsigned integral types are not CLS-compliant. For more information, see .NET Common Type System & Common Language Specification.

Floating-point types

.NET Core includes three primitive floating point types, which are listed in the following table.

Type | Size (bytes) | Minimum Value | Maximum Value
—- | ———— | ————- | ————-
System.Double [https://docs.microsoft.com/dotnet/core/api/System.Double] | 8 | -1.79769313486232e308 | 1.79769313486232e308
System.Single [https://docs.microsoft.com/dotnet/core/api/System.Single] | 4 | -3.402823e38 | 3.402823e38
System.Decimal [https://docs.microsoft.com/dotnet/core/api/System.Decimal] | 8 | -79,228,162,514,264,337,593,543,950,335 | 79,228,162,514,264,337,593,543,950,335

Each floating-point type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each also includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a floating-point number, and to convert a floating-point number to its string representation. Some additional mathematical, algebraic, and trigonometric operations are available from the Math class. You can also work with the individual bits in Double and Single values by using the BitConverter class. The Decimal structure has its own methods, Decimal.GetBits and Decimal.Decimal(Int32()), for working with a decimal value’s individual bits, as well as its own set of methods for performing some additional mathematical operations.

The Double and Single types are intended to be used for values that by their nature are imprecise (such as the distance between two stars in the solar system) and for applications in which a high degree of precision and small rounding error is not required. You should use the Decimal type for cases in which greater precision is required and rounding error is undesirable.

BigInteger

System.Numerics.BigInteger [https://docs.microsoft.com/dotnet/core/api/System.Numerics.BigInteger] is an immutable type that represents an arbitrarily large integer whose value in theory has no upper or lower bounds. The methods of the BigInteger type closely parallel those of the other integral types.

Complex

The System.Numerics.Complex [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Complex] type represents a complex number, that is, a number with a real number part and an imaginary number part. It supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators, as well as mathematical, algebraic, and trigonometric methods.

SIMD-enabled vector types

The System.Numerics namespace includes a set of SIMD-enabled vector types for .NET Core. SIMD allows some operations to be parallelized at the hardware level, which results in huge performance improvements in mathematical, scientific, and graphics apps that perform computations over vectors.

The SIMD-enabled vector types in .NET Core include the following:

		System.Numerics.Vector2 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector2], System.Numerics.Vector3 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector3], and System.Numerics.Vector4 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector4] types, which are 2-, 3-, and 4-dimensional vectors of type Single.

		The Vector<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector-1] structure that allows you to create a vector of any primitive numeric type. The primitive numeric types include all numeric types in the System namespace except for Decimal.

		Two matrix types, System.Numerics.Matrix3x2 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Matrix3x2], which represents a 3x2 matrix; and System.Numerics.Matrix4x4 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Matrix4x4], which represents a 4x4 matrix.

		The System.Numerics.Plane [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Plane] type, which represents a three-dimensional plane, and the System.Numerics.Quaternion [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Quaternion] type, which represents a vector that is used to encode three-dimensional physical rotations.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/delegates-patterns.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Common Patterns for Delegates
description: Common Patterns for Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0ff8fdfd-6a11-4327-b061-0f2526f35b43

Common Patterns for Delegates

Previous

Delegates provide a mechanism that enables software designs
involving minimal coupling between components.

One excellent example for this kind of design is LINQ. The LINQ
Query Expression Pattern relies on delegates for all of its
features. Consider this simple example:

var smallNumbers = numbers.Where(n => n < 10);

This filters the sequence of numbers to only those less than the value 10.
The Where method uses a delegate that determines which elements of a
sequence pass the filter. When you create a LINQ query, you supply the
implementation of the delegate for this specific purpose.

The prototype for the Where method is:

public static IEnumerable<TSource> Where<in TSource> (IEnumerable<TSource> source, Func<TSource, bool> predicate);

This example is repeated with all the methods that are part of LINQ. They
all rely on delegates for the code that manages the specific query. This API
design pattern is a very powerful one to learn and understand.

This simple example illustrates how delegates require very little coupling
between components. You don’t need to create a class that derives from a
particular base class. You don’t need to implement a specific interface.
The only requirement is to provide the implementation of one method that
is fundamental to the task at hand.

Building Your Own Components with Delegates

Let’s build on that example by creating a component using a design that
relies on delegates.

Let’s define a component that could be used for log messages in a large
system. The library components could be used in many different environments,
on multiple different platforms. There are a lot of common features in the
component that manages the logs. It will need to accept messages from any
component in the system. Those messages will have different priorities, which
the core component can manage. The messages should have timestamps in their
final archived form. For more advanced scenarios, you could filter messages by
the source component.

There is one aspect of the feature that will change often: where messages are
written. In some environments, they may be written to the error console. In
others, a file. Other possibilities include database storage, OS event logs,
or other document storage.

There are also combinations of output that might be used in different
scenarios. You may want to write messages to the console and to a file.

A design based on delegates will provide a great deal of flexibility, and
make it easy to support storage mechanisms that may be added in the future.

Under this design, the primary log component can be a non-virtual, even
sealed class. You can plug in any set of delegates to write the messages
to different storage media. The built in support for multicast delegates
makes it easy to support scenarios where messages must be written to multiple
locations (a file, and a console).

A First Implementation

Let’s start small: the initial implementation will accept new messages,
and write them using any attached delegate. You can start with one delegate
that writes messages to the console.

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(string msg)
 {
 WriteMessage(msg);
 }
}

The static class above is the simplest thing that can work. We need to
write the single implementation for the method that writes messages
to the console:

public static void LogToConsole(string message)
{
 Console.Error.WriteLine(message);
}

Finally, you need to hook up the delegate by attaching it to
the WriteMessage delegate declared in the logger:

Logger.WriteMessage += LogToConsole;

Practices

Our sample so far is fairly simple, but it still demonstrates some
of the important guidelines for designs involving delegates.

Using the delegate types defined in the Core Framework makes it easier
for users to work with the delegates. You don’t need to define new types,
and developers using your library do not need to learn new, specialized
delegate types.

The interfaces used are as minimal and as flexible as possible: To create
a new output logger, you must create one method. That method may be a static
method, or an instance method. It may have any access.

Formatting Output

Let’s make this first version a bit more robust, and then start
creating other logging mechanisms.

Next, let’s add a few arguments to the LogMessage() method so that
your log class creates more structured messages:

// Logger implementation two
public enum Severity
{
 Verbose,
 Trace,
 Information,
 Warning,
 Error,
 Critical
}

public static class Logger
{
 public static Action<string> WriteMessage;

 public static void LogMessage(Severity s, string component, string msg)
 {
 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

Next, let’s make use of that Severity argument to filter the messages
that are sent to the log’s output.

public static class Logger
{
 public static Action<string> WriteMessage;

 public static Severity LogLevel {get;set;} = Severity.Warning;

 public static void LogMessage(Severity s, string component, string msg)
 {
 if (s < LogLevel)
 return;

 var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
 WriteMessage(outputMsg);
 }
}

Practices

You’ve added new features to the logging infrastructure. Because
the logger component is very loosely coupled to any output mechanism,
these new features can be added with no impact on any of the code
implementing the logger delegate.

As you keep building this, you’ll see more examples of how this loose
coupling enables greater flexibility in updating parts of the site without
any changes to other locations. In fact, in a larger application, the logger
output classes might be in a different assembly, and not even need to be
rebuilt.

Building a Second Output Engine

The Log component is coming along well. Let’s add one more output
engine that logs messages to a file. This will be a slightly more
involved output engine. It will be a class that encapsulates the
file operations, and ensures that the file is always closed after
each write. That ensures that all the data is flushed to disk after
each message is generated.

Here is that file based logger:

public class FileLogger
{
 private readonly string logPath;
 public FileLogger(string path)
 {
 logPath = path;
 Logger.WriteMessage += LogMessage;
 }

 public void DetachLog() => Logger.WriteMessage -= LogMessage;

 // make sure this can't throw.
 private void LogMessage(string msg)
 {
 try {
 using (var log = File.AppendText(logPath))
 {
 log.WriteLine(msg);
 log.Flush();
 }
 } catch (Exception e)
 {
 // Hmm. Not sure what to do.
 // Logging is failing...
 }
 }
}

Once you’ve created this class, you can instantiate it and it attaches
its LogMessage method to the Logger component:

var file = new FileLogger("log.txt");

These two are not mutually exclusive. You could attach both log
methods and generate messages to the console and a file:

var fileOutput = new FileLogger("log.txt");
Logger.WriteMessage += LogToConsole;

Later, even in the same application, you can remove one of the
delegates without any other issues to the system:

Logger.WriteMessage -= LogToConsole;

Practices

Now, you’ve added a second output handler for the logging sub-system.
This one needs a bit more infrastructure to correctly support the file
system. The delegate is an instance method. It’s also a private method.
There’s no need for greater accessibility because the delegate
infrastructure can connect the delegates.

Second, the delegate-based design enables multiple output methods
without any extra code. You don’t need to build any additional infrastructure
to support multiple output methods. They simply become another method
on the invocation list.

Pay special attention to the code in the file logging output method. It
is coded to ensure that it does not throw any exceptions. While this isn’t
always strictly necessary, it’s often a good practice. If either of the
delegate methods throws an exception, the remaining delegates that are
on the invocation won’t be invoked.

As a last note, the file logger must manage its resources by opening and
closing the file on each log message. You could choose to keep the file
open and implement IDisposable to close the file when you are completed.
Either method has its advantages and disadvantages. Both do create a bit
more coupling between the classes.

None of the code in the Logger class would need to be updated
in order to support either scenario.

Handling Null Delegates

Finally, let’s update the LogMessage method so that it is robust
for those cases when no output mechanism is selected. The current
implementation will throw a NullReferenceException when the
WriteMessage delegate does not have an invocation list attached.
You may prefer a design that silently continues when no methods
have been attached. This is easy using the null conditional operator,
combined with the Delegate.Invoke() method:

public static void LogMessage(string msg)
{
 WriteMessage?.Invoke(msg);
}

The null conditional operator (?.) short-circuits when the left operand
(WriteMessage in this case) is null, which means no attempt is made
to log a message.

You won’t find the Invoke() method listed in the documentation for
System.Delegate or System.MulticastDelegate. The compiler generates
a type safe Invoke method for any delegate type declared. In this example,
that means Invoke takes a single string argument, and has a void
return type.

Summary of Practices

You’ve seen the beginnings of a log component that could be expanded
with other writers, and other features. By using delegates in the design
these different components are very loosely coupled. This provides
several advantages. It’s very easy to create new output mechanisms
and attach them to the system. These other mechanisms only need one
method: the method that writes the log message. It’s a design that
is very resilient when new features are added. The contract required
for any writer is to implement one method. That method could be a
static or instance method. It could be public, private, or any other
legal access.

The Logger class can make any number of enhancements or changes without
introducing breaking changes. Like any class, you cannot modify the
public API without the risk of breaking changes. But, because the
coupling between the logger and any output engines is only through
the delegate, no other types (like interfaces or base classes) are
involved. The coupling is as small as possible.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/library.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Standard Library
description: .NET Standard Library
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c044882c-af15-45f2-96d1-534557a5ee9b

.NET Standard Library

The .NET Standard Library is a formal specification of .NET APIs that are intended to be available on all .NET runtimes. The motivation behind the Standard Library is establishing greater uniformity in the .NET ecosystem. ECMA 335 [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] continues to establish uniformity for .NET runtime behavior, but there is no similar spec for the .NET Base Class Libraries (BCL) for .NET library implementations.

The .NET Standard Library enables the following key scenarios:

		Defines uniform set of BCL APIs for all .NET platforms to implement, independent of workload.

		Enables developers to produce portable libraries that are usable across .NET runtimes, using this same set of APIs.

		Reduces and hopefully eliminates conditional compilation of shared source due to .NET APIs, only for OS APIs.

The various .NET runtimes implement specific versions of the .NET Standard Library. Each .NET runtime version advertises the highest .NET Standard version it supports, a statement that means it also supports previous versions. For example, the .NET Framework 4.6 implements the .NET Standard Library 1.3, which means that it exposes all APIs defined in .NET Standard Library versions 1.0 through 1.3. Similarly, the .NET Framework 4.6.2 implements .NET Standard Library 1.5, while .NET Core 1.0 implements the .NET Standard Library 1.6.

.NET Platforms Support

You can see the complete set of .NET runtimes that support the .NET Standard Library.

Platform Name	Alias							
:———-	:———	:———	:———	:———	:———	:———	:———	:———
.NET Standard	netstandard	1.0	1.1	1.2	1.3	1.4	1.5	1.6
.NET Core	netcoreapp							

→

|→

|→

|→

|→

|→

|1.0|
|.NET Framework|net|→

|4.5|4.5.1|4.6|4.6.1|4.6.2|4.6.3|
|Mono/Xamarin Platforms||→

|→

|→

|→

|→

|→

|*|
|Universal Windows Platform|uap|→

|→

|→

|→

|10.0|||
|Windows|win|→

|8.0|8.1|||||
|Windows Phone|wpa|→

|→

|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||

Comparison to Portable Class Libraries

.NET Standard Library can be thought of as the next generation of Portable Class Libraries (PCL) [https://msdn.microsoft.com/library/gg597391.aspx]. The .NET Standard Library improves on the experience of creating portable libraries by curating a standard BCL and establishing greater uniformity across .NET runtimes as a result. A library that targets the .NET Standard Library is a PCL or a ”.NET Standard-based PCL”. Existing PCLs are “profile-based PCLs”.

The .NET Standard Library and PCL profiles were created for similar purposes but also differ in key ways.

Similarities:

		Defines APIs that can be used for binary code sharing.

Differences:

		The .NET Standard Library is a curated set of APIs, while PCL profiles are defined by intersections of existing platforms.

		The .NET Standard Library linearly versions, while PCL profiles do not.

		PCL profiles represents Microsoft platforms while the .NET Standard Library is agnostic to platform.

Specification

The .NET Standard Library spec is a standardized set of APIs. The spec is maintained by .NET runtime implementors, specifically Microsoft (includes .NET Framework, .NET Core and Mono) and Unity. A public feedback process is used as part of establishing new .NET Standard Library versions.

Official Artifacts

The official spec is a set of .cs files that define the APIs that are part of the standard. The ref directory [https://github.com/dotnet/corefx/tree/master/src/System.Runtime/ref] for each component [https://github.com/dotnet/corefx/tree/master/src] defines the .NET Standard Library APIs. While the ref artifacts reside in the CoreFX repo [https://github.com/dotnet/corefx], they are not .NET Core specific.

The NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] metapackage (source [https://github.com/dotnet/corefx/blob/master/pkg/NETStandard.Library/NETStandard.Library.packages.targets]) describes the set of libraries that define (in part) one or more .NET Standard Library versions.

A given component, like System.Runtime, describes:

		Part of .NET Standard Library (just it’s scope).

		Multiple versions of .NET Standard Library, for that scope.

Derivative artifacts are provided to enable more convenient reading and to enable certain developer scenarios (for example, using a compiler).

		API list in markdown (TBD)

		Reference assemblies, distributed as NuGet packages and referenced by the NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library/] metapackage.

Package Representation

The primary distribution vehicle for the .NET Standard Library reference assemblies is NuGet packages. Implementations will be delivered in a variety of ways, appropriate for each .NET runtime.

NuGet packages target one or more frameworks. The .NET Standard Library packages target the ”.NET Standard” framework. You can target the .NET Standard Framework using the netstandard compact TFM (for example, netstandard1.4). Libraries that are intended to run on multiple runtimes should target this framework.

The NETStandard.Library metapackage references the complete set of NuGet packages that define the .NET Standard Library. The most common way to target netstandard is by referencing this metapackage. It describes and provides access to the ~40 .NET libraries and associated APIs that define the .NET Standard Library. You can reference additional packages that target netstandard to get access to additional APIs.

Versioning

The spec is not singular, but an incrementally growing and linearly versioned set of APIs. The first version of the standard establishes a baseline set of APIs. Subsequent versions add APIs and inherit APIs defined by previous versions. There is no established provision for removing APIs from the standard.

The .NET Standard Library is not specific to any one .NET runtime, nor does it match the versioning scheme of any of those runtimes.

APIs added to any of the runtimes (such as, .NET Framework, .NET Core and Mono) can be considered as candidates to add to the specification, particularly if they are thought to be fundamental in nature. New versions of the .NET Standard Library [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md#list-of-net-corefx-apis-and-their-associated-net-platform-standard-version] are created based on .NET runtime releases, enabling you to target new APIs from a .NET Standard PCL. The versioning mechanics are described in more detail in .NET Core Versioning.

.NET Standard Library versioning is important for usage. Given a .NET Standard Library version, you can use libraries that target that same or lower version. The following approach describes the workflow for using .NET Standard Library PCLs, specific to .NET Standard Library targeting.

		Select a .NET Standard Library version to use for your PCL.

		Use libraries that depend on the same .NET Standard Library version or lower.

		If you find a library that depends on a higher .NET Standard Library version, you either need to adopt that same version or decide not to use that library.

PCL Compatibility

The .NET Standard Library is compatible with a subset of PCL profiles. .NET Standard Library 1.0, 1.1 and 1.2 each overlap with a set of PCL profiles. This overlap was created for two reasons:

		Enable .NET Standard-based PCLs to reference profile-based PCLs.

		Enable profile-based PCLs to be packaged as .NET Standard-based PCLs.

Profile-based PCL compatibility is provided by the Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] NuGet package. This dependency is required when referencing NuGet packages that contain profile-based PCLs.

Profile-based PCLs packaged as netstandard are easier to consume than typically packaged profile-based PCLs in project.json. netstandard packaging is compatible with existing users.

You can see the set of PCL profiles that are compatible with the .NET Standard:

Profile	.NET Platform Standard version
———	—————
Profile7 .NET Portable Subset (.NET Framework 4.5, Windows 8)	1.1
Profile31 .NET Portable Subset (Windows 8.1, Windows Phone Silverlight 8.1)	1.0
Profile32 .NET Portable Subset (Windows 8.1, Windows Phone 8.1)	1.2
Profile44 .NET Portable Subset (.NET Framework 4.5.1, Windows 8.1)	1.2
Profile49 .NET Portable Subset (.NET Framework 4.5, Windows Phone Silverlight 8)	1.0
Profile78 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone Silverlight 8)	1.0
Profile84 .NET Portable Subset (Windows Phone 8.1, Windows Phone Silverlight 8.1)	1.0
Profile111 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone 8.1)	1.1
Profile151 .NET Portable Subset (.NET Framework 4.5.1, Windows 8.1, Windows Phone 8.1)	1.2
Profile157 .NET Portable Subset (Windows 8.1, Windows Phone 8.1, Windows Phone Silverlight 8.1)	1.0
Profile259 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8)	1.0

Targeting .NET Standard Library

You can build .NET Standard Libraries using a combination of the netstandard framework and the NETStandard.Library metapackage. You can see examples of targeting the .NET Standard Library with .NET Core tools.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-interpreting.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Interpreting Expressions
description: Interpreting Expressions
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: adf73dde-1e52-4df3-9929-2e0670e28e16

Interpreting Expressions

Previous – Executing Expressions

Now, let’s write some code to examine the structure of an
expression tree. Every node in an expression tree will be
an object of a class that is derived from Expression.

That design makes visiting all the nodes in an expression tree
a relatively straight forward recursive operation. The general strategy
is to start at the root node and determine what kind of node it is.

If the node type has children, recursively visit the children. At each
child node, repeat the process used at the root node: determine the
type, and if the type has children, visit each of the children.

Examining an Expression with No Children

Let’s start by visiting each node in a very simple expression tree.
Here’s the code that creates a constant expression and then
examines its properties:

var constant = Expression.Constant(24, typeof(int));

Console.WriteLine($"This is a/an {constant.NodeType} expression type");
Console.WriteLine($"The type of the constant value is {constant.Type}");
Console.WriteLine($"The value of the constant value is {constant.Value}");

This will print the following:

This is an Constant expression type
The type of the constant value is System.Int32
The value of the constant value is 24

Now, let’s write the code that would examine this expression and write
out some important properties about it. Here’s that code:

Examining a simple Addition Expression

Let’s start with the addition sample from the
introduction to this section.

Expression<Func<int>> sum = () => 1 + 2;

I’m not using var to declare this expression tree, as it is not possible
because the right-hand side of the assignment is implicitly typed. To understand
this more deeply, read here.

The root node is a LambaExpression. In order to get the interesting
code on the right hand side of the => operator, you need to find one
of the children of the LambdaExpression. We’ll do that with all the
expressions in this section. The parent node does help us find the return
type of the LambdaExpression.

To examine each node in this expression, we’ll need to recursively
visit a number of nodes. Here’s a simple first implementation:

Expression<Func<int, int, int>> addition = (a, b) => a + b;

Console.WriteLine($"This expression is a {addition.NodeType} expression type");
Console.WriteLine($"The name of the lambda is {((addition.Name == null) ? "<null>" : addition.Name)}");
Console.WriteLine($"The return type is {addition.ReturnType.ToString()}");
Console.WriteLine($"The expression has {addition.Parameters.Count} arguments. They are:");
foreach(var argumentExpression in addition.Parameters)
{
 Console.WriteLine($"\tParameter Type: {argumentExpression.Type.ToString()}, Name: {argumentExpression.Name}");
}

var additionBody = (BinaryExpression)addition.Body;
Console.WriteLine($"The body is a {additionBody.NodeType} expression");
Console.WriteLine($"The left side is a {additionBody.Left.NodeType} expression");
var left = (ParameterExpression)additionBody.Left;
Console.WriteLine($"\tParameter Type: {left.Type.ToString()}, Name: {left.Name}");
Console.WriteLine($"The right side is a {additionBody.Right.NodeType} expression");
var right= (ParameterExpression)additionBody.Right;
Console.WriteLine($"\tParameter Type: {right.Type.ToString()}, Name: {right.Name}");

This sample prints the following output:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 arguments. They are:
 Parameter Type: System.Int32, Name: a
 Parameter Type: System.Int32, Name: b
The body is a/an Add expression
The left side is a Parameter expression
 Parameter Type: System.Int32, Name: a
The right side is a Parameter expression
 Parameter Type: System.Int32, Name: b

You’ll notice a lot of repetition in the code sample above.
Let’s clean that up and build a more general purpose expression
node visitor. That’s going to require us to write a recursive
algorithm. Any node could be of a type that might have children.
Any node that has children requires us to visit those children
and determine what that node is. Here’s the cleaned up version
that utilizes recursion to visit the addition operations:

// Base Visitor class:
public abstract class Visitor
{
 private readonly Expression node;

 protected Visitor(Expression node)
 {
 this.node = node;
 }

 public abstract void Visit(string prefix);

 public ExpressionType NodeType => this.node.NodeType;
 public static Visitor CreateFromExpression(Expression node)
 {
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:
 return new BinaryVisitor((BinaryExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
 return default(Visitor);
 }
 }
}

// Lambda Visitor
public class LambdaVisitor : Visitor
{
 private readonly LambdaExpression node;
 public LambdaVisitor(LambdaExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression type");
 Console.WriteLine($"{prefix}The name of the lambda is {((node.Name == null) ? "<null>" : node.Name)}");
 Console.WriteLine($"{prefix}The return type is {node.ReturnType.ToString()}");
 Console.WriteLine($"{prefix}The expression has {node.Parameters.Count} argument(s). They are:");
 // Visit each parameter:
 foreach (var argumentExpression in node.Parameters)
 {
 var argumentVisitor = Visitor.CreateFromExpression(argumentExpression);
 argumentVisitor.Visit(prefix + "\t");
 }
 Console.WriteLine($"{prefix}The expression body is:");
 // Visit the body:
 var bodyVisitor = Visitor.CreateFromExpression(node.Body);
 bodyVisitor.Visit(prefix + "\t");
 }
}

// Binary Expression Visitor:
public class BinaryVisitor : Visitor
{
 private readonly BinaryExpression node;
 public BinaryVisitor(BinaryExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This binary expression is a {NodeType} expression");
 var left = Visitor.CreateFromExpression(node.Left);
 Console.WriteLine($"{prefix}The Left argument is:");
 left.Visit(prefix + "\t");
 var right = Visitor.CreateFromExpression(node.Right);
 Console.WriteLine($"{prefix}The Right argument is:");
 right.Visit(prefix + "\t");
 }
}

// Parameter visitor:
public class ParameterVisitor : Visitor
{
 private readonly ParameterExpression node;
 public ParameterVisitor(ParameterExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This is an {NodeType} expression type");
 Console.WriteLine($"{prefix}Type: {node.Type.ToString()}, Name: {node.Name}, ByRef: {node.IsByRef}");
 }
}

This algorithm is the basis of an algorithm that can visit
any arbitrary LambdaExpression. There are a lot of holes,
namely that the code I created only looks for a very small
sample of the possible sets of expression tree nodes that
it may encounter. However, you can still learn quite a bit
from what it produces. (The default case in the Visitor.CreateFromExpression
method prints a message to the error console when a new node type
is encountered. That way, you know to add a new expression type.)

When you run this visitor on the addition expression shown above, you get the
following output:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Now that you’ve built a more general visitor implementation, you
can visit and process many more different types of expressions.

Examining an Addition Expression with Many Levels

Let’s try a more complicated example,
yet still limit the node types to addition only:

Expression<Func<int>> sum = () => 1 + 2 + 3 + 4;

Before you run this on the visitor algorithm, try a thought
exercise to work out what the output might be. Remember that
the + operator is a binary operator: it must have two
children, representing the left and right operands. There
are several possible ways to construct a tree that
could be correct:

Expression<Func<int>> sum1 = () => 1 + (2 + (3 + 4));
Expression<Func<int>> sum2 = () => ((1 + 2) + 3) + 4;

Expression<Func<int>> sum3 = () => (1 + 2) + (3 + 4);
Expression<Func<int>> sum4 = () => 1 + ((2 + 3) + 4);
Expression<Func<int>> sum5 = () => (1 + (2 + 3)) + 4;

You can see the separation into two possible answers to highlight the
most promising. The first represents right associative
expressions. The second represent left associative expressions.
The advantage of both of those two formats is that the format scales
to any arbitrary number of addition expressions.

If you do run this expression through the visitor, you will see this
this output, verifying that the simple addition expression is
left associative.

In order to run this sample, and see the full expression tree, I had to
make one change to the source expression tree. When the expression tree
contains all constants, the resulting tree simply contains the constant
value of 10. The compiler performs all the addition and reduces the
expression to its simplest form. Simply adding one variable in the expression
is sufficient to see the original tree:

Expression<Func<int, int>> sum = (a) => 1 + a + 3 + 4;

Create a visitor for this sum and run the visitor you’ll see this output:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 4

You can also run any of the other samples through the visitor code
and see what tree it represents. Here’s an example of the sum3
expression above (with an additional parameter to prevent the compiler from
computing the constant):

Expression<Func<int, int, int>> sum3 = (a, b) => (1 + a) + (3 + b);

Here’s the output from the visitor:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False
The expression body is:
 This binary expression is a Add expression
 The Left argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: a, ByRef: False
 The Right argument is:
 This binary expression is a Add expression
 The Left argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 3
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: b, ByRef: False

Notice that the parentheses are not part of the output. There are no
nodes in the expression tree that represent the parentheses in the
input expression. The structure of the expression tree contains all the
information necessary to communicate the precedence.

Extending from this sample

The sample deals with only the most rudimentary expression trees. The code
you’ve seen in this section only handles constant integers and the binary
+ operator. As a final sample, let’s update the visitor to handle a more
complicated expression. Let’s make it work for this:

Expression<Func<int, int>> factorial = (n) =>
 n == 0 ?
 1 :
 Enumerable.Range(1, n).Aggregate((product, factor) => product * factor);

This code represents one possible implementation for the
mathematical factorial function. The way I’ve written this code highlights
two limitiations of building expression trees by assigning lambda expressions
to Expressions. First, statement lambdas are not allowed. That means I can’t use
loops, blocks, if / else statements, and other control structures common in C#. I’m
limited to using expressions. Second, I can’t recursively call the same expression.
I could if it were already a delegate, but I can’t call it in its expression tree
form. In the section on building expression trees
you’ll learn techniques to overcome these limitations.

In this expression, you’ll encounter nodes of all these types:

		Equal (binary expression)

		Multiply (binary expression)

		Conditional (the ? : expression)

		Method Call Expression (calling Range() and Aggregate())

One way to modify the visitor algorithm is to keep executing it, and write
the node type every time you reach your default clause. After a few
iterations, you’ll have seen each of the potential nodes. Then, you have
all you need. The result would be something like this:

public static Visitor CreateFromExpression(Expression node)
{
 switch(node.NodeType)
 {
 case ExpressionType.Constant:
 return new ConstantVisitor((ConstantExpression)node);
 case ExpressionType.Lambda:
 return new LambdaVisitor((LambdaExpression)node);
 case ExpressionType.Parameter:
 return new ParameterVisitor((ParameterExpression)node);
 case ExpressionType.Add:
 case ExpressionType.Equal:
 case ExpressionType.Multiply:
 return new BinaryVisitor((BinaryExpression)node);
 case ExpressionType.Conditional:
 return new ConditionalVisitor((ConditionalExpression)node);
 case ExpressionType.Call:
 return new MethodCallVisitor((MethodCallExpression)node);
 default:
 Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
 return default(Visitor);
 }
}

The ConditionalVisitor and MethodCallVisitor process those two nodes:

public class ConditionalVisitor : Visitor
{
 private readonly ConditionalExpression node;
 public ConditionalVisitor(ConditionalExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
 var testVisitor = Visitor.CreateFromExpression(node.Test);
 Console.WriteLine($"{prefix}The Test for this expression is:");
 testVisitor.Visit(prefix + "\t");
 var trueVisitor = Visitor.CreateFromExpression(node.IfTrue);
 Console.WriteLine($"{prefix}The True clause for this expression is:");
 trueVisitor.Visit(prefix + "\t");
 var falseVisitor = Visitor.CreateFromExpression(node.IfFalse);
 Console.WriteLine($"{prefix}The False clause for this expression is:");
 falseVisitor.Visit(prefix + "\t");
 }
}

public class MethodCallVisitor : Visitor
{
 private readonly MethodCallExpression node;
 public MethodCallVisitor(MethodCallExpression node) : base(node)
 {
 this.node = node;
 }

 public override void Visit(string prefix)
 {
 Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
 if (node.Object == null)
 Console.WriteLine($"{prefix}This is a static method call");
 else
 {
 Console.WriteLine($"{prefix}The receiver (this) is:");
 var receiverVisitor = Visitor.CreateFromExpression(node.Object);
 receiverVisitor.Visit(prefix + "\t");
 }

 var methodInfo = node.Method;
 Console.WriteLine($"{prefix}The method name is {methodInfo.DeclaringType}.{methodInfo.Name}");
 // There is more here, like generic arguments, and so on.
 Console.WriteLine($"{prefix}The Arguments are:");
 foreach(var arg in node.Arguments)
 {
 var argVisitor = Visitor.CreateFromExpression(arg);
 argVisitor.Visit(prefix + "\t");
 }
 }
}

And the output for the expression tree would be:

This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
The expression body is:
 This expression is a Conditional expression
 The Test for this expression is:
 This binary expression is a Equal expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 The Right argument is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 0
 The True clause for this expression is:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 The False clause for this expression is:
 This expression is a Call expression
 This is a static method call
 The method name is System.Linq.Enumerable.Aggregate
 The Arguments are:
 This expression is a Call expression
 This is a static method call
 The method name is System.Linq.Enumerable.Range
 The Arguments are:
 This is an Constant expression type
 The type of the constant value is System.Int32
 The value of the constant value is 1
 This is an Parameter expression type
 Type: System.Int32, Name: n, ByRef: False
 This expression is a Lambda expression type
 The name of the lambda is <null>
 The return type is System.Int32
 The expression has 2 arguments. They are:
 This is an Parameter expression type
 Type: System.Int32, Name: product, ByRef: False
 This is an Parameter expression type
 Type: System.Int32, Name: factor, ByRef: False
 The expression body is:
 This binary expression is a Multiply expression
 The Left argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: product, ByRef: False
 The Right argument is:
 This is an Parameter expression type
 Type: System.Int32, Name: factor, ByRef: False

Extending the Sample Library

The samples in this section show the core techniques to visit and
examine nodes in an expression tree. I glossed over many actions
you might need in order to concentrate on the core tasks of
visiting and accessing nodes in an expression tree.

First, the visitors only handle constants
that are integers. Constant values could be any other numeric type,
and the C# language supports conversions and promotions between those
types. A more robust version of this code would mirror all those
capabilities.

Even the last example recognizes a subset of the possible node types.
You can still feed it many expressions that will cause it to fail.
A full implementation is included in the .NET Standard Library
under the name ExpressionVisitor [https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions.ExpressionVisitor]
and can handle all the possible node types.

Finally, the library I used in this article was built for demonstration
and learning. It’s not optimized. I wrote it to make the structures
used very clear, and to highlight the techniques used to visit
the nodes and analyze what’s there. A production implementation would
pay more attention to performance than I have.

Even with those limitations, you should be well on your way to writing
algorithms that read and understand expression trees.

Next – Building Expressions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/generics.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Generics
description: Generics
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 63d1fe21-bb1f-46e3-92a0-89efcf0815e8

🔧 Generics

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/489] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/implicitly-typed-lambda-expressions.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Implicitly typed lambda expressions
description: Implicitly typed lambda expressions
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a3851da9-e018-4389-9922-233db7d0f841

Implicitly typed lambda expressions

I’m not using var to declare this expression tree. You can’t use
an implicitly typed variable declaration to declare a lambda expression.
It creates a circular logic problem for the compiler. The var declaration
tells the compiler to figure out the type of the variable from the type
of expression on the right hand side of the assignment operator. A lambda
expression does not have a compile time type, but is convertible to any
matching delegate or expression type. When you assign a lambda expression
to a variable of a delegate or expression type, you tell the compiler to
try and convert the lambda expression into an expression or delegate that
matches the signature of the ‘assigned to’ variable. The compiler must
try to make the thing on the right hand side of the assignment match
the type on the left hand side of the assignment.

Both sides of the assignment can’t be telling the compiler to look at the
object on the other side of the assignment operator and see if my type
matches.

You can get even more details on why the C# language specifies that behavior
by reading this article [http://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf] (PDF Download)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/assembly-format.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Assembly File Format
description: .NET Assembly File Format
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6520323e-ff28-4c8a-ba80-e64a413199e6

.NET Assembly File Format

The .NET platform defines a binary file format - “assembly” - that is used to fully-describe and contain .NET programs. Assemblies are used for the programs themselves as well as any dependent libraries. A .NET program can be executed as one of more assemblies, with no other required artifacts, beyond the appropriate .NET runtime. Native dependencies, including operating system APIs, are a separate concern and are not contained within the .NET assembly format, although are sometimes described with this format (for example, WinRT).

Each CLI component carries the metadata for declarations, implementations, and references specific to that component. Therefore, the component-specific metadata is referred to as component metadata, and the resulting component is said to be self-describing – from ECMA 335 I.9.1, Components and assemblies.

The format is fully specified and standardized as ECMA 335. All .NET compilers and runtimes use this format. The presence of a documented and infrequently updated binary format has been a major benefit (arguably a requirement) for interoperatibility. The format was last updated in a substantive way in 2005 (.NET 2.0) to accommodate generics and processor architecture.

The format is CPU- and OS-agnostic. It has been used as part of .NET runtimes that target many chips and CPUs. While the format itself has Windows heritage, it is implementable on any operating system. It’s arguably most significant choice for OS interoperability is that most values are stored in little-endian format. It doesn’t have a specific affinity to machine pointer size (for example, 32-bit, 64-bit).

The .NET assembly format is also very descriptive about the structure of a given program or library. It describes the internal components of an assembly, specifically: assembly references and types defined and their internal structure. Tools or APIs can read and process this information for display or to make programmatic decisions.

Format

The .NET binary format is based on the Windows PE file [http://en.wikipedia.org/wiki/Portable_Executable] format. In fact, .NET class libraries are conformant Windows PEs, and appear on first glance to be Windows dynamic link libraries (DLLs) or application executables (EXEs). This is a very useful characteristic on Windows, where they can masquerade as native executable binaries and get some of the same treatment (for example, OS load, PE tools).

[image: Assembly headers]

Assembly Headers Assemblies headers from ECMA 335 II.25.1, Structure of the runtime file format.

Processing the Assemblies

It is possible to write tools or APIs to process assemblies. Assembly information enables making programmatic decisions at runtime, re-writing assemblies, providing API IntelliSense in an editor and generating documentation. System.Reflection [https://msdn.microsoft.com/library/system.reflection.aspx] and Mono.Cecil [http://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/] are good examples of tools that are frequently used for this purpose.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/tutorials/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: C# Tutorials
description: C# Tutorials
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fcc83b5b-fb68-4e48-9132-0882677d8056

C# Tutorials

These exercises enable you to build C# programs using core CLR.

		Console Application. This tutorial
demonstrates Console I/O, the structure of a Console application, and
the basics of the Task based asynchronous programming model.

		REST Client. This tutorial
demonstrates web communications, JSON serialization, and Object Oriented
features in the C# language.

		Working with LINQ This tutorial demonstrates many of the features of LINQ and the language elements that support it.

		Microservices hosted in Docker This tutorial demonstrates building an asp.net core microservice and hosting it it Docker.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/gc-overview.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Garbage Collection
description: Garbage Collection
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: db39a0f5-e363-490f-a7e6-adb9a6ff2a8c

Garbage Collection

Garbage collection is one of most important features of the .NET managed code platform. The garbage collector (GC) manages allocating and releasing memory for you. You do not need to how to allocate and release memory or manage the lifetime of the objects that use that memory. An allocation is made any time you new an object or a value type is boxed. Allocations are typically very fast. When there isn’t enough memory to allocate an object, the GC must collect and dispose of garbage memory to make memory available for new allocations. This process is called “garbage collection”.

The garbage collector serves as an automatic memory manager. It provides the following benefits:

		Enables you to develop your application without having to free memory.

		Allocates objects on the managed heap efficiently.

		Reclaims objects that are no longer being used, clears their memory, and keeps the memory available for future allocations. Managed objects automatically get clean content to start with, so their constructors do not have to initialize every data field.

		Provides memory safety by making sure that an object cannot use the content of another object.

The .NET GC is generational and has 3 generations. Each generation has its own heap that it uses for storage of allocated objects. There is a basic principle that most objects are either short lived or long lived. Generation 0 is where objects are first allocated. Objects often don’t live past the first generation, since they are no longer in use (out of scope) by the time the next garbage collection occurs. Generation 0 is quick to collect because its associated heap is small. Generation 1 is really a second chance space. Objects that are short lived but survive the generation 0 collection (often based on coincidental timing) go to generation 1. Generation 1 collections are also quick because its associated heap is also small. The first two heaps remain small because objects are either collected or are promoted to the next generation heap. Generation 2 is where all long lived objects are. The generation 2 heap can grow to be very large, since the objects it contains can survive a long time and there is no generation 3 heap to further promote objects.

The GC has has an additional heap for large objects called the Large Object Heap (LOH). It is reserved for objects that are 85,000 bytes or greater. A byte array (Byte[]) with 85k elements would be an example of a large object. Large objects are not allocated to the generational heaps but are allocated directly to the LOH.

Generation 2 and LOH collections can take noticeable time for programs that have run for a long time or operate over large amounts of data. Large server programs are known to have heaps in the 10s of GBs. The GC employs a variety of techniques to reduce the amount of time that it blocks program execution. The primary approach is to do as much garbage collection work as possible on a background thread in a way that does not interfere with program execution. The GC also exposes a few ways for developers to influence its behavior, which can be quite useful to improve performance.

For more information, see Garbage Collection [http://msdn.microsoft.com/library/0xy59wtx.aspx] on MSDN.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/tutorials/console-webapiclient.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: REST client
description: REST client
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 51033ce2-7a53-4cdd-966d-9da15c8204d2

REST client

Introduction

This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:

		The basics of the .NET Core Command Line Interface (CLI).

		An overview of C# Language features.

		Managing dependencies with NuGet

		HTTP Communications

		Processing JSON information

		Managing configuration with Attributes.

You’ll build an application that issues HTTP Requests to a REST
service on GitHub. You’ll read information in JSON format, and convert
that JSON packet into C# objects. Finally, you’ll see how to work with
C# objects.

There are a lot of features in this tutorial. Let’s build them one by one.

Prerequisites

You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.

Create the Application

The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.

Before you start making modifications, let’s go through the steps to run
the simple Hello World application. After creating the application, type
“dotnet restore” at the command prompt. This command runs the NuGet
package restore process. NuGet is a .NET package manager. This command
downloads any of the missing dependencies for your project. As this is a
new project, none of the dependencies are in place, so the first run will
download the .NET Core framework. After this initial step, you will only
need to run dotnet restore when you add new dependent packages, or update
the versions of any of your dependencies. This process also creates the
project lock file (project.lock.json) in your project directory. This file
helps to manage the project dependencies. It contains the local location
of all the project dependencies. You do not need to put the file in source
control; it will be generated when you run “dotnet restore”.

After restoring packages, you run “dotnet build”. This executes the build
engine and creates your application. Finally, you execute “dotnet run” to
run your application.

Adding New Dependencies

One of the key design goals for .NET Core is to minimize the size of
the .NET framework installation. The .NET Core Application framework contains
only the most common elements of the .NET full framework. This application
needs more libraries for some of its features. You’ll add those
dependencies into your project.json file. You’ll need to add the
System.Net.Http package so that your application can make HTTP requests.
You’ll also need to add the System.Runtime.Serialization.Json package
so your application can process JSON responses.

Open your project.json file. Look for the dependencies section. You should
see one line that looks similar to this:

"dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 }
},

You’ll add two lines to this section to include the two new libraries:

"dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform"
 "version": "1.0.0",
 },
 "System.Runtime.Serialization.Json": "4.0.2",
 "System.Runtime.Serialization.Primitives": "4.1.1"
},

Most code editors will provide completion for different versions of these
libraries. You’ll usually want to use the latest version of any package
that you add. However, it is important to make sure that the versions
of all packages match, and that they also match the version of the .NET
Core Application framework.

After you’ve made these changes, you should run “dotnet restore” again so
that those packages are installed on your system.

Making Web Requests

Now you’re ready to start retrieving data from the web. In this
application, you’ll read information from the
GitHub API [https://developer.github.com/v3/]. Let’s read information
about the projects under the
.NET Foundation [http://www.dotnetfoundation.org/] umbrella. You’ll
start by making the request to the GitHub API to retrieve information
on the projects. The endpoint you’ll use is: https://api.github.com/orgs/dotnet/repos. You want to retrieve all the
information about these projects, so you’ll use an HTTP GET request.
Your browser also uses HTTP GET requests, so you can paste that URL into
your browser to see what information you’ll be receiving and processing.

You use the HttpClient class to make web requests. Like all modern .NET
APIs, HttpClient supports only async methods for its long-running APIs.
Start by making an async method. You’ll fill in the implementation as you
build the functionality of the application.

private static async Task ProcessRepositories()
{

}

You’ll need to add a using statement at the top of your Main() method so
that the C# compiler recognizes the Task type:

using System.Threading.Tasks;

If you build your project at this point, you’ll get a warning generated
for this method, because it does not contain any await operators and
will run synchronously. Ignore that for now, you’ll add await operators
as you fill in the method.

Next, update the Main() method to call this method. The
ProcessRepositories() method returns a Task, and you shouldn’t exit the
program before that task finishes. Therefore, you must use the Wait()
method to block and wait for the task to finish:

public static void Main(string[] args)
{
 ProcessRepositories().Wait();
}

Now, you have a program that does nothing, but does it asynchronously. Let’s go back to the
ProcessRepositories() method and fill in a first version of it:

private static async Task ProcessRepositories()
{
 var client = new HttpClient();
 client.DefaultRequestHeaders.Accept.Clear();
 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/vnd.github.v3+json"));
 client.DefaultRequestHeaders.Add("User-Agent", ".NET Foundation Repository Reporter");

 var stringTask = client.GetStringAsync("https://api.github.com/orgs/dotnet/repos");

 var msg = await stringTask;
 Console.Write(msg);
}

You’ll need to also add two new using statements at the top of the file for this to compile:

using System.Net.Http;
using System.Net.Http.Headers;

This first version makes a web request to read the list of all repositories under the dotnet
foundation organization. (The gitHub ID for the .NET Foundation is ‘dotnet’). First, you create
a new HttpClient. This object handles the request and the responses. The next few lines setup
the HttpClient for this request. First, it is configured to accept the GitHub JSON responses.
This format is simply JSON. The next line adds a User Agent header to all requests from this
object. These two headers are checked by the GitHub server code, and are necessary to retrieve
information from GitHub.

After you’ve configured the HttpClient, you make a web request, and retrieve the response. In
this first version, you use the GetStringAsync convenience method. This convenience method
starts a task that makes the web request, and then when the request returns, it will read the
response stream, and extract the content from the stream. The body of the response is returned
as a string. The string is available when the task completes.

The final two lines of this method await that task, and then print the response to the console.
Build the app, and run it. The build warning is gone now, because the ProcessRepositories now
does contain an await operator. You’ll see a long display of JSON formatted text.

Processing the JSON Result

At this point, you’ve written the code to retrieve a response from a web server, and display
the text that is contained in that response. Next, let’s convert that JSON response into C#
objects.

The JSON Serializer converts JSON data into C# Objects. Your first task is to define a C# class
type to contain the information you use from this response. Let’s build this slowly, so start with
a simple C# type that contains the name of the repository:

namespace WebAPIClient
{
 public class repo
 {
 public string name;
 }
}

Put the above code in a new file called ‘repo.cs’. This version of the class represents the
simplest path to process JSON data. The class name and the member name match the names used
in the JSON packet, instead of following C# conventions. You’ll fix that by providing some
configuration attributes later. This class demonstrates another important feature of JSON
serialization and deserialization: Not all the fields in the JSON packet are part of this class.
The JSON serializer will ignore information that is not included in the class type being used.
This feature makes it easier to create types that work with only a subset of the fields in
the JSON packet.

Now that you’ve created the type, let’s deserialize it. You’ll need to create a
DataContractJsonSerializer object. This object must know the CLR type expected for the
JSON packet it retrieves. The packet from GitHub contains a sequence of repositories, so a
List<repo> is the correct type. Add the following line to your ProcessRepositories method:

var serializer = new DataContractJsonSerializer(typeof(List<repo>));

You’re using two new namespaces, so you’ll need to add those as well:

using System.Collections.Generic;
using System.Runtime.Serialization.Json;

Next, you’ll use the serializer to convert JSON into C# objects. Replace the call to
GetStringAsync() in your ProcessRepositories method with the following two lines:

var streamTask = client.GetStreamAsync("https://api.github.com/orgs/dotnet/repos");
var repositories = serializer.ReadObject(await streamTask) as List<repo>;

Notice that you’re now using GetStreamAsync instead of GetStringAsync. The serializer
uses a stream instead of a string as its source. Let’s explain a couple features of the C#
language that are being used in the second line above. The argument to ReadObject is an
await expression. Await expressions can appear almost anywhere in your code, even though
up to now, you’ve only seen them as part of an assignment statement.

Secondly, the as operator converts from the compile time type of object to List<repo>.
The declaration of ReadObject declares that it returns an object of type System.Object.
ReadObject will return the type you specified when you constructed it (List<repo> in
this tutorial). If the conversion does not succeed, the as operator evaluates to null,
instead of throwing an exception.

You’re almost done with this section. Now that you’ve converted the JSON to C# objects, let’s display
the name of each repository:

foreach (var repo in repositories)
 Console.WriteLine(repo.name);

Compile and run the application. It will print out the names of the repositories that are part of the
.NET Foundation.

Controlling Serialization

Before you add more features, let’s address the repo type and make it follow more standard
C# conventions. You’ll do this by annotating the repo type with Attributes that control how
the JSON Serializer works. In your case, you’ll use these attributes to define a mapping between
the JSON key names and the C# class and member names. The two attributes used are the DataContract
attribute and the Data Member attribute. By convention, all Attribute classes end in the suffix
Attribute. However, you do not need to use that suffix when you apply an attribute.

The DataContract and DataMember attributes are in a different library, so you’ll need to add
that library to project.json as a dependency. Add the following line to the dependencies section
of the project.json file (remember to add the comma separator on the line above):

"System.Runtime.Serialization.Primitives" : "4.0.1"

After you save the file, run ‘dotnet restore’ to retrieve this package and update the project.json.lock
file.

Next, open the repo.cs file. Let’s change the name to use Pascal Case, and fully spell out the name
Repository. We still want to map JSON ‘repo’ nodes to this type, so you’ll need to add the
DataContract attribute to the class declaration. YOu’ll set the Name property of the attribute
to the name of the JSON nodes that map to this type:

[DataContract(Name="repo")]
public class Repository

The DataContractAttribute is a member of the System.Runtime.Serialization namespace, so you’ll
need to add the appropriate using statement at the top of the file:

using System.Runtime.Serialization;

You changed the name of the repo class to Repository, so you’ll need to make the same name change
in Program.cs (some editors may support a rename refactoring that will make this change automatically:)

var serializer = new DataContractJsonSerializer(typeof(List<Repository>));

// ...

var repositories = serializer.ReadObject(await streamTask) as List<Repository>;

Next, let’s make the same change with the name field, using the DataMemberAttribute class. Make
the following changes to the declaration of the name field in repo.cs:

[DataMember(Name="name")]
public string Name;

This change means you need to change the code that writes the name of each repository in program.cs:

Console.WriteLine(repo.Name);

Do a “dotnet build”, followed by a “dotnet run” to make sure you’ve got the mappings correct. You should
see the same output as before. Before we process more properties from the web server, let’s make one
more change to the Repository class. The Name member is a publicly accessible field. That’s not
a good object oriented practice, so let’s change it to a property. For our purposes, we don’t need
any specific code to run when getting or setting the property, but changing to a property makes it
easier to add those changes later without breaking any code that uses the Repository class.

Remove the field definition, and replace it with an auto-implemented property:

public string Name { get; set; }

The compiler generates the body of the get and set accessors, as well as a private field to
store the name. It would be similar to the following code that you could type by hand:

public string Name
{
 get { return this._name; }
 set { this._name = value; }
}
private string _name;

Let’s make one more change before adding new features. The ProcessRepositories method can do the async
work and return a collection of the repositories. Let’s return the List<Repository> from that method,
and move the code that writes the information into the Main method.

Change the signature of ProcessRepositories to return a task whose result is a list of Repository
objects:

private static async Task<List<Repository>> ProcessRepositories()

Then, just return the repositories after processing the JSON response:

var repositories = serializer.ReadObject(await streamTask) as List<Repository>;
return repositories;

The compiler generates the Task<T> object for the return because you’ve marked this method as async.
Then, let’s modify the Main method so that it captures those results and writes each repository name
to the console. Your Main method now looks like this:

public static void Main(string[] args)
{
 var repositories = ProcessRepositories().Result;

 foreach (var repo in repositories)
 Console.WriteLine(repo.Name);
}

Accessing the Result property of a Task blocks until the task has completed. Normally, you would prefer
to await the completion of the task as in the ProcessRepositories method, but that isn’t allowed in the
Main method.

Reading More Information

Let’s finish this by processing a few more of the properties in the JSON packet that gets sent from the
GitHub API. You won’t want to grab everything, but adding a few properties will demonstrate a few more
features of the C# language.

Let’s start by adding a few more simple types to the Repository class definition. Add these properties
to that class:

[DataMember(Name="description")]
public string Description { get; set; }

[DataMember(Name="html_url")]
public Uri GitHubHomeUrl { get; set; }

[DataMember(Name="homepage")]
public Uri Homepage { get; set; }

[DataMember(Name="watchers")]
public int Watchers { get; set; }

These properties have built in conversions from the string type (which is what the JSON packets contain) to
the target type. The Uri type may be new to you. It represents a URI, or in this case, a URL. In the case
of the Uri and int types, if the JSON packet contains data that does not convert to the target type,
the Serialization action will throw an exception.

Once you’ve added these, update the Main method to display those elements:

foreach (var repo in repositories)
{
 Console.WriteLine(repo.Name);
 Console.WriteLine(repo.Description);
 Console.WriteLine(repo.GitHubHomeUrl);
 Console.WriteLine(repo.Homepage);
 Console.WriteLine(repo.Watchers);
 Console.WriteLine();
}

As a final step, let’s add the information for the last push operation. This information is formatted in
this fashion in the JSON response:

2016-02-08T21:27:00Z

That format does not follow one of the standard .NET DateTime formats. Because of that, you’ll need to write
a custom conversion method. You also probably don’t want the raw string exposed to uses of the Repository
class. Attributes can help control that as well. First, define a private property that will hold the
string representation of the date time in your Repository class:

[DataMember(Name="pushed_at")]
private string JsonDate { get; set; }

The DataMember attribute informs the Serializer that this should be processed, even though it is not
a public member. Next, you need to write a public read only property that converts the string to a
valid DateTime object, and returns that DateTime:

[IgnoreDataMember]
public DateTime LastPush
{
 get
 {
 return DateTime.ParseExact(JsonDate, "yyyy-MM-ddTHH:mm:ssZ", CultureInfo.InvariantCulture);
 }
}

Let’s go over the new constructs above. The IgnoreDatamember attribute instructs the serializer
that this type should not be read to or written from any JSON object. This property contains only a
get accessor. There is no set accessor. That’s how you define a read only property in C#. (Yes,
you can create write only properties in C#, but their value is limited.) The DateTime.ParseExact
method parses a string and creates a DateTime object to return. If the parse operation fails, the
property accessor throws an exception.

Finally, add one more output statement in the console, and you’re ready to build and run this app
again:

Console.WriteLine(repo.LastPush);

Your version should now match the finished version located
here [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/console-webapiclient].

Conclusion

This tutorial showed you how to make web requests, parse the result, and display properties of
those results. You’ve also added new packages as dependencies in your project. You’ve seen some of
the features of the C# language that support object oriented techniques.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/iterators.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Iterators
description: Iterators
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 5cf36f45-f91a-4fca-a0b7-87f233e108e9

Iterators

Almost every program you write will have some need to iterate
over a collection. You’ll write code that examines every item in
a collection.

You’ll also create iterator methods which are methods that produces an
iterator for the elements of that class. These can be used for:

		Performing an action on each item in a collection.

		Enumerating a custom collection.

		Extending LINQ or other libraries.

		Creating a data pipeline where data flows efficiently through iterator
methods.

The C# language provides
features for both these scenarios. This article provides an overview
of those features.

Iterating with foreach

Enumerating a collection is simple: The foreach keyword enumerates
a collection, executing the embedded statement once for each element
in the collection:

foreach (var item in collection)
{
 Console.WriteLine(item.ToString());
}

That’s all there is to it. To iterate over all the contents of a collection,
the foreach statement is all you need. The foreach statement isn’t magic,
though. It relies on two generic interfaces defined in the .NET core library in order
to generate the code necessary to iterate a collection: IEnumerable<T> and
IEnumerator<T>. This mechanism is explained in more detail below.

Both of these interfaces also have non-generic counterparts: IEnumerable and
IEnumerator. The generic versions are preferred for modern code.

Enumeration sources with iterator methods

Another great feature of the C# language enables you to build methods that create
a source for an enumeration. These are referred to as iterator methods. An iterator
method defines how to generate the objects in a sequence when requested. You
use the yield return contextual keywords to define an iterator method.

You could write this method to produce the sequence of integers from 0 through 9:

public IEnumerable<int> GetSingleDigitNumbers()
{
 yield return 0;
 yield return 1;
 yield return 2;
 yield return 3;
 yield return 4;
 yield return 5;
 yield return 6;
 yield return 7;
 yield return 8;
 yield return 9;
}

The code above shows distinct yield return statements to highlight the fact that
you can use multiple discrete yield return statements in an iterator method.
You can (and often do) use other language constructs to simplify the code of an
iterator method. The method definition below produces the exact same sequence
of numbers:

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;
}

You don’t have to decide one or the other. You can have as many yield return
statements as necessary to meet the needs of your method:

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 index = 100;
 while (index++ < 110)
 yield return index;
}

That’s the basic syntax. Let’s consider a real world example where you would
write an iterator method. Imagine you’re on an IoT project and the device
sensors generate a very large stream of data. To get a feel for the data, you
might write a method that samples every Nth data element. This small iterator
method does the trick:

public static IEnumerable<T> Sample(this IEnumerable<T> sourceSequence, int interval)
{
 int index = 0;
 foreach (T item in sourceSequence)
 {
 if (index++ % interval == 0)
 yield return item;
 }
}

There is one important restriction on iterator methods: you can’t have both a
return statement and a yield return statement in the same method. The following
will not compile:

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 // generates a compile time error:
 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
 return items;
}

This restriction normally isn’t a problem. You have a choice of either using
yield return throughout the method, or separating the original method into
multiple methods, some using return, and some using yield return.

You can modify the last method slightly to use yield return everywhere:

public IEnumerable<int> GetSingleDigitNumbers()
{
 int index = 0;
 while (index++ < 10)
 yield return index;

 yield return 50;

 var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
 foreach (var item in items)
 yield return item;
}

Sometimes, the right answer is to split an iterator method into two different
methods. One that uses return, and a second that uses yield return. Consider
a situation where you might want to return an empty collection, or the first 5
odd numbers, based on a boolean argument. You could write that as these two
methods:

public IEnumerable<int> GetSingleDigitOddNumbers(bool getCollection)
{
 if (getCollection == false)
 return new int[0];
 else
 return IteratorMethod();
}

private IEnumerable<int> IteratorMethod()
{
 int index = 0;
 while (index++ < 10)
 if (index % 2 == 1)
 yield return index;
}

Look at the methods above. The first uses the standard return statement to return
either an empy collection, or the iterator created by the second method. The second
method uses the yield return statement to create the requested sequence.

Deeper Dive into foreach

The foreach statement expands into a standard idiom that uses the
IEnumable<T> and IEnumerator<T> interfaces to iterate across all
elements of a colleciton. It also minimizes errors developers make
by not properly managing resources.

The compiler translates the foreach loop shown in the first
example into something similar to this construct:

IEnumerator<int> enumerator = collection.GetEnumerator();
while (enumerator.MoveNext())
{
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
}

The construct above represents the code generated by the C# compiler as of
version 5 and above. Prior to version 5, the item variable had a different scope:

// C# versions 1 through 4:
IEnumerator<int> enumerator = collection.GetEnumerator();
int item = default(int);
while (enumerator.MoveNext())
{
 item = enumerator.Current;
 Console.WriteLine(item.ToString());
}

This was changed because the earlier behavior could lead to subtle and hard
to diagnose bugs involving lambda expressions. See the section on
lambda expressions for more information.

The exact code generated by the compiler is somewhat more complicated, and
handles situations where the object returned by GetEnumerator() implements
the IDisposable interface. The full expansion generates code more like this:

{
 var enumerator = collection.GetEnumerator();
 try
 {
 while (enumerator.MoveNext())
 {
 var item = enumerator.Current;
 Console.WriteLine(item.ToString());
 }
 } finally
 {
 // dispose of enumerator.
 }
}

The manner in which the enumerator is disposed of depends on the characteristics of
the type of enumerator. In the general case, the finally clause expands to:

finally
{
 (enumerator as IDisposable)?.Dispose();
}

However, if the type of enumerator is a sealed type and there is no implicit
conversion from the type of enumerator to IDisposable, the finally clause
expands to an empty block:

finally
{
}

If there is an implicit conversion from the type of enumerator to IDisposable,
and enumerator is a non-nullable value type, the finally clause expands to:

finally
{
 ((IDisposable)enumerator).Dispose();
}

Thankfully, you don’t need to remember all these details. The foreach statement
handles all those nuances for you. The compiler will generate the correct code for
any of these constructs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/event-pattern.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: The Standard .NET Event Pattern
description: The Standard .NET Event Pattern
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8a3133d6-4ef2-46f9-9c8d-a8ea8898e4c9

The Standard .NET Event Pattern

Previous

.NET events generally follow a few known patterns. Standardizing
on these patterns means that developers can leverage knowledge of
those standard patterns, which can be applied to any .NET event program.

Let’s go through these standard patterns so you will have all
the knowledge you need to create standard event sources, and
subscribe and process standard events in your code.

Event Delegate Signatures

The standard signature for a .NET event delegate is:

void Handler(object sender, EventArgs args);

The return type is void. Events are based on delegates and are
multicast delegates. That supports multiple subscribers for any
event source. The single return value from a method doesn’t scale
to multiple event subscribers. Which return value does the event
source see after raising an event? Later in this article you’ll
see how to create event protocols that support event subscribers
that report information to the event source.

The argument list contains two arguments: the sender, and the event
arguments. The compile time type of sender is System.Object,
even though you likely know a more derived type that would always
be correct. By convention, use object.

The second argument has typically been a type that is derived from
System.EventArgs. (You’ll see in the
next section that this convention is no longer
enforced.) If your event type does not need any additional
arguments, you will still provide both arguments.
There is a special value, EventArgs.Empty that you should use to
denote that your event does not contain any additional information.

Let’s build a class that lists files in a directory, or any of its
subdirectories that follow a pattern. This component raises an event
for each file found that matches the pattern.

Using an event model provides some design advantages. You can create
multiple event listeners that perform different actions when a sought
file is found. Combining the different listeners can create more
robust algorithms.

Here is the initial event argument declaration for finding a sought
file:

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }

 public FileFoundArgs(string fileName)
 {
 FoundFile = fileName;
 }
}

Even though this type looks like a small, data-only type, you should
follow the convention and make it a reference (class) type. That
means the argument object will be passed by reference, and any
updates to the data will be viewed by all subscribers. The first
version is an immutable object. You should prefer to make the
properties in your event argument type immutable. That way, one
subscriber cannot change the values before another subscriber sees
them. (There are exceptions to this, as you’ll see below.)

Next, we need to create the event declaration in the FileSearcher
class. Leveraging the EventHandler<T> type means that you don’t
need to create yet another type definition. You simply use a generic
specialization.

Let’s fill out the FileSearcher class to search for files that match
a pattern, and raise the correct event when a match is discovered.

public class FileSearcher
{
 public event EventHandler<FileFoundArgs> OnFoundFile;

 public void Search(string directory, string searchPattern)
 {
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 OnFoundFile?.Invoke(this, new FileFoundArgs(file));
 }
 }
}

Definining and Raising Field-Like Events

The simplest way to add an event to your class is to declare that
event as a public field, as in the above example:

public event EventHandler<FileFoundArgs> OnFoundFile;

This looks like it’s declaring a public field, which would appear to
be bad object oriented practice. You want to protect data access
through properties, or methods. While this make look like a bad
practice, the code generated by the compiler does create wrappers so
that the event objects can only be accessed in safe ways. The only
operations available on a field-like event are add handler:

EventHandler<FileFoundArgs> handler = (sender, eventArgs) =>
 Console.WriteLine(eventArgs.FoundFile);
lister.OnFoundFile += handler;

and remove handler:

lister.OnFoundFile -= handler;

Note that there’s a local variable for the handler. If you used
the body of the lambda, the remove would not work correctly. It would
be a different instance of the delegate, and silently do nothing.

Code outside the class cannot raise the event, nor can it perform any
other operations.

Returning Values from Event Subscribers

Your simple version is working fine. Let’s add another feature:
Cancellation.

When you raise the found event, listeners should be able to stop
further processing, if this file is that last one sought.

The event handlers do not return a value, so you need to communicate
that in another way. The standard event pattern uses the EventArgs
object to include fields that event subscribers can use to
communicate cancel.

There are two different patterns that could be used, based on the
semantics of the Cancel contract. In both cases, you’ll add a boolean
field to the EventArguments for the found file event.

One pattern would allow any one subscriber to cancel the operation.
For this pattern, the new field is initialized to false. Any
subscriber can change it to true. After all subscribers have seen
the event raised, the FileSearcher component examines the boolean
value and takes action.

The second pattern would only cancel the operation if all subscribers
wanted the operation cancelled. In this pattern, the new field is
initialized to indicate the operation should cancel, and any
subscriber could change it to indicate the operation should continue.
After all subscribers have seen the event raised, the FileSearcher
component examines the boolean and takes action. There is one extra
step in this pattern: the component needs to know if any subscribers
have seen the event. If there are no subscribers, the field would
indicate a cancel incorrectly.

Let’s implement the first version for this sample. You need to add a
boolean field to the FileFoundEventArgs type:

public class FileFoundArgs : EventArgs
{
 public string FoundFile { get; }
 public bool CancelRequested { get; set; }

 public FileFoundArgs(string fileName)
 {
 FoundFile = fileName;
 }
}

This new Field should be initialized to false, so you don’t cancel
for no reason. That is the default value for a boolean field, so that
happens automatically. The only other change to the component is to
check the flag after raising the event to see if any of the
subscribers have requested a cancellation:

public void List(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 var args = new FileFoundArgs(file);
 OnFoundFile?.Invoke(this, args);
 if (args.CancelRequested)
 break;
 }
}

One advantage of this pattern is that it isn’t a breaking change.
None of the subscribers requested a cancel before, and they still are
not. None of the subscriber code needs updating unless they want to
support the new cancel protocol. It’s very loosely coupled.

Let’s update the subscriber so that it requests a cancellation once
it finds the first executable:

EventHandler<FileFoundArgs> handler = (sender, eventArgs) =>
{
 Console.WriteLine(eventArgs.FoundFile);
 eventArgs.CancelRequested = true;
};

Adding Another Event Declaration

Let’s add one more feature, and demonstrate other language idioms
for events. Let’s add an overload of the Search() method that
traverses all subdirectories in search of files.

This could get to be a lengthy operation in a directory with many
sub-directories. Let’s add an event that gets raised when each new
directory search begins. This enables subscribers to track progress,
and update the user as to progress. All the samples you’ve created so
far are public. Let’s make this one an internal event. That means you
can also make the types used for the arguments internal as well.

You’ll start by creating the new EventArgs derived class for
reporting the new directory and progress.

internal class SearchDirectoryArgs : EventArgs
{
 internal string CurrentSearchDirectory { get; }
 internal int TotalDirs { get; }
 internal int CompletedDirs { get; }

 internal SearchDirectoryArgs(string dir, int totalDirs, int completedDirs)
 {
 CurrentSearchDirectory = dir;
 TotalDirs = totalDirs;
 CompletedDirs = completedDirs;
 }
}

Again, you can follow the recommendations to make an immutable
reference type for the event arguments.

Next, define the event. This time, you’ll use a different syntax. In
addition to using the field syntax, you can explicitly create the
property, with add and remove handlers. In this sample, you won’t
need extra code in those handlers in this project, but this shows how
you would create them.

internal event EventHandler<SearchDirectoryArgs> OnChangeDirectory
{
 add { changeDirectory += value; }
 remove { changeDirectory -= value; }
}
private event EventHandler<SearchDirectoryArgs> changeDirectory;

In may ways, the code you write here mirrors the code the compiler
generates for the field event definitions you’ve seen earlier. You
create the event using syntax very similar to that used for
properties. Notice that the handlers have different
names: add and remove. These are called to subscribe to the event,
or unsubscribe from the event. Notice that you also must declare a
private backing field to store the event variable. It is initialized
to null.

Next, let’s add the overload of the Search() method that traverses
subdirectories and raises both events. The easiest way to accomplish
this is to use a default argument to specify that you want to search
all directories:

public void Search(string directory, string searchPattern, bool searchSubDirs = false)
{
 if (searchSubDirs)
 {
 var allDirectories = Directory.GetDirectories(directory, "*.*", SearchOption.AllDirectories);
 var completedDirs = 0;
 var totalDirs = allDirectories.Length + 1;
 foreach (var dir in allDirectories)
 {
 changeDirectory?.Invoke(this,
 new SearchDirectoryArgs(dir, totalDirs, completedDirs++));
 // Recursively search this child directory:
 SearchDirectory(dir, searchPattern);
 }
 // Include the Current Directory:
 changeDirectory?.Invoke(this,
 new SearchDirectoryArgs(directory, totalDirs, completedDirs++));
 SearchDirectory(directory, searchPattern);
 }
 else
 {
 SearchDirectory(directory, searchPattern);
 }
}

private void SearchDirectory(string directory, string searchPattern)
{
 foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
 {
 var args = new FileFoundArgs(file);
 OnFoundFile?.Invoke(this, args);
 if (args.CancelRequested)
 break;
 }
}

At this point, you can run the application calling the overload for
searching all sub-directories. There are no subscribers on the new
OnChangeDirectory event, but usingh the ?.Invoke() idiom ensures
that this works correctly.

Let’s add a handler to write a line that shows the progress in the
console window.

lister.OnChangeDirectory += (sender, eventArgs) =>
{
 Console.Write($"Entering '{eventArgs.CurrentSearchDirectory}'.");
 Console.WriteLine($" {eventArgs.CompletedDirs} of {eventArgs.TotalDirs} completed...");
};

You’ve seen patterns that are followed throughout the .NET ecosystem.
By learning these patterns and conventions, you’ll be writing
idiomatic C# and .NET quickly.

Next, you’ll see some changes in these patterns in the most recent
release of .NET.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/project.xproj.different.png
src|

tests|

Car.NetdS.

Car.Tests

Car.Tests.NetdS.

Car.xproj
projectjson
-~Wheel.cs

Car.csproj
packages.config

Each *csprof

Car.Tests.xproj references existing
ject source code inthe

profactison original director

- WheelTest.cs e i

CarTests.csproj
packages.config

_images/package-framework.png
Asset
selection

_images/portability-screenshot.png
Options

‘Search Options (Ctri+E)

Startup
Synchronized Settings
Tabs and Windows
Task List
Web Browser

Projects and Solutions.

Source Control

Text Editor

Debugging

InteliTrace.

Performance Tools

NET Portability Analyzer

Database Tools

F# Tools

Graphics Diagnostics

HTML Designer

NuGet Package Manager

Target Platforms
NET Framework

D11 20 O30 C3s (40 45
ASPNET 5

Mono
Clas

Silverlight
20 30 40

Windows Phone Silverlight

More information s available at http://ao.microsoft.cor

oK

Cancel

_images/plinq-diagram.png
All Facebook
Users

Users are
paritioned over
N threads

Likesare
accumulated
per-thread

Likesare
accumulated
from result of
each thread

Total is transformed into result type

Facebook has {total] likes!

standard/portability-analyzer.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Tooling to help you on the process
description: Tooling to help you on the process
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0375250f-5704-4993-a6d5-e21c499cea1e

The .NET Portability Analyzer

Want to make your libraries multi-platform? Want to see how much work is required to make your application compatible with other .NET platforms? The .NET Portability Analyzer [https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b] is a tool that provides you with a detailed report on how flexible your program is across .NET platforms by analyzing assemblies. The Portability Analyzer is offered as a Visual Studio Extension and as a console app.

New Targets

		.NET Core [https://www.dotnetfoundation.org/netcore]: Has a modular design, employs side-by-side, and targets cross-platform scenarios. Side-by-side allows you to adopt new .NET Core versions without breaking other apps.

		ASP.NET Core [https://www.dotnetfoundation.org/aspnet-core]: is a modern web-framework built on .NET Core thus giving developers the same benefits.

		.NET Native [https://blogs.msdn.microsoft.com/dotnet/2014/04/24/net-native-performance]: Improve performance of your Windows Store apps that run on x64 and ARM machines by using .NET Native’s static compilation.

How to Use Portability Analyzer

To begin using the .NET Portability Analyzer, download the extension from the Visual Studio Gallery. You can configure it in Visual Studio via Tools > Options > .NET Portability Analyzer and select your Target Platforms. For now, use ASP.NET Core as a proxy for all .NET Core-based platforms (for example, Windows 10 .NET UAP apps [http://blogs.windows.com/buildingapps/2015/03/02/a-first-look-at-the-windows-10-universal-app-platform/]).

[image: Portability screenshot]

To analyze your entire project, right-click on your project in Solution Explorer and select Analyze > Analyze Assembly Portability. Otherwise, go to the Analyze menu and select Analyze Assembly Portability. From there, select your project’s executable or .dll.

[image: Portability Solution Explorer]

After running the analysis, you will see your .NET Portability Report. Only types that are unsupported by a target platform will appear in the list and you can review recommendations in the Messages tab in the Error List. You can also jump to problem areas directly from the Messages tab.

[image: Portability Report]

Don’t want to use Visual Studio? You can also use the Portability Analyzer from the Command Prompt. Download the command-line analyzer here [http://www.microsoft.com/download/details.aspx?id=42678].

		Type the following command to analyze the current directory: \...\ApiPort.exe .

		To analyze a specific list of .dll files, type the following command: \...\ApiPort.exe first.dll second.dll third.dll

Your .NET Portability Report will be saved as an Excel .xlsx file in your current directory. The Details tab in the Excel Workbook will contain more info.

For more info on the .NET Portability Analyzer, read this article [http://blogs.msdn.com/b/dotnet/archive/2014/08/06/leveraging-existing-code-across-net-platforms.aspx].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/exceptions.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Handling and throwing exceptions in .NET
description: Understand how to use exceptions in .NET
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bf116df6-0042-46bf-be13-b69864816210

Handling and throwing exceptions in .NET

Applications must be able to handle errors that occur during execution in a consistent manner. .NET provides a model for notifying applications of errors in a uniform way: .NET operations indicate failure by throwing exceptions.

Exceptions

An exception is any error condition or unexpected behavior that is encountered by an executing program. Exceptions can be thrown because of a fault in your code or in code that you call (such as a shared library), unavailable operating system resources, unexpected conditions that the runtime encounters (such as code that cannot be verified), and so on. Your application can recover from some of these conditions, but not from others. Although you can recover from most application exceptions, you cannot recover from most runtime exceptions.

In .NET, an exception is an object that inherits from the System.Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception] class. An exception is thrown from an area of code where a problem has occurred. The exception is passed up the stack until the application handles it or the program terminates.

Exceptions vs. traditional error-handling methods

Traditionally, a language’s error-handling model relied on either the language’s unique way of detecting errors and locating handlers for them, or on the error-handling mechanism provided by the operating system. The way .NET implements exception handling provides the following advantages:

		Exception throwing and handling works the same for .NET programming languages.

		Does not require any particular language syntax for handling exceptions, but allows each language to define its own syntax.

		Exceptions can be thrown across process and even machine boundaries.

		Exception-handling code can be added to an application to increase program reliability.

Exceptions offer advantages over other methods of error notification, such as return codes. Failures do not go unnoticed because if an exception is thrown and you don’t handle it, the runtime terminates your application. Invalid values do not continue to propagate through the system as a result of code that fails to check for a failure return code.

Exception class and properties

The Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception] class is the base class from which exceptions inherit. For example, the InvalidCastException [https://docs.microsoft.com/dotnet/core/api/System.InvalidCastException] class hierarchy is as follows:

Object
 Exception
 SystemException
 InvalidCastException

The Exception class has the following properties that help make understanding an exception easier.

Property Name	Description
————-	———–
Data [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_Data]	An IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] that holds arbitrary data in key-value pairs.
HelpLink [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_HelpLink]	Can hold a URL (or URN) to a help file that provides extensive information about the cause of an exception.
InnerException [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_InnerException]	This property can be used to create and preserve a series of exceptions during exception handling. You can use it to create a new exception that contains previously caught exceptions. The original exception can be captured by the second exception in the InnerException property, allowing code that handles the second exception to examine the additional information. For example, suppose you have a method that receives an argument that’s improperly formatted. The code tries to read the argument, but an exception is thrown. The method catches the exception and throws a FormatException [https://docs.microsoft.com/dotnet/core/api/System.FormatException]. To improve the caller’s ability to determine the reason an exception is thrown, it is sometimes desirable for a method to catch an exception thrown by a helper routine and then throw an exception more indicative of the error that has occurred. A new and more meaningful exception can be created, where the inner exception reference can be set to the original exception. This more meaningful exception can then be thrown to the caller. Note that with this functionality, you can create a series of linked exceptions that ends with the exception that was thrown first.
Message [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_Message]	Provides details about the cause of an exception.
Source [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_Source]	Gets or sets the name of the application or the object that causes the error.
StackTrace [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_StackTrace]	Contains a stack trace that can be used to determine where an error occurred. The stack trace includes the source file name and program line number if debugging information is available.

Most of the classes that inherit from Exception do not implement additional members or provide additional functionality; they simply inherit from Exception. Therefore, the most important information for an exception can be found in the hierarchy of exception classes, the exception name, and the information contained in the exception.

It is recommended to throw and catch only objects that derive from Exception, but you can throw any object that derives from the Object [https://docs.microsoft.com/dotnet/core/api/System.Object] class as an exception. Note that not all languages support throwing and catching objects that do not derive from Exception.

Common Exceptions

The following table lists some common exceptions with examples of what can cause them.

Exception type	Base type	Description	Example
————–	———	———–	——-
Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Object [https://docs.microsoft.com/dotnet/core/api/System.Object]	Base class for all exceptions.	None (use a derived class of this exception).
IndexOutOfRangeException [https://docs.microsoft.com/dotnet/core/api/System.IndexOutOfRangeException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Thrown by the runtime only when an array is indexed improperly.	Indexing an array outside its valid range: arr[arr.Length+1]
NullReferenceException [https://docs.microsoft.com/dotnet/core/api/System.NullReferenceException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Thrown by the runtime only when a null object is referenced.	object o = null; o.ToString();
InvalidOperationException [https://docs.microsoft.com/dotnet/core/api/System.InvalidOperationException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Thrown by methods when in an invalid state.	Calling Enumerator.GetNext() after removing an Item from the underlying collection.
ArgumentException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Base class for all argument exceptions.	None (use a derived class of this exception).
ArgumentNullException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentNullException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Thrown by methods that do not allow an argument to be null.	String s = null; "Calculate".IndexOf (s);
ArgumentOutOfRangeException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentOutOfRangeException]	Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]	Thrown by methods that verify that arguments are in a given range.	String s = "string"; s.Chars[9];

How to use the try/catch block to catch exceptions

Place the sections of code that might throw exceptions in a try block and place code that handles exceptions in a catch block. The catch block is a series of statements beginning with the keyword catch, followed by an exception type and an action to be taken.

The following code example uses a try/catch block to catch a possible exception. The Main method contains a try block with a StreamReader [https://docs.microsoft.com/dotnet/core/api/System.IO.StreamReader] statement that opens a data file called data.txt and writes a string from the file. Following the try block is a catch block that catches any exception that results from the try block.

C#

using System;
using System.IO;

public class ProcessFile
{
 public static void Main()
 {
 try
 {
 StreamReader sr = File.OpenText("data.txt");
 Console.WriteLine("The first line of this file is {0}", sr.ReadLine());
 sr.Dispose();
 }
 catch (Exception e)
 {
 Console.WriteLine("An error occurred: '{0}'", e);
 }
 }
}

The common language runtime catches exceptions that are not caught by a catch block. Depending on how the runtime is configured, a debug dialog box appears, or the program stops executing and a dialog box with exception information appears, or an error is printed out to STDERR.

[!NOTE]
Almost any line of code can cause an exception, particularly exceptions that are thrown by the common language runtime itself, such as OutOfMemoryException [https://docs.microsoft.com/dotnet/core/api/System.OutOfMemoryException]. Most applications don’t have to deal with these exceptions, but you should be aware of this possibility when writing libraries to be used by others. For suggestions on when to set code in a Try block, see Best Practices for Exceptions.

How to use specific exceptions in a Catch block

The preceding code example illustrates a basic catch statement that catches any exception. In general, though, it’s good programming practice to catch a specific type of exception rather than use a basic catch statement.

When an exception occurs, it is passed up the stack and each catch block is given the opportunity to handle it. The order of catch statements is important. Put catch blocks targeted to specific exceptions before a general exception catch block or the compiler might issue an error. The proper catch block is determined by matching the type of the exception to the name of the exception specified in the catch block. If there is no specific catch block, the exception is caught by a general catch block, if one exists.

The following code example uses a try/catch block to catch an InvalidCastException [https://docs.microsoft.com/dotnet/core/api/System.InvalidCastException]. The sample creates a class called Employee with a single property, employee level (Emlevel). A method, PromoteEmployee, takes an object and increments the employee level. An InvalidCastException occurs when a DateTime [https://docs.microsoft.com/dotnet/core/api/System.DateTime] instance is passed to the PromoteEmployee method.

C#

using System;

public class Employee
{
 //Create employee level property.
 public int Emlevel
 {
 get
 {
 return(emlevel);
 }
 set
 {
 emlevel = value;
 }
 }

 private int emlevel = 0;
}

public class Ex13
{
 public static void PromoteEmployee(Object emp)
 {
 //Cast object to Employee.
 Employee e = (Employee) emp;
 // Increment employee level.
 e.Emlevel = e.Emlevel + 1;
 }

 public static void Main()
 {
 try
 {
 Object o = new Employee();
 DateTime newyears = new DateTime(2001, 1, 1);
 //Promote the new employee.
 PromoteEmployee(o);
 //Promote DateTime; results in InvalidCastException as newyears is not an employee instance.
 PromoteEmployee(newyears);
 }
 catch (InvalidCastException e)
 {
 Console.WriteLine("Error passing data to PromoteEmployee method. " + e.Message);
 }
 }
}

How to use finally blocks

When an exception occurs, execution stops and control is given to the appropriate exception handler. This often means that lines of code you expect to be executed are bypassed. Some resource cleanup, such as closing a file, needs to be done even if an exception is thrown. To do this, you can use a finally block. A finally block always executes, regardless of whether an exception is thrown.

The following code example uses a try/catch block to catch an ArgumentOutOfRangeException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentOutOfRangeException]. The Main method creates two arrays and attempts to copy one to the other. The action generates an ArgumentOutOfRangeException and the error is written to the console. The finally block executes regardless of the outcome of the copy action.

C#

using System;

class ArgumentOutOfRangeExample
{
 public static void Main()
 {
 int[] array1 = {0, 0};
 int[] array2 = {0, 0};

 try
 {
 Array.Copy(array1, array2, -1);
 }
 catch (ArgumentOutOfRangeException e)
 {
 Console.WriteLine("Error: {0}", e);
 }
 finally
 {
 Console.WriteLine("This statement is always executed.");
 }
 }
}

How to explicitly throw exceptions

You can explicitly throw an exception using the throw statement. You can also throw a caught exception again using the throw statement. It is good coding practice to add information to an exception that is re-thrown to provide more information when debugging.

The following code example uses a try/catch block to catch a possible FileNotFoundException [https://docs.microsoft.com/dotnet/core/api/System.IO.FileNotFoundException]. Following the try block is a catch block that catches the FileNotFoundException and writes a message to the console if the data file is not found. The next statement is the throw statement that throws a new FileNotFoundException and adds text information to the exception.

C#

using System;
using System.IO;

public class ProcessFile
{
 public static void Main()
 {
 FileStream fs = null;
 try
 {
 //Opens a text tile.
 fs = new FileStream(@"C:\temp\data.txt", FileMode.Open);
 StreamReader sr = new StreamReader(fs);
 string line;

 //A value is read from the file and output to the console.
 line = sr.ReadLine();
 Console.WriteLine(line);
 }
 catch(FileNotFoundException e)
 {
 Console.WriteLine("[Data File Missing] {0}", e);
 throw new FileNotFoundException(@"[data.txt not in c:\temp directory]",e);
 }
 finally
 {
 if (fs != null)
 fs.Dispose();
 }
 }
}

How to create user-defined exceptions

.NET provides a hierarchy of exception classes ultimately derived from the base class Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception]. However, if none of the predefined exceptions meets your needs, you can create your own exception classes by deriving from the Exception class.

When creating your own exceptions, end the class name of the user-defined exception with the word “Exception,” and implement the three common constructors, as shown in the following example. The example defines a new exception class named EmployeeListNotFoundException. The class is derived from Exception and includes three constructors.

C#

using System;

public class EmployeeListNotFoundException: Exception
{
 public EmployeeListNotFoundException()
 {
 }

 public EmployeeListNotFoundException(string message)
 : base(message)
 {
 }

 public EmployeeListNotFoundException(string message, Exception inner)
 : base(message, inner)
 {
 }
}

[!NOTE]
In situations where you are using remoting, you must ensure that the metadata for any user-defined exceptions is available at the server (callee) and to the client (the proxy object or caller). For more information, see Best practices for exceptions.

Best practices for exceptions

A well-designed app handles exceptions and errors to prevent app crashes. This section describes best practices for handling and creating exceptions.

Use try/catch/finally blocks

Use try/catch/finally blocks around code that can potentially generate an exception.

In catch blocks, always order exceptions from the most specific to the least specific.

Use a finally block to clean up resources, whether you can recover or not.

Handle common conditions without throwing exceptions

For conditions that are likely to occur but might trigger an exception, consider handling them in a way that will avoid the exception. For example, if you try to close a connection that is already closed, you’ll get an InvalidOperationException. You can avoid that by using an if statement to check the connection state before trying to close it.

C#

if (conn.State != ConnectionState.Closed)
{
 conn.Close();
}

If you don’t check connection state before closing, you can catch the InvalidOperationException exception.

C#

try
{
 conn.Close();
}
catch (InvalidOperationException ex)
{
 Console.WriteLine(ex.GetType().FullName);
 Console.WriteLine(ex.Message);
}

The method to choose depends on how often you expect the event to occur.

		Use exception handling if the event doesn’t occur very often, that is, if the event is truly exceptional and indicates an error (such as an unexpected end-of-file). When you use exception handling, less code is executed in normal conditions.

		Check for error conditions in code if the event happens routinely and could be considered part of normal execution. When you check for common error conditions, less code is executed because you avoid exceptions.

Design classes so that exceptions can be avoided

A class can provide methods or properties that enable you to avoid making a call that would trigger an exception. For example, a FileStream [https://docs.microsoft.com/dotnet/core/api/System.IO.FileStream] class provides methods that help determine whether the end of the file has been reached. These can be used to avoid the exception that is thrown if you read past the end of the file. The following example shows how to read to the end of a file without triggering an exception.

C#

class FileRead
{
 public void ReadAll(FileStream fileToRead)
 {
 // This if statement is optional
 // as it is very unlikely that
 // the stream would ever be null.
 if (fileToRead == null)
 {
 throw new System.ArgumentNullException();
 }

 int b;

 // Set the stream position to the beginning of the file.
 fileToRead.Seek(0, SeekOrigin.Begin);

 // Read each byte to the end of the file.
 for (int i = 0; i < fileToRead.Length; i++)
 {
 b = fileToRead.ReadByte();
 Console.Write(b.ToString());
 // Or do something else with the byte.
 }
 }
}

Another way to avoid exceptions is to return null for extremely common error cases instead of throwing an exception. An extremely common error case can be considered normal flow of control. By returning null in these cases, you minimize the performance impact to an app.

Throw exceptions instead of returning an error code

Exceptions ensure that failures do not go unnoticed because calling code didn’t check a return code.

Use the predefined .NET exception types

Introduce a new exception class only when a predefined one doesn’t apply. For example:

		Throw an InvalidOperationException [https://docs.microsoft.com/dotnet/core/api/System.InvalidOperationException] exception if a property set or method call is not appropriate given the object’s current state.

		Throw an ArgumentException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentException] exception or one of the predefined classes that derive from ArgumentException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentException] if invalid parameters are passed.

End exception class names with the word “Exception”

When a custom exception is necessary, name it appropriately and derive it from the Exception [https://docs.microsoft.com/dotnet/core/api/System.Exception] class. For example:

C#

public class MyFileNotFoundException : Exception
{
}

Include three constructors in custom exception classes

Use at least the three common constructors when creating your own exception classes: the default constructor, a constructor that takes a string message, and a constructor that takes a string message and an inner exception.

		Exception() [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception__ctor], which uses default values.

		Exception(String) [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception__ctor_System_String_], which accepts a string message.

		Exception(String, Exception) [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception__ctor_System_String_System_Exception_], which accepts a string message and an inner exception.

For an example, see How to: Create User-Defined Exceptions.

Ensure that exception data is available when code executes remotely

When you create user-defined exceptions, ensure that the metadata for the exceptions is available to code that is executing remotely.

For example, on .NET runtimes that implement App Domains, exceptions may occur across App domains. Suppose App Domain A creates App Domain B, which executes code that throws an exception. For App Domain A to properly catch and handle the exception, it must be able to find the assembly that contains the exception thrown by App Domain B. If App Domain B throws an exception that is contained in an assembly under its application base, but not under App Domain A’s application base, App Domain A will not be able to find the exception, and the common language runtime will throw a FileNotFoundException [https://docs.microsoft.com/dotnet/core/api/System.IO.FileNotFoundException] exception. To avoid this situation, you can deploy the assembly that contains the exception information in two ways:

		Put the assembly into a common application base shared by both app domains.

- or -

		If the domains do not share a common application base, sign the assembly that contains the exception information with a strong name and deploy the assembly into the global assembly cache.

Include a localized description string in every exception

The error message that the user sees is derived from the description string of the exception that was thrown, and not from the name of the exception class.

Use grammatically correct error messages

Write clear sentences and include ending punctuation. Each sentence in a description string of an exception should end in a period. For example, “The log table has overflowed.” would be an appropriate description string.

In custom exceptions, provide additional properties as needed

Provide additional properties for an exception (in addition to the description string) only when there’s a programmatic scenario where the additional information is useful. For example, the FileNotFoundException [https://docs.microsoft.com/dotnet/core/api/System.IO.FileNotFoundException] provides the FileName [https://docs.microsoft.com/dotnet/core/api/System.IO.FileNotFoundException#System_IO_FileNotFoundException_FileName] property.

Place throw statements so that the stack trace will be helpful

The stack trace begins at the statement where the exception is thrown and ends at the catch statement that catches the exception.

Use exception builder methods

It is common for a class to throw the same exception from different places in its implementation. To avoid excessive code, use helper methods that create the exception and return it. For example:

C#

class FileReader
{
 private string fileName;

 public FileReader(string path)
 {
 fileName = path;
 }

 public byte[] Read(int bytes)
 {
 byte[] results = FileUtils.ReadFromFile(fileName, bytes);
 if (results == null)
 {
 throw NewFileIOException();
 }
 return results;
 }

 FileReaderException NewFileIOException()
 {
 string description = "My NewFileIOException Description";

 return new FileReaderException(description);
 }
}

In some cases, it’s more appropriate to use the exception’s constructor to build the exception. An example is a global exception class such as ArgumentException [https://docs.microsoft.com/dotnet/core/api/System.ArgumentException],

Clean up intermediate results when throwing an exception

Callers should be able to assume that there are no side effects when an exception is thrown from a method. For example, if you have code that transfers money by withdrawing from one account and depositing in another account, and an exception is thrown while executing the deposit, you don’t want the withdrawal to remain in effect.

C#

public void TransferFunds(Account from, Account to, decimal amount)
{
 from.Withdrawal(amount);
 // If the deposit fails, the withdrawal shouldn't remain in effect.
 to.Deposit(amount);
}

One way to handle this situation is to catch any exceptions thrown by the deposit transaction and roll back the withdrawal.

C#

private static void TransferFunds(Account from, Account to, decimal amount)
{
 string withdrawalTrxID = from.Withdrawal(amount);
 try
 {
 to.Deposit(amount);
 }
 catch
 {
 from.RollbackTransaction(withdrawalTrxID);
 throw
 }
}

This example illustrates the use of throw to re-throw the original exception, which can make it easier for callers to see the real cause of the problem without having to examine the InnerException [https://docs.microsoft.com/dotnet/core/api/System.Exception#System_Exception_InnerException] property. An alternative is to throw a new exception and include the original exception as the inner exception:

C#

catch (Exception ex)
{
 from.RollbackTransaction(withdrawalTrxID);
 throw new Exception("Withdrawal failed", ex);
}

Next steps

To learn more about how exceptions work in .NET, see What Every Dev needs to Know About Exceptions in the Runtime [https://github.com/dotnet/coreclr/blob/master/Documentation/botr/exceptions.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/common-type-system.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Common Type System & Common Language Specification
description: Common Type System & Common Language Specification
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3b1f5725-ac94-4f17-8e5f-244442438a4d

Common Type System & Common Language Specification

Again, two terms that are freely used in the .NET world, they actually are crucial to understand how the .NET platform enables multi-language development and to understand how it works.

Common Type System

To start from the beginning, remember that the .NET platform is language agnostic. This doesn’t just mean that a programmer can write her code in any language that can be compiled to IL. It also means that she needs to be able to interact with code written in other languages that are able to be used on the .NET platform.

In order to do this transparently, there has to be a common way to describe all supported types. This is what the Common Type System (CTS) is in charge of doing. It was made to do several things:

		Establish a framework for cross-language execution.

		Provide an object-oriented model to support implementing various languages on .NET platform.

		Define a set of rules that all languages must follow when it comes to working with types.

		Provide a library that contains the basic primitive types that are used in application development (i.e. Boolean, Byte, Char etc.)

CTS defines two main kinds of types that should be supported: reference and value types. Their names point to their definitions.

Reference types’ objects are represented by a reference to the object’s actual value; a reference here is similar to a pointer in C/C++. It simply refers to a memory location where the objects’ values are. This has a profound impact on how these types are used. If you assign a reference type to a variable and then pass that variable into a method, for instance, any changes to the object will be reflected on the main object; there is no copying.

Value types are the opposite, where the objects are represented by their values. If you assign a value type to a variable, you are essentially copying a value of the object.

CTS defines several categories of types, each with their specific semantics and usage:

		Classes

		Structures

		Enums

		Interfaces

		Delegates

CTS also defines all other properties of the types, such as access modifiers, what are valid type members, how inheritance and overloading works and so on. Unfortunately, going deep into any of those is beyond the scope of an introductory article such as this, but you can consult More resources section at the end for links to more in-depth content that covers these topics.

Common Language Specification

To enable full interoperability scenarios, all objects that are created in code must rely on some commonality in the languages that are consuming them (are their callers). Since there are numerous different languages, .NET platform has specified those commonalities in something called the Common Language Specification (CLS). CLS defines a set of features that are needed by many common applications. It also provides a sort of recipe for any language that is implemented on top of .NET platform on what it needs to support.

CLS is a subset of the CTS. This means that all of the rules in the CTS also apply to the CLS, unless the CLS rules are more strict. If a component is built using only the rules in the CLS, that is, it exposes only the CLS features in its API, it is said to be CLS-compliant. For instance, the <framework-librares> are CLS-compliant precisely because they need to work across all of the languages that are supported on the .NET platform.

You can consult the documents in the More Resources section below to get an overview of all the features in the CLS.

More resources

		Common Type System [https://msdn.microsoft.com/library/zcx1eb1e.aspx]

		Common Language Specification [https://msdn.microsoft.com/library/12a7a7h3.aspx]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/using-linq.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: LINQ (Language Integrated Query)
description: LINQ (Language Integrated Query)
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c00939e1-59e3-4e61-8fe9-08ad6b3f1295

LINQ (Language Integrated Query)

What is it?

LINQ provides language-level querying capabilities and a higher-order function [https://en.wikipedia.org/wiki/Higher-order_function] API to C# and VB as a way to write expressive, declarative code.

Language-level query syntax:

var linqExperts = from p in programmers
 where p.IsNewToLINQ
 select new LINQExpert(p);

Same example using the IEnumerable<T> API:

var linqExperts = programmers.Where(p => IsNewToLINQ)
 .Select(p => new LINQExpert(p));

LINQ is Expressive

Imagine you have a list of pets, but want to convert it into a dictionary where you can access a pet directly by its RFID value.

Traditional imperative code:

var petLookup = new Dictionary<int, Pet>();

foreach (var pet in pets)
{
 petLookup.Add(pet.RFID, pet);
}

The intention behind the code is not to create a new Dictionary<int, Pet> and add to it via a loop, it is to convert an existing list into a dictionary! LINQ preserves the intention whereas the imperative code does not.

Equivalent LINQ expression:

var petLookup = pets.ToDictionary(pet => pet.RFID);

The code using LINQ is valuable because it evens the playing field between intent and code when reasoning as a programmer. Another bonus is code brevity. Imagine reducing large portions of a codebase by 1/3 as done above. Pretty sweet deal, right?

LINQ Providers Simplify Data Access

For a significant chunk of software out in the wild, everything revolves around dealing with data from some source (Databases, JSON, XML, etc). Often this involves learning a new API for each data source, which can be annoying. LINQ simplifies this by abstracting common elements of data access into a query syntax which looks the same no matter which data source you pick.

Consider the following: finding all XML elements with a specific attribute value.

public static FindAllElementsWithAttribute(XElement documentRoot, string elementName,
 string attributeName, string value)
{
 return from el in documentRoot.Elements(elementName)
 where (string)el.Element(attributeName) == value
 select el;
}

Writing code to manually traverse the XML document to perform this task would be far more challenging.

Interacting with XML isn’t the only thing you can do with LINQ Providers. Linq to SQL [https://msdn.microsoft.com/library/bb386976.aspx] is a fairly bare-bones Object-Relational Mapper (ORM) for an MSSQL Server Database. The JSON.NET [http://www.newtonsoft.com/json/help/html/LINQtoJSON.htm] library provides efficient JSON Document traversal via LINQ. Furthermore, if there isn’t a library which does what you need, you can also write your own LINQ Provider [https://msdn.microsoft.com/library/Bb546158.aspx]!

Why Use the Query Syntax?

This is a question which often comes up. After all, this,

var filteredItems = myItems.Where(item => item.Foo);

is a lot more concise than this:

var filteredItems = from item in myItems
 where item.Foo
 select item;

Isn’t the API syntax just a more concise way to do the query syntax?

No. The query syntax allows for the use the let clause, which allows you to introduce and bind a variable within the scope of the expression, using it in subsequent pieces of the expression. Reproducing the same code with only the API syntax can be done, but will most likely lead to code which is hard to read.

So this begs the question, should you just use the query syntax?

The answer to this question is yes if...

		Your existing codebase already uses the query syntax

		You need to scope variables within your queries due to complexity

		You prefer the query syntax and it won’t distract from your codebase

The answer to this question is no if...

		Your existing codebase already uses the API syntax

		You have no need to scope variables within your queries

		You prefer the API syntax and it won’t distract from your codebase

Essential Samples

For a truly comprehensive list of LINQ samples, visit 101 LINQ Samples [https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b].

The following is a quick demonstration of some of the essential pieces of LINQ. This is in no way comprehensive, as LINQ provides significantly more functionality than what is showcased here.

		The bread and butter - Where, Select, and Aggregate:

// Filtering a list
var germanShepards = dogs.Where(dog => dog.Breed == DogBreed.GermanShepard);

// Using the query syntax
var queryGermanShepards = from dog in dogs
 where dog.Breed == DogBreed.GermanShepard
 select dog;

// Mapping a list from type A to type B
var cats = dogs.Select(dog => dog.TurnIntoACat());

// Using the query syntax
var queryCats = from dog in dogs
 select dog.TurnIntoACat();

// Summing then lengths of a set of strings
int seed = 0;
int sumOfStrings = strings.Aggregate(seed, (s1, s2) => s1.Length + s2.Length);

		Flattening a list of lists:

// Transforms the list of kennels into a list of all their dogs.
var allDogsFromKennels = kennels.SelectMany(kennel => kennel.Dogs);

		Union between two sets (with custom comparator):

public class DogHairLengthComparer : IEqualityComparer<Dog>
{
 public bool Equals(Dog a, Dog b)
 {
 if (a == null && b == null)
 {
 return true;
 }
 else if ((a == null && b != null) ||
 (a != null && b == null))
 {
 return false;
 }
 else
 {
 return a.HairLengthType == b.HairLengthType;
 }
 }

 public int GetHashCode(Dog d)
 {
 // default hashcode is enough here, as these are simple objects.
 return b.GetHashCode();
 }
}

...

// Gets all the short-haired dogs between two different kennels
var allShortHairedDogs = kennel1.Dogs.Union(kennel2.Dogs, new DogHairLengthComparer());

		Intersection between two sets:

// Gets the volunteers who spend share time with two humane societies.
var volunteers = humaneSociety1.Volunteers.Intersect(humaneSociety2.Volunteers,
 new VolunteerTimeComparer());

		Ordering:

// Get driving directions, ordering by if it's toll-free before estimated driving time.
var results = DirectionsProcessor.GetDirections(start, end)
 .OrderBy(direction => direction.HasNoTolls)
 .ThenBy(direction => direction.EstimatedTime);

		Finally, a more advanced sample: determining if the values of the properties of two instances of the same type are equal (Borrowed and modified from this StackOverflow post [http://stackoverflow.com/a/844855]):

public static bool PublicInstancePropertiesEqual<T>(this T self, T to, params string[] ignore) where T : class
{
 if (self != null && to != null)
 {
 var type = typeof(T);
 var ignoreList = new List<string>(ignore);

 // Selects the properties which have unequal values into a sequence of those properties.
 var unequalProperties = from pi in type.GetProperties(BindingFlags.Public | BindingFlags.Instance)
 where !ignoreList.Contains(pi.Name)
 let selfValue = type.GetProperty(pi.Name).GetValue(self, null)
 let toValue = type.GetProperty(pi.Name).GetValue(to, null)
 where selfValue != toValue && (selfValue == null || !selfValue.Equals(toValue))
 select new { Prop = pi.Name, selfValue, toValue };
 return !unequalProperties.Any();
 }

 return self == to;
}

PLINQ

PLINQ, or Parallel LINQ, is a parallel execution engine for LINQ expressions. In other words, a regular LINQ expressions can be trivially parallelized across any number of threads. This is accomplished via a call to AsParallel() preceding the expression.

Consider the following:

public static string GetAllFacebookUserLikesMessage(IEnumerable<FacebookUser> facebookUsers)
{
 var seed = default(UInt64);

 Func<UInt64, UInt64, UInt64> threadAccumulator = (t1, t2) => t1 + t2;
 Func<UInt64, UInt64, UInt64> threadResultAccumulator = (t1, t2) => t1 + t2;
 Func<Uint64, string> resultSelector = total => $"Facebook has {total} likes!";

 return facebookUsers.AsParallel()
 .Aggregate(seed, threadAccumulator, threadResultAccumulator, resultSelector);
}

This code will partition facebookUsers across system threads as necessary, sum up the total likes on each thread in parallel, sum the results computed by each thread, and project that result into a nice string.

In diagram form:

[image: PLINQ diagram]

Parallelizable CPU-bound jobs which can be easily expressed via LINQ (in other words, are pure functions and have no side effects) are a great candidate for PLINQ. For jobs which do have a side effect, consider using the Task Parallel Library [https://msdn.microsoft.com/library/dd460717.aspx].

Further Resources:

		101 LINQ Samples [https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b]

		Linqpad [https://www.linqpad.net/], a playground environment and Database querying engine for C#/F#/VB

		EduLinq [http://codeblog.jonskeet.uk/2011/02/23/reimplementing-linq-to-objects-part-45-conclusion-and-list-of-posts/], an e-book for learning how LINQ-to-objects is implemented

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/class-libraries.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Class Libraries
description: .NET Class Libraries
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a67484c3-fe92-44d8-8fa3-36fa2071d880

.NET Class Libraries

Class libraries are the shared library [http://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries] concept for .NET. They enable you to componentize useful functionality into modules that can be used by multiple applications. They can also be used as a means of loading functionality that is not needed or not known at application startup. Class libraries are described using the .NET Assembly file format.

There are three types of class libraries that you can use:

		Platform-specific class libraries have access to all the APIs in a given platform (for example, .NET Framework, Xamarin iOS), but can only be used by apps and libraries that target that platform.

		Portable class libraries have access to a subset of APIs, and can be used by apps and libraries that target multiple platforms.

		.NET Core class libraries are a merger of the platform-specific and portable library concept into a single model that provides the best of both.

Platform-specific Class Libraries

Platform-specific libraries are bound to a single .NET platform (for example, .NET Framework on Windows) and can therefore take significant dependencies on a known execution environment. Such an environment will expose a known set of APIs (.NET and OS APIs) and will maintain and expose expected state (for example, Windows registry).

Developers who create platform specific libraries can fully exploit the underlying platform. The libraries will only ever run on that given platform, making platform checks or other forms of conditional code unnecessary (modulo single sourcing code for multiple platforms).

Platform-specific libraries have been the primary class library type for the .NET Framework. Even as other .NET platforms emerged, platform-specific libraries remained the dominant library type.

Portable Class Libraries

Portable libraries are supported on multiple .NET platforms. They can still take dependencies on a known execution environment, however, the environment is a synthetic one that is generated by the intersection of a set of concrete .NET platforms. This means that exposed APIs and platform assumptions are a subset of what would be available to a platform-specific library.

You choose a platform configuration when you create a portable library. These are the set of platforms that you need to support (for example, .NET Framework 4.5+, Windows Phone 8.0+). The more platforms you opt to support, the fewer APIs and fewer platform assumptions you can make, the lowest common denominator. This characteristic can be confusing at first, since people often think “more is better”, but find that more supported platforms results in fewer available APIs.

Many library developers have switched from producing multiple platform-specific libraries from one source (using conditional compilation directives) to portable libraries. There are several approaches [http://blog.stephencleary.com/2012/11/portable-class-library-enlightenment.html] for accessing platform-specific functionality within portable libraries, with bait-and-switch [http://log.paulbetts.org/the-bait-and-switch-pcl-trick/] being the most widely accepted technique at this point.

.NET Core Class Libraries

.NET Core libraries are a replacement of the platform-specific and portable libraries concepts. They are platform-specific in the sense that they expose all functionality from the underlying platform (no synthetic platforms or platform intersections). They are portable in the sense that they work on all supporting platforms.

.NET Core exposes a set of library contracts. .NET platforms must support each contract fully or not at all. Each platform, therefore, supports a set of .NET Core contracts. The corollary is that each .NET Core class library is supported on the platforms that support it’s contract dependencies.

.NET Core contracts do not expose the entire functionality of the .NET Framework (nor is that a goal), however, they do expose many more APIs than Portable Class Libraries. More APIs will be added over time.

The following platforms support .NET Core class libraries:

		.NET Core

		ASP.NET Core

		.NET Framework 4.5+

		Windows Store Apps

		Windows Phone 8+

Mono Class Libraries

Class libraries are supported on Mono, including the three types of libraries described above. Mono has often been seen (correctly) as a cross-platform implementation of the Microsoft .NET Framework. In part, this was because platform-specific .NET Framework libraries could run on the Mono runtime without modification or recompilation. This characteristic was in place before the creation of portable class libraries, so was an obvious choice to enable binary portability between the .NET Framework and Mono (although it only worked in one direction).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/sorted-collection-types.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Sorted Collection Typesdescription: Sorted Collection Typeskeywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bdc9c13e-e56a-433b-a293-c92364f6e9cb

Sorted Collection Types

The System.Collections.SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class, the System.Collections.Generic.SortedList

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic class, and the System.Collections.Generic.SortedDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] generic class are similar to the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class and the Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] generic class in that they implement the IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface, but they maintain their elements in sort order by key, and they do not have the O(1) insertion and retrieval characteristic of hash tables. The three classes have several features in common:

		All three classes implement the System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface. The two generic classes also implement the System.Collections.Generic.IDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface.

		Each element is a key/value pair for enumeration purposes.

[!NOTE]The nongeneric SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class returns DictionaryEntry [https://docs.microsoft.com/dotnet/core/api/System.Collections.DictionaryEntry] objects when enumerated, although the two generic types return KeyValuePair<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.KeyValuePair-2] objects.

		Elements are sorted according to a System.Collections.IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer] implementation (for nongeneric SortedList) or a System.Collections.Generic.IComparer<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] implementation (for the two generic classes).

		Each class provides properties that return collections containing only the keys or only the values.

The following table lists some of the differences between the two sorted list classes and the SortedDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] class.

SortedList nongeneric class and SortedList<TKey, TValue> generic class | SortedDictionary<TKey, TValue> generic class——————————————————————————— | ——————————The properties that return keys and values are indexed, allowing efficient indexed retrieval. | No indexed retrieval.Retrieval is O(log n). | Retrieval is O(log n).Insertion and removal are generally O(n); however, insertion is O(1) for data that are already in sort order, so that each element is added to the end of the list. (This assumes that a resize is not required.) | Insertion and removal are O(log n).Uses less memory than a SortedDictionary<TKey, TValue>. | Uses more memory than the SortedList nongeneric class and the SortedList<TKey, TValue> generic class.

For sorted lists or dictionaries that must be accessible concurrently from multiple threads, you can add sorting logic to a class that derives from ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2].

[!NOTE]For values that contain their own keys (for example, employee records that contain an employee ID number), you can create a keyed collection that has some characteristics of a list and some characteristics of a dictionary by deriving from the KeyedCollection<

TKey, TItem>

 generic class.

The SortedSet

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedSet-1] class provides a self-balancing tree that maintains data in sorted order after insertions, deletions, and searches. This class and the HashSet<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1] class implement the ISet<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ISet-1] interface.

See Also

System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]

System.Collections.Generic.IDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]

ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]

Commonly Used Collection Types

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/delegates-events.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Delegates & events
description: Delegates & events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4e80e053-8022-4987-a8a0-209caec0315d

Delegates & events

This topic will be covered under the following articles:

1. [Overview of Delegates](delegates-overview.md)This article covers an overview of delegates.

		System.Delegate and the delegate keyword

This article covers the classes in the .NET Core Framework that support delegates and how that maps to the delegate keyword.

		Strongly Typed Delegates

This article covers the types and techniques for using strongly typed delegates.

		Common Patterns for Delegates

This article covers common practices for delegates.

		Overview of Events

This article covers an overview of events in .NET.

		The .NET Event Pattern

This article covers the standard event pattern in .NET.

		The Updated .NET Event Pattern

This article covers several updates to the .NET event pattern in recent releases.

		Distinguishing Delegates from Events

This article discusses how you should distinguish between using events and delegates in your designs.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/when-to-use-generic-collections.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: When to Use Generic Collections
description: When to Use Generic Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 971e08bd-b63f-4832-9e61-9f65cbedd352

When to Use Generic Collections

Using generic collections is generally recommended, because you gain the immediate benefit of type safety without having to derive from a base collection type and implement type-specific members. Generic collection types also generally perform better than the corresponding nongeneric collection types (and better than types that are derived from nongeneric base collection types) when the collection elements are value types, because with generics there is no need to box the elements.

You should use the generic collection classes in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace when multiple threads might be adding or removing items from the collection concurrently.

The following generic types correspond to existing collection types:

		List<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] is the generic class that corresponds to ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList].

		Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and ConcurrentDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] are the generic classes that correspond to Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable].

		Collection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.Collection-1] is the generic class that corresponds to CollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.CollectionBase]. Collection<T> can be used as a base class, but unlike CollectionBase, it is not abstract. This makes it much easier to use.

		ReadOnlyCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.ReadOnlyCollection-1] is the generic class that corresponds to ReadOnlyCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.ReadOnlyCollectionBase]. ReadOnlyCollection<T> is not abstract, and has a constructor that makes it easy to expose an existing List<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] as a read-only collection.

		The Queue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1], ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1], Stack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1], ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1], and SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes correspond to the respective nongeneric classes with the same names.

Additional Types

Several generic collection types do not have nongeneric counterparts. They include the following:

		LinkedList<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] is a general-purpose linked list that provides O(1) insertion and removal operations.

		SortedDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] is a sorted dictionary with O(log n) insertion and retrieval operations, which makes it a useful alternative to SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2].

		KeyedCollection<

TKey, TItem>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] is a hybrid between a list and a dictionary, which provides a way to store objects that contain their own keys.

		BlockingCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] implements a collection class with bounding and blocking functionality.

		ConcurrentBag<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] provides fast insertion and removal of unordered elements.

LINQ to Objects

The LINQ to Objects feature enables you to use LINQ queries to access in-memory objects as long as the object type implements the System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] interface. LINQ queries provide a common pattern for accessing data; are typically more concise and readable than standard foreach loops; and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.

Additional Functionality

Some of the generic types have functionality that is not found in the nongeneric collection types. For example, the List

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] class, which corresponds to the nongeneric ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList] class, has a number of methods that accept generic delegates, such as the Predicate<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Predicate-1] delegate that allows you to specify methods for searching the list, and the Action<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Action-1] delegate that represents methods that act on each element of the list.

The List

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] class allows you to specify your own IComparer<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] generic interface implementations for sorting and searching the list. The SortedDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] and SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] classes also have this capability. In addition, these classes let you specify comparers when the collection is created. In similar fashion, the Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and KeyedCollection<

TKey, TItem>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] classes let you specify your own equality comparers.

See Also

Collections and Data Structures

Commonly Used Collection Types

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: C# Guide
description: C# Guide
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 52db8280-0e53-40cf-858b-e8eef3997dea

C# Guide

		Tutorials
		Console Application

		REST client

		Working with LINQ

		Microservices hosted in Docker

		🔧 Tour of C#
		What’s new in C# 6

* [🔧 C# Concepts](concepts.md)
 * [🔧 C# Type system](type-system.md)
 * [Properties](properties.md)
 * [Indexers](indexers.md)
 * [🔧 Generics](generics.md)
 * [Iterators](iterators.md)
 * [🔧 Language Integrated Query (LINQ)](linq.md)
 * [Delegates & events](delegates-events.md)
 * [Introduction to Delegates](delegates-overview.md)
 * [System.Delegate and the delegate keyword](delegate-class.md)
 * [Strongly Typed Delegates](delegates-strongly-typed.md)
 * [Common Patterns for Delegates](delegates-patterns.md)
 * [Introduction to Events](events-overview.md)
 * [The .NET Event Pattern](event-pattern.md)
 * [The Updated .NET Event Pattern](modern-events.md)
 * [Distinguishing Delegates and Events](distinguish-delegates-events.md)
 * [🔧 Parallel programming](parallel.md)
 * [Asynchronous programming](async.md)
 * [🔧 Lambda Expressions](lambda-expressions.md)

 * [Expression Trees](expression-trees.md)
 * [Expression Trees Explained](expression-trees-explained.md)
 * [Framework Types Supporting Expression Trees](expression-classes.md)
 * [Executing Expressions](expression-trees-execution.md)
 * [Interpreting Expressions](expression-trees-interpreting.md)
 * [Building Expressions](expression-trees-building.md)
 * [Translating Expressions](expression-trees-translating.md)
 * [Summary](expression-trees-summary.md)
 * [🔧 Native interoperability](interop.md)
 * [🔧 Reflection & code generation](reflection.md)
 * [🔧 Documenting your code](codedoc.md)
* [🔧 Syntax Reference](syntax.md)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/native-interop.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Native interoperability
description: Native interoperability
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3c357112-35fb-44ba-a07b-6a1c140370ac

Native Interoperability

In this document, we will dive a little bit deeper into all three ways of doing “native interoperability” that are available on the .NET platform.

There are a few of reasons why you would want to call into native code:

		Operating Systems come with a large volume of APIs that are not present in the managed class libraries. A prime example for this would be access to hardware or operating system management functions.

		Communicating with other components that have or can produce C-style ABIs (native ABIs). This covers, for example, Java code that is exposed via Java Native Interface (JNI) [http://docs.oracle.com/javase/8/docs/technotes/guides/jni/] or any other managed language that could produce a native component.

		On Windows, most of the software that gets installed, such as Microsoft Office suite, registers COM components that represent their programs and allow developers to automate them or use them. This also requires native interoperability.

Of course, the list above does not cover all of the potential situations and scenarios in which the developer would want/like/need to interface with native components. .NET class library, for instance, uses the native interoperability support to implement a fair number of its APIs, like console support and manipulation, file system access and others. However, it is important to note that there is an option, should one need it.

[!NOTE]
Most of the examples in this document will be presented for all three supported platforms for .NET Core (Windows, Linux and macOS). However, for some short and illustrative examples, just one sample is shown that uses Windows filenames and extensions (that is, “dll” for libraries). This does not mean that those features are not available on Linux or macOS, it was done merely for convenience sake.

Platform Invoke (P/Invoke)

P/Invoke is a technology that allows you to access structs, callbacks and functions in unmanaged libraries from your managed code. Most of the P/Invoke API is contained in two namespaces: System and System.Runtime.InteropServices. Using these two namespaces will allow you access to the attributes that describe how you want to communicate with the native component.

Let’s start from the most common example, and that is calling unmanaged functions in your managed code. Let’s show a message box from a command-line application:

using System.Runtime.InteropServices;

public class Program {

 // Import user32.dll (containing the function we need) and define
 // the method corresponding to the native function.
 [DllImport("user32.dll")]
 public static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

 public static void Main(string[] args) {
 // Invoke the function as a regular managed method.
 MessageBox(IntPtr.Zero, "Command-line message box", "Attention!", 0);
 }
}

The example above is pretty simple, but it does show off what is needed to invoke unmanaged functions from managed code. Let’s step through the example:

		Line #1 shows the using statement for the System.Runtime.InteropServices which is the namespace that holds all of the items we need.

		Line #5 introduces the DllImport attribute. This attribute is crucial, as it tells the runtime that it should load the unmanaged DLL. This is the DLL into which we wish to invoke.

		Line #6 is the crux of the P/Invoke work. It defines a managed method that has the exact same signature as the unmanaged one. The declaration has a new keyword that you can notice, extern, which tells the runtime this is an external method, and that when you invoke it, the runtime should find it in the DLL specified in DllImport attribute.

The rest of the example is just invoking the method as you would any other managed method.

The sample is similar for macOS. One thing that needs to change is, of course, the name of the library in the DllImport attribute, as macOS has a different scheme of naming dynamic libraries. The sample below uses the getpid(2) function to get the process ID of the application and print it out to the console.

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Import the libc and define the method corresponding to the native function.
 [DllImport("libSystem.dylib")]
 private static extern int getpid();

 public static void Main(string[] args){
 // Invoke the function and get the process ID.
 int pid = getpid();
 Console.WriteLine(pid);
 }
 }
}

It is similar on Linux, of course. The function name is same, since getpid(2) is POSIX [https://en.wikipedia.org/wiki/POSIX] system call.

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Import the libc and define the method corresponding to the native function.
 [DllImport("libc.so.6")]
 private static extern int getpid();

 public static void Main(string[] args){
 // Invoke the function and get the process ID.
 int pid = getpid();
 Console.WriteLine(pid);
 }
 }
}

Invoking managed code from unmanaged code

Of course, the runtime allows communication to flow both ways which enables you to call into managed artifacts from native functions, using function pointers. The closest thing to a function pointer in managed code is a delegate, so this is what is used to allow callbacks from native code into managed code.

The way to use this feature is similar to managed to native process described above. For a given callback, you define a delegate that matches the signature, and pass that into the external method. The runtime will take care of everything else.

using System;
using System.Runtime.InteropServices;

namespace ConsoleApplication1 {

 class Program {

 // Define a delegate that corresponds to the unmanaged function.
 delegate bool EnumWC(IntPtr hwnd, IntPtr lParam);

 // Import user32.dll (containing the function we need) and define
 // the method corresponding to the native function.
 [DllImport("user32.dll")]
 static extern int EnumWindows(EnumWC hWnd, IntPtr lParam);

 // Define the implementation of the delegate; here, we simply output the window handle.
 static bool OutputWindow(IntPtr hwnd, IntPtr lParam) {
 Console.WriteLine(hwnd.ToInt64());
 return true;
 }

 static void Main(string[] args) {
 // Invoke the method; note the delegate as a first parameter.
 EnumWindows(OutputWindow, IntPtr.Zero);
 }
 }
}

Before we walk through our example, it is good to go over the signatures of the unmanaged functions we need to work with. The function we want to call to enumerate all of the windows has the following signature: BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);

The first parameter is a callback. The said callback has the following signature: BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);

With this in mind, let’s walk through the example:

		Line #8 in the example defines a delegate that matches the signature of the callback from unmanaged code. Notice how the LPARAM and HWND types are represented using IntPtr in the managed code.

		Lines #10 and #11 introduce the EnumWindows function from the user32.dll library.

		Lines #13 - 16 implement the delegate. For this simple example, we just want to output the handle to the console.

		Finally, in line #19 we invoke the external method and pass in the delegate.

The Linux and macOS examples are shown below. For them, we use the ftw function that can be found in libc, the C library. This function is used to traverse directory hierarchies and it takes a pointer to a function as one of its parameters. The said function has the following signature: int (*fn) (const char *fpath, const struct stat *sb, int typeflag).

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Define a delegate that has the same signature as the native function.
 delegate int DirClbk(string fName, StatClass stat, int typeFlag);

 // Import the libc and define the method to represent the native function.
 [DllImport("libc.so.6")]
 static extern int ftw(string dirpath, DirClbk cl, int descriptors);

 // Implement the above DirClbk delegate;
 // this one just prints out the filename that is passed to it.
 static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
 Console.WriteLine(fName);
 return 0;
 }

 public static void Main(string[] args){
 // Call the native function.
 // Note the second parameter which represents the delegate (callback).
 ftw(".", DisplayEntry, 10);
 }
 }

 // The native callback takes a pointer to a struct. The below class
 // represents that struct in managed code. You can find more information
 // about this in the section on marshalling below.
 [StructLayout(LayoutKind.Sequential)]
 public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
 }
}

macOS example uses the same function, and the only difference is the argument to the DllImport attribute, as macOS keeps libc in a different place.

using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
 public static class Program {

 // Define a delegate that has the same signature as the native function.
 delegate int DirClbk(string fName, StatClass stat, int typeFlag);

 // Import the libc and define the method to represent the native function.
 [DllImport("libSystem.dylib")]
 static extern int ftw(string dirpath, DirClbk cl, int descriptors);

 // Implement the above DirClbk delegate;
 // this one just prints out the filename that is passed to it.
 static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
 Console.WriteLine(fName);
 return 0;
 }

 public static void Main(string[] args){
 // Call the native function.
 // Note the second parameter which represents the delegate (callback).
 ftw(".", DisplayEntry, 10);
 }
 }

 // The native callback takes a pointer to a struct. The below class
 // represents that struct in managed code. You can find more information
 // about this in the section on marshalling below.
 [StructLayout(LayoutKind.Sequential)]
 public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
 }
}

Both of the above examples depend on parameters, and in both cases, the parameters are given as managed types. Runtime does the “right thing” and processes these into its equivalents on the other side. Since this process is really important to writing quality native interop code, let’s take a look at what happens when the runtime marshals the types.

Type marshalling

Marshalling is the process of transforming types when they need to cross the managed boundary into native and vice versa.

The reason marshalling is needed is because the types in the managed and unmanaged code are different. In managed code, for instance, you have a String, while in the unmanaged world strings can be Unicode (“wide”), non-Unicode, null-terminated, ASCII, etc. By default, the P/Invoke subsystem will try to do the Right Thing based on the default behavior which you can see on MSDN [https://msdn.microsoft.com/library/zah6xy75.aspx]. However, for those situations where you need extra control, you can employ the MarshalAs attribute to specify what is the expected type on the unmanaged side. For instance, if we want the string to be sent as a null-terminated ANSI string, we could do it like this:

[DllImport("somenativelibrary.dll"]
static extern int MethodA([MarshalAs(UnmanagedType.LPStr) string parameter);

Marshalling classes and structs

Another aspect of type marshalling is how to pass in a struct to an unmanaged method. For instance, some of the unmanaged methods require a struct as a parameter. In these cases, we need to create a corresponding struct or a class in managed part of the world to use it as a parameter. However, just defining the class is not enough, we also need to instruct the marshaler how to map fields in the class to the unmanaged struct. This is where the StructLayout attribute comes into play.

[DllImport("kernel32.dll")]
static extern void GetSystemTime(SystemTime systemTime);

[StructLayout(LayoutKind.Sequential)]
class SystemTime {
 public ushort Year;
 public ushort Month;
 public ushort DayOfWeek;
 public ushort Day;
 public ushort Hour;
 public ushort Minute;
 public ushort Second;
 public ushort Milsecond;
}

public static void Main(string[] args) {
 SystemTime st = new SystemTime();
 GetSystemTime(st);
 Console.WriteLine(st.Year);
}

The example above shows off a simple example of calling into GetSystemTime() function. The interesting bit is on line 4. The attribute specifies that the fields of the class should be mapped sequentially to the struct on the other (unmanaged) side. This means that the naming of the fields is not important, only their order is important, as it needs to correspond to the unmanaged struct, shown below:

typedef struct _SYSTEMTIME {
 WORD wYear;
 WORD wMonth;
 WORD wDayOfWeek;
 WORD wDay;
 WORD wHour;
 WORD wMinute;
 WORD wSecond;
 WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME*;

We already saw the Linux and macOS example for this in the previous example. It is shown again below.

[StructLayout(LayoutKind.Sequential)]
public class StatClass {
 public uint DeviceID;
 public uint InodeNumber;
 public uint Mode;
 public uint HardLinks;
 public uint UserID;
 public uint GroupID;
 public uint SpecialDeviceID;
 public ulong Size;
 public ulong BlockSize;
 public uint Blocks;
 public long TimeLastAccess;
 public long TimeLastModification;
 public long TimeLastStatusChange;
}

The StatClass class represents a structure that is returned by the stat system call on UNIX systems. It represents information about a given file. The class above is the stat struct representation in managed code. Again, the fields in the class have to be in the same order as the native struct (you can find these by perusing man pages on your favorite UNIX implementation) and they have to be of the same underlying type.

More resources

		PInvoke.net wiki [http://www.pinvoke.net] an excellent Wiki with information on common Win32 APIs and how to call them.

		P/Invoke on MSDN [https://msdn.microsoft.com/library/zbz07712.aspx]

		Mono documentation on P/Invoke [http://www.mono-project.com/docs/advanced/pinvoke/]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/indexers.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Indexers
description: Indexers
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0e9496da-e766-45a9-b92b-91820d4a350e

Indexers

Indexers are similar to properties. In many ways indexers build
on the same language features as properties. Indexers
enable indexed properties: properties referenced using one or more
arguments. Those arguments provide an index into some collection
of values.

Indexer Syntax

You access an indexer through a variable name and square brackets . You place the indexer
arguments inside the brackets:

var item = someObject["key"];
someObject["AnotherKey"] = item;

You declare indexers using the this keyword as the property name, and
declaring the arguments within square brackets. This declaration would match
the usage shown in the previous paragraph:

public int this[string key]
{
 get { return storage.Find(key); }
 set { storage.SetAt(key, value); }
}

From this initial example, you can see the relationship between the syntax
for properties and for indexers. This analogy carries through most of the
syntax rules for indexers. Indexers can have any valid access modifiers
(public, protected internal, protected, internal, or private). They may
be sealed, virtual, or abstract. As with properties, you can specify
different access modifiers for the get and set accesssors in an indexer.
You may also specify read-only indexers (by omitting the set accessor),
or write-only indexers (by omitting the get accessor).

You can apply almost everything you learn from working with properties
to indexers. The only exception to that rule is
auto implemented properties. The compiler cannot always
generate the correct storage for an indexer.

The presence of arguments to reference an item in a set of items distinguishes
indexers from properties. You may define mulitple indexers on a type, as long
as the argument lists for each indexer is unique. Let’s explore different
scenarios where you might use one or more indexers in a class definition.

Scenarios

You would define indexers in your type when its API models some
collection where you define the arguments to that collection. Your indexers
may or may not map directly to the collection types that are part of the .NET
core framework. Your type
may have other responsibilities in addition to modeling a collection.
Indexers enable you to provide the API that matches your type’s abstraction
without exposing the inner details of how the values for that abstraction
are stored or computed.

Let’s walk through some of the common scenarios for using indexers.
The code for all the samples is available at the core-docs GitHub
repository [https://github.com/dotnet/core-docs]. Or, you can
access the
sample folder [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/indexers]
directly.

Arrays and Vectors

One of the most common scenarios for creating indexers is when your
type models an array, or a vector. You can create an indexer to model
an ordered list of data.

The advantage of creating your own indexer is that you can define
the storage for that collection to suit your needs. Imagine a
scenario where your type models historical data that is too large
to load into memory at once. You need to load and unload sections
of the collection based on usage. The example following models
this behavior. It reports on how many data points exist. It creates
pages to hold sections of the data on demand. It removes pages
from memory to make room for pages needed by more recent requests.

public class DataSamples
{
 private class Page
 {
 private readonly List<Measurements> pageData = new List<Measurements>();
 private readonly int startingIndex;
 private readonly int length;
 private bool dirty;
 private DateTime lastAccess;

 public Page(int startingIndex, int length)
 {
 this.startingIndex = startingIndex;
 this.length = length;
 lastAccess = DateTime.Now;

 // This stays as random stuff:
 var generator = new Random();
 for(int i=0; i < length; i++)
 {
 var m = new Measurements
 {
 HiTemp = generator.Next(50, 95),
 LoTemp = generator.Next(12, 49),
 AirPressure = 28.0 + generator.NextDouble() * 4
 };
 pageData.Add(m);
 }
 }
 public bool HasItem(int index) =>
 ((index >= startingIndex) &&
 (index < startingIndex + length));

 public Measurements this[int index]
 {
 get
 {
 lastAccess = DateTime.Now;
 return pageData[index - startingIndex];
 }
 set
 {
 pageData[index - startingIndex] = value;
 dirty = true;
 lastAccess = DateTime.Now;
 }
 }

 public bool Dirty => dirty;
 public DateTime LastAccess => lastAccess;
 }

 private readonly int totalSize;
 private readonly List<Page> pagesInMemory = new List<Page>();

 public DataSamples(int totalSize)
 {
 this.totalSize = totalSize;
 }

 public Measurements this[int index]
 {
 get
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than 0");
 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the end of storage");

 var page = updateCachedPagesForAccess(index);
 return page[index];
 }
 set
 {
 if (index < 0)
 throw new IndexOutOfRangeException("Cannot index less than 0");
 if (index >= totalSize)
 throw new IndexOutOfRangeException("Cannot index past the end of storage");
 var page = updateCachedPagesForAccess(index);

 page[index] = value;
 }
 }

 private Page updateCachedPagesForAccess(int index)
 {
 foreach (var p in pagesInMemory)
 {
 if (p.HasItem(index))
 {
 return p;
 }
 }
 var startingIndex = (index / 1000) * 1000;
 var newPage = new Page(startingIndex, 1000);
 addPageToCache(newPage);
 return newPage;
 }

 private void addPageToCache(Page p)
 {
 if (pagesInMemory.Count > 4)
 {
 // remove oldest non-dirty page:
 var oldest = pagesInMemory
 .Where(page => !page.Dirty)
 .OrderBy(page => page.LastAccess)
 .FirstOrDefault();
 // Note that this may keep more than 5 pages in memory
 // if too much is dirty
 if (oldest != null)
 pagesInMemory.Remove(oldest);
 }
 pagesInMemory.Add(p);
 }
}

You can follow this design idiom to model any sort of collection where
there are good reasons not to load the entire set of data into an in-
memory collection. Notice that the Page class is a private nested
class that is not part of the public interface. Those details are hidden
from any users of this class.

Dictionaries

Another common scenario is when you need to model a dictionary
or a map. This scenario is when your type stores values based on key,
typically text keys. This example creates a dictionary that maps command
line arguments to lamdba expressions that manage
those options. The following example shows two classes: an ArgsActions
class that maps a command line option to an Action delegate, and an
ArgsProcessor that uses the ArgsActions to execute each Action when
it encounters that option.

public class ArgsProcessor
{
 private readonly ArgsActions actions;

 public ArgsProcessor(ArgsActions actions)
 {
 this.actions = actions;
 }

 public void Process(string[] args)
 {
 foreach(var arg in args)
 {
 actions[arg]?.Invoke();
 }
 }

}
public class ArgsActions
{
 readonly private Dictionary<string, Action> argsActions = new Dictionary<string, Action>();

 public Action this[string s]
 {
 get
 {
 Action action;
 Action defaultAction = () => {} ;
 return argsActions.TryGetValue(s, out action) ? action : defaultAction;
 }
 }

 public void SetOption(string s, Action a)
 {
 argsActions[s] = a;
 }
}

In this example, the ArgsAction collection maps closely to the underlying collection.
The get determines if a given option has been configured. If so, it returns
the Action associated with that option. If not, it returns an Action that
does nothing. The public accessor does not include a set accessor. Rather,
the design using a public method for setting options.

Multi-Dimensional Maps

You can create indexers that use multiple arguments. In addition,
those arguments are not constrained to be the same type. Let’s look at
two examples.

The first example shows a class that generates values for a Mandelbrot
set. For more information on the mathematics behind the set, read
this article [https://en.wikipedia.org/wiki/Mandelbrot_set].
The indexer uses two doubles to define a point in the X, Y plane.
The get accessor computes the number of iterations until a point is
determined to be not in the set. If the maximum iterations is reached, the point
is in the set, and the class’s maxIterations value is returned. (The computer
generated images popularized for the Mandelbrot set define colors for the
number of iterations necessary to determine that a point is outside the set.

public class Mandelbrot
{
 readonly private int maxIterations;

 public Mandelbrot(int maxIterations)
 {
 this.maxIterations = maxIterations;
 }

 public int this [double x, double y]
 {
 get
 {
 var iterations = 0;
 var x0 = x;
 var y0 = y;

 while ((x*x + y * y < 4) &&
 (iterations < maxIterations))
 {
 var newX = x * x - y * y + x0;
 y = 2 * x * y + y0;
 x = newX;
 iterations++;
 }
 return iterations;
 }
 }
}

The Mandelbrot Set defines values at every (x,y) coordinate for real number values.
That defines a dictionary that could contain an infinite number of values. Therefore,
there is no storage behind the set. Instead, this class computes the value for each
point when code calls the get accessor. There’s no underlying storage used.

Let’s examine one last use of indexers, where the indexer takes multiple arguments
of different types. Consider a program that manages historical temperature
data. This indexer uses a city and a date to set or get the high and low
temperatures for that location:

using DateMeasurements =
 System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements =
 System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>>;

public class HistoricalWeatherData
{
 readonly CityDataMeasurements storage = new CityDataMeasurements();

 public Measurements this[string city, DateTime date]
 {
 get
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 throw new ArgumentOutOfRangeException(nameof(city), "City not found");

 // strip out any time portion:
 var index = date.Date;
 var measure = default(Measurements);
 if (cityData.TryGetValue(index, out measure))
 return measure;
 throw new ArgumentOutOfRangeException(nameof(date), "Date not found");
 }
 set
 {
 var cityData = default(DateMeasurements);

 if (!storage.TryGetValue(city, out cityData))
 {
 cityData = new DateMeasurements();
 storage.Add(city, cityData);
 }

 // Strip out any time portion:
 var index = date.Date;
 cityData[index] = value;
 }
 }
}

This example creates an indexer that maps weather data on two different
arguments: a city (represented by a string) and a date (represented by
a DateTime). The internal storage uses two Dictionary classes to represent
the two-dimensional dictionary. The public API no longer represents the
underlying storage. Rather, the language features of indexers enables you
to create a public interface that represents your abstraction, even though
the underlying storage must use different core collection types.

There are two parts of this code that may be unfamiliar
to some developers. These two using statements:

using DateMeasurements = System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements = System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>>;

create an alias for a constructed generic type. Those statements enable the
code later to use the more descriptive DateMeasurements and CityDateMeasurements
names instead of the generic construction of Dictionary<DateTime, Measurements>
and Dictionary<string, Dictionary<DateTime, Measurements> >.
This construct does require using the fully qualified type names on the right
side of the = sign.

The second technique is to strip off the time portions of any DateTime object
used to index into the collections. The .NET framework does not include a Date only type.
Developers use the DateTime type, but use the Date property to ensure that any
DateTime object from that day are equal.

Summing Up

You should create indexers anytime you have a property-like element in your
class where that property represents not a single value, but rather a collection
of values where each individual item is identified by a set of arguments. Those
arguments can uniquely identify which item in the collection should be referenced.
Indexers extend the concept of properties, where a member is treated
like a data item from outside the class, but like a method on the side. Indexers allow
arguments to find a single item in a property that represents a set of items.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/generics.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Generic Types (Generics) Overview
description: Generic Types (Generics) Overview
keywords: .NET, .NET Core
author: kuhlenh
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a315b111-8e48-446c-ab19-acb6405894a7

Generic Types (Generics) Overview

We use generics all the time in C#, whether implicitly of explicitly. When you use LINQ in C#, did you ever notice that you are working with IEnumerable? Or if you ever saw an online sample of a “generic repository” for talking to databases using Entity Framework, did you see that most methods return IQueryable? You may have wondered what the T is in these examples and why is it in there?

First introduced to the .NET Framework 2.0, generics involved changes to both the C# language and the Common Language Runtime (CLR). Generics are essentially a “code template” that allows developers to define type-safe [https://msdn.microsoft.com/library/hbzz1a9a.aspx] data structures without committing to an actual data type. For example, List<T> is a Generic Collection [https://msdn.microsoft.com/library/System.Collections.Generic.aspx] that can be declared and used with any type: List<int>, List<string>, List<Person>, etc.

So, what’s the point? Why are generics useful? In order to understand this, we need to take a look at a specific class before and after adding generics. Let’s look at the ArrayList. In C# 1.0, the ArrayList elements were of type object. This meant that any element that was added was silently converted into an object; same thing happens on reading the elements from the list (this process is known as boxing [https://msdn.microsoft.com/library/yz2be5wk.aspx] and unboxing respectively). Boxing and unboxing have an impact of performance. More than that, however, there is no way to tell at compile time what is the actual type of the data in the list. This makes for some fragile code. Generics solve this problem by providing additional information the type of data each instance of list will contain. Put simply, you can only add integers to List<int> and only add Persons to List<Person>, etc.

Generics are also available at runtime, or reified. This means the runtime knows what type of data structure you are using and can store it in memory more efficiently.

Here is a small program that illustrates the efficiency of knowing the data structure type at runtime:

 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Diagnostics;

 namespace GenericsExample {
 class Program {
 static void Main(string[] args) {
 //generic list
 List<int> ListGeneric = new List<int> { 5, 9, 1, 4 };
 //non-generic list
 ArrayList ListNonGeneric = new ArrayList { 5, 9, 1, 4 };
 // timer for generic list sort
 Stopwatch s = Stopwatch.StartNew();
 ListGeneric.Sort();
 s.Stop();
 Console.WriteLine($"Generic Sort: {ListGeneric} \n Time taken: {s.Elapsed.TotalMilliseconds}ms");

 //timer for non-generic list sort
 Stopwatch s2 = Stopwatch.StartNew();
 ListNonGeneric.Sort();
 s2.Stop();
 Console.WriteLine($"Non-Generic Sort: {ListNonGeneric} \n Time taken: {s2.Elapsed.TotalMilliseconds}ms");
 Console.ReadLine();
 }
 }
 }

This program yields the following output:

Generic Sort: System.Collections.Generic.List\`1[System.Int32] Time taken: 0.0789ms
Non-Generic Sort: System.Collections.ArrayList Time taken: 2.4324ms

The first thing you notice here is that sorting the generic list is significantly faster than for the non-generic list. You might also notice that the type for the generic list is distinct ([System.Int32]) whereas the type for the non-generic list is generalized. Because the runtime knows the generic List<int> is of type int, it can store the list elements in an underlying integer array in memory while the non-generic ArrayList has to cast each list element as an object as stored in an object array in memory. As shown through this example, the extra castings take up time and slow down the list sort.

The last useful thing about the runtime knowing the type of your generic is a better debugging experience. When you are debugging a generic in C#, you know what type each element is in your data structure. Without generics, you would have no idea what type each element was.

Further reading and resources

		An Introduction to C# Generics [https://msdn.microsoft.com/library/ms379564.aspx]

		C# Programming Guide - Generics [https://msdn.microsoft.com/library/512aeb7t.aspx]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/linq.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Language Integrated Query (LINQ)
description: Language Integrated Query (LINQ)
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 007cc736-f5cf-4919-b99b-0c00ab2814ce

🔧 Language Integrated Query (LINQ)

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/490] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/lambda-expressions.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Lambda Expressions
description: Lambda Expressions
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b6a0539a-8ce5-4da7-adcf-44be345a2714

🔧 Lambda Expressions

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/488] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-explained.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Expression Trees Explained
description: Expression Trees Explained
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bbcdd339-86eb-4ae5-9911-4c214a39a92d

Expression Trees Explained

Previous – Overview

An Expression Tree is a data structure that defines code. They are based on the same structures
that a compiler uses to analyze code and generate the compiled output. As you read through this
tutorial, you will notice quite a bit of similarity between Expression Trees and the types used
in the Roslyn APIs to build Analyzers and CodeFixes [https://github.com/dotnet/roslyn-analyzers].
(Analyzers and CodeFixes are NuGet packages that perform static analysis on code and can suggest
potential fixes for a developer.)
The concepts are similar, and the end result
is a data structure that allows examination of the source ode in a meaningful way. However, Expression
Trees are based on a totally different set of classes and APIs than the Roslyn APIs.

Let’s look at a simple example.
Here’s a line of code:

var sum = 1 + 2;

If you were to analyze this as an expression tree, the tree contains several nodes.
The outermost node is a variable declaration statement with assignment (var sum = 1 + 2;)
That outermost node contains several child nodes: a variable declaration, an assignment operator, and an
expression representing the right hand side of the equals sign. That expression is further subdivided into
expressions that represent the addition operation, and left and right operands of the addition.

Let’s drill down a bit more into the expressions that make up the right side of the equals sign.
The expression is 1 + 2. That’s a binary expression. More specifically, it’s a binary addition
expression. A binary addition expression has two children, representing the left and right nodes
of the addition expression. Here, both nodes are constant expressions: The left operand is the
value 1, and the right operand is the value 2.

Visually, the entire statement is a tree: You could start at the root node, and travel to
each node in the tree to see the code that makes up the statement:

		Variable declaration statement with assignment (var sum = 1 + 2;)
		Implicit variable type declaration (var sum)
		Implicit var keyword (var)

		Variable name declaration (sum)

		Assignment operator (=)

		Binary addition expression (1 + 2)
		Left operand (1)

		Addition operator (+)

		Right operand (2)

This may look complicated, but it is very powerful. Following the same process, you can decompose
much more complicated expressions. Consider this expression:

var finalAnswer = this.SecretSauceFuncion(
 currentState.createInterimResult(), currentState.createSecondValue(1, 2),
 decisionServer.considerFinalOptions("hello")) +
 MoreSecretSauce('A', DateTime.Now, true);

The expression above is also a variable declaration with an assignment.
In this instance, the right hand side of the assignment is a much more complicated tree.
I’m not going to decompose this expression, but consider what the different nodes might
be. There are method calls using the current object as a receiver, one that has an explicit this
receiver, one that does not. There are method calls using other receiver objects,
there are constant arguments of different types. And finally, there is a binary
addition operator. Depending on the return type of SecretSauceFunction() or
MoreSecretSauce(), that binary addition operator may be a method call to an
overridden addition operator, resolving to a static method call to the binary
addition operator defined for a class.

Despite this perceived complexity, the expression above creates a tree structure
that can be navigated as easily as the first sample. You can keep traversing
child nodes to find leaf nodes in the expression. Parent nodes will have
references to their children, and each node has a property that describes
what kind of node it is.

The structure of an expression tree is very consistent. Once you’ve learned
the basics, you can understand even the most complex code when it is represented
as an expression tree. The elegance in
the data structure explains how the C# compiler can analyze the most complex
C# programs and create proper output from that complicated source code.

Once you become familiar with the structure of expression trees, you will
find that knowledge you’ve gained quickly enables you to work with many
more and more advanced scenarios. There is incredible power to expression
trees.

In addition to translating algorithms to execute in other environments,
expression trees can be used to make it easier to write algorithms that inspect
code before executing it. You can write a method whose arguments are expressions
and then examine those expressions before executing the code. The Expression Tree
is a full representation of the code: you can see values of any sub-expression.
You can see method and property names. You can see the value of any constant expressions.
You can also convert an expression tree into an executable delegate, and execute the
code.

The APIs for Expression Trees enable you to create trees that represent almost any
valid code construct. However, to keep things as simple as possible, some C# idioms
cannot be created in an expression tree. One example is asynchronous expressions (using
the async and await keywords). If your needs require asynchronous algorithms, you would need
to manipulate the Task objects directly, rather than rely on the compiler support. Another
is in creating loops. Typically, you create these by using for, foreach, while or do
loops. As you’ll see later in this series, the APIs for
expression trees support a single loop expression, with break and continue expressions that
control repeating the loop.

The one thing you can’t do is modify an expression tree. Expression Trees are immutable
data structures. If you want to mutate (change) an expression tree, you must create a new tree
that is a copy of the original, but with your desired changes.

Next – Framework Types Supporting Expression Trees

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/hashtable-and-dictionary-collection-types.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Hashtable and Dictionary Collection Types
description: Hashtable and Dictionary Collection Types
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0f18fac7-fd0d-4f25-a046-1d3d51de062e

Hashtable and Dictionary Collection Types

The System.Collections.Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class, and the System.Collections.Generic.Dictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and System.Collections.Concurrent.ConcurrentDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] generic classes implement the System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface. The Dictionary<T> generic class also implements the IDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface. Therefore, each element in these collections is a key-and-value pair.

A Hashtable object consists of buckets that contain the elements of the collection. A bucket is a virtual subgroup of elements within the Hashtable, which makes searching and retrieving easier and faster than in most collections. Each bucket is associated with a hash code, which is generated using a hash function and is based on the key of the element.

The generic HashSet

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1] class is an unordered collection for containing unique elements.

A hash function is an algorithm that returns a numeric hash code based on a key. The key is the value of some property of the object being stored. A hash function must always return the same hash code for the same key. It is possible for a hash function to generate the same hash code for two different keys, but a hash function that generates a unique hash code for each unique key results in better performance when retrieving elements from the hash table.

Each object that is used as an element in a Hashtable must be able to generate a hash code for itself by using an implementation of the GetHashCode method.

When an object is added to a Hashtable, it is stored in the bucket that is associated with the hash code that matches the object’s hash code. When a value is being searched for in the Hashtable, the hash code is generated for that value, and the bucket associated with that hash code is searched.

For example, a hash function for a string might take the ASCII codes of each character in the string and add them together to generate a hash code. The string “picnic” would have a hash code that is different from the hash code for the string “basket”; therefore, the strings “picnic” and “basket” would be in different buckets. In contrast, “stressed” and “desserts” would have the same hash code and would be in the same bucket.

The Dictionary<T> and ConcurrentDictionary<T> classes have the same functionality as the Hashtable class. A Dictionary<T> of a specific type (other than Object) provides better performance than a Hashtable for value types. This is because the elements of Hashtable are of type Object; therefore, boxing and unboxing typically occur when you store or retrieve a value type. The ConcurrentDictionary<T> class should be used when multiple threads might be accessing the collection simultaneously.

See Also

Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable]

IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]

Dictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2]

System.Collections.Generic.IDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]

System.Collections.Concurrent.ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]

Commonly Used Collection Types

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/csharp-6.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: What’s New in C# 6
description: What’s New in C# 6keywords: .NET, .NET Core
author: tdykstra
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4d879f69-f889-4d3f-a781-75194e143400

What’s New in C# 6

For information about new features in C# 6, we suggest you head over to the Roslyn repository in GitHub [https://github.com/dotnet/roslyn/wiki/New-Language-Features-in-C%23-6].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/distinguish-delegates-events.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Distinguising Delegates and Events
description: Distinguising Delegates and Events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0fdc8629-2fdb-4a7c-a433-5b9d04eaf911

Distinguising Delegates and Events

Previous

Developers that are new to the .NET Core platform often struggle
when deciding between a design based on delegates and a design
based on events. This is a difficult concept, because the two
language features are very similar. Events are even built using
the language support for delegates.

They both offer a late binding scenario: they enable scenarios
where a component communicates by calling a method that is only
known at runtime. They both support single and multiple subscriber
methods. You may find this referred to as singlecast and multicast
support. They both support similar syntax for adding and removing
handlers. Finally, raising an event and calling a delegate use exactly the same method call syntax. They even both support the same Invoke()
method syntax for use with the ?. operator.

With all those similarities, it is easy to have trouble determining when
to use which.

Listening to Events is Optional

The most important consideration in determining which language feature
to use is whether or not there must be an attached subscriber. If your
code must call the code supplied by the subscriber, you should
use a design based on delegates. If your code can complete all its
work without calling any subscribers, you should use a
design based on events.

Consider the examples built during this section. The code you built
using List.Sort() must be given a comparer function in order to
properly sort the elements. LINQ queries must be supplied with delegates
in order to determine what elements to return. Both used a design built
with delegates.

Consider the OnProgress event handler. It reports progress on a task.
The task continues to proceed whether or not there are any listeners.
The FileSearcher is another example. It would still search and find
all the files that were sought, even with no event subscribers attached.
UX controls still work correctly, even when there are no subscribers
listening to the events. They both use designs based on events.

Return Values Require Delegates

Another consideration is the method prototype you would want for your
delegate method. As you’ve seen, the delegates used for events all
have a void return type. You’ve also seen that there are idioms to
create event handlers that do pass information back to event sources
through modifying properties of the event argument object. While these
idioms do work, they are not as natural as returning a value from a
method.

Notice that these two heuristics may often both be present: If your
delegate method returns a value, it will likely impact the algorithm
in some way.

Event Listeners Often Have Longer Lifetimes

This is a slightly weaker justification. However, you may find that
event-based designs are more natural when the event source will be
raising events over a long period of time. You can see examples of
this for UX controls on many systems. Once you subscribe to an event,
the event source may raise events throughout the lifetime of the program.
(You can unsubscribe from events when you no longer need them.)

Contrast that with many delegate-based designs, where a delegate is
used as an argument to a method, and the delegate is not used after that
method returns.

Evaluate Carefully

The above considerations are not hard and fast rules. Instead, they
represent guidance that can help you decide which choice is best for
your particular usage. Because they are similar, you can even
prototype both, and consider which would be more natural to work
with. They both handle late binding scenarios well. Use the one
that communicates your design the best.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/events-overview.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Introduction to Events
description: Introduction to Events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9b8d2a00-1584-4a5b-8994-5003d54d8e0c

Introduction to Events

Previous

Events are, like delegates, a late binding mechanism. In fact,
events are built on the language support for delegates.

Events are a way for an object to broadcast (to all interested
components in the system) that something has happened. Any other
component can subscribe to the event, and be notified when an event
is raised.

You’ve probably used events in some of your programming. Many graphical
systems have an event model to report user interaction. These events would
report mouse movement, button presses and similar interactions. That’s one
of the most common, but certainly not the only scenario where events are
used.

You can define events that should be raised for your classes. One important
consideration when working with events is that there may not be any
object registered for a particular event. You must write your code so that
it does not raise events when no listeners are configured.

Subscribing to an event also creates a coupling between two objects (the event
source, and the event sink). You need to ensure that the event sink unsubscribes
from the event source when no longer interested in events.

Design Goals for Event Support

The language design for events targets these goals.

First, enable very minimal
coupling between an event source and an event sink. These two components may
not be written by the same organization, and may even be updated on totally
different schedules.

Secondly, it should be very simple to subscribe to an event, and to
unsubscribe from that same event.

And finally, event sources should support multiple event subscribers. It should
also support having no event subscribers attached.

You can see that the goals for events are very similar to the goals for delegates.
That’s why the event language support is built on the delegate language support.

Language Support for Events

The syntax for defining events, and subscribing or unsubscribing from events is
an extension of the syntax for delegates.

To define an event you use the event keyword:

public event EventHandler<FileListArgs> OnProgress;

The type of the event (EventHandler<FileListArgs> in this example) must be a
delegate type. There are a number of conventions that you should follow
when declaring an event. Typically, the event delegate type has a void return.
Prefix event declarations with ‘On’.
The remainder of the name is a verb. Use past tense (as in this example) when
the event reports something that has happened. Use a present tense verb (for
example, OnClosing) to report something that is about to happen. Often, using
present tense indicates that the event supports cancellation. For example,
an OnClosing event may include an argument that would indicate if the close
operation should continue, or not.

When you want to raise the event, you call the event using the delegate invocation
syntax:

OnProgress?.Invoke(this, new FileListArgs(file));

As discussed in the section on delegates, the ?.
operator makes it easy to ensure that you do not attempt to raise the event
when there are no subscribers to that event.

You subscribe to an event by using the += operator:

EventHandler<FileListArgs> handler = (sender, eventArgs) =>
 Console.WriteLine(eventArgs.FoundFile);
lister.OnProgress += handler;

You unsubscribe using the -= operator:

lister.OnProgress -= handler;

It’s important to note that I declared a local variable for the expression that
represents the event handler. That ensures the unsubscribe removes the handler.
If, instead, you used the body of the lambda expression, you are attempting
to remove a handler that has never been attached, which does nothing.

In the next article, you’ll learn more about typical event patterns, and
different variations on this example.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/codedoc.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Documenting your code
description: Documenting your code
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8e75e317-4a55-45f2-a866-e76124171838

🔧 Documenting your code

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/494] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-execution.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Executing Expression Trees
description: Executing Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 109e0ac5-2a9c-48b4-ac68-9b6219cdbccf

Executing Expression Trees

Previous – Framework Types Supporting Expression Trees

An expression tree is a data structure that represents some code.
It is not compiled and executable code. If you want to execute
the .NET code that is represented by an expression tree, you must
convert it into executable IL instructions.

Lambda Expressions to Functions

You can convert any LambdaExpression, or any type derived from
LambdaExpression into executable IL. Other expression types
cannot be directly converted into code. This restriction has
little effect in practice. Lambda expressions are the only
types of expressions that you would want to execute by converting
to executable intermediate language (IL). (Think about what it would mean
to directly execute a ConstantExpression. Would it mean
anything useful?) Any expression tree that is a LamdbaExpression,
or a type derived from LambdaExpression can be converted to IL.
The expression type Expression<TDelegate>
is the only concrete example in the .NET Core libraries. It’s used
to represent an expression that maps to any delegate type. Because
this type maps to a delegate type, .NET can examine
the expression, and generate IL for an appropriate delegate that
matches the signature of the lambda expression.

In most cases, this creates a simple mapping between an expression,
and its corresponding delegate. For example, an expression tree that
is represented by Expression<Func<int>> would be converted to a delegate
of the type Func<int>. For a lambda expression with any return type
and argument list, there exists a delegate type that is the target type
for the executable code represented by that lamdba expression.

The LamdbaExpression type contains Compile and CompileToMethod
members that you would use to convert an expression tree to executable
code. The Compile method creates a delegate. The ConmpileToMethod
method updates a MethodBuilder object with the IL that represents
the compiled output of the expression tree. Note that CompileToMethod
is only available on the full desktop framework, not on the
.NET Core framework.

Optionally, you can also provide a DebugInfoGenerator that will
receive the symbol debugging information for the generated delegate
object. This enables you to convert the expression tree into a
delegate object, and have full debugging information about the
generated delegate.

You would convert an expression into a delegate using the following
code:

Expression<Func<int>> add = () => 1 + 2;
var func = add.Compile(); // Create Delegate
var answer = func(); // Invoke Delegate
Console.WriteLine(answer);

Notice that the delegate type is based on the expression type. You must
know the return type and the argument list if you want to use the
delegate object in a strongly typed manner. The LambdaExpression.Compile()
method returns the Delegate type. You will have to cast it to the correct
delegate type to have any compile-time tools check the argument list of
return type.

Execution and Lifetimes

You execute the code by invoking the delegate created when
you called LamdbaExpression.Compile(). You can see this above where
add.Compile() returns a delegate. Invoking that delegate, by calling
func() executes the code.

That delegate represents the code in the expression tree. You can
retain the handle to that delegate and invoke it later. You don’t need
to compile the expression tree each time you want to execute the code
it represents. (Remember that expression trees are immutable, and
compiling the same expression tree later will create a delegate that
executes the same code.)

I will caution you against trying to create any more sophisticated
caching mechanisms to increase performance by avoiding unnecessary
compile calls. Comparing two arbitrary expression trees to determine
if they represent the same algorithm will also be time consuming to
execute. You’ll likely
find that the compute time you save avoiding any extra calls to
LambdaExpression.Compile() will be more than consumed by the time executing
code that determines of two different expression trees result in
the same executable code.

Caveats

Compiling a lambda expression to a delegate and invoking that delegate
is one of the simplest operations you can perform with an expression
tree. However, even with this simple operation, there are caveats
you must be aware of.

Lambda Expressions create closures over any local variables that are
referenced in the expression. You must guarantee that any variables
that would be part of the delegate are usable at the location where
you call Compile, and when you execute the resulting delegate.

In general, the compiler will ensure that this is true. However,
if your expression accesses a variable that implements IDisposable,
it’s possible that your code might dispose of the object while it
is still held by the expression tree.

For example, this code works fine, because int does not implement
IDisposable:

private static Func<int, int> CreateBoundFunc()
{
 var constant = 5; // constant is captured by the expression tree
 Expression<Func<int, int>> expression = (b) => constant + b;
 var rVal = expression.Compile();
 return rVal;
}

The delegate has captured a reference to the local variable constant.
That variable is accessed at any time later, when the function returned
by CreateBoundFunc executes.

However, consider this (rather contrived) class that implements
IDisposable:

public class Resource : IDisposable
{
 private bool isDisposed = false;
 public int Argument
 {
 get
 {
 if (!isDisposed)
 return 5;
 else throw new ObjectDisposedException("Resource");
 }
 }

 public void Dispose()
 {
 isDisposed = true;
 }
}

If you use it in an expression as shown below, you’ll get an
ObjectDisposedException when you execute the code referenced
by the Resource.Argument property:

private static Func<int, int> CreateBoundResource()
{
 using (var constant = new Resource()) // constant is captured by the expression tree
 {
 Expression<Func<int, int>> expression = (b) => constant.Argument + b;
 var rVal = expression.Compile();
 return rVal;
 }
}

The delegate returned from this method has closed over the constant object,
which has been disposed of. (It’s been disposed, because it was declared in a
using statement.)

Now, when you execute the delegate returned from this method, you’ll have a
ObjecctDisposedException thrown at the point of execution.

It does seem strange to have a runtime error representing a compile-time
construct, but that’s the world we enter when we work with
expression trees.

There are a lot of permutations of this problem, so it’s hard
to offer general guidance to avoid it. Be careful about accessing
local variables when defining expressions, and be careful about
accessing state in the current object (represented by this) when
creating an expression tree that can be returned by a public API.

The code in your expression may reference methods or properties in
other assemblies. That assembly must be accessible when the expression
is defined, and when it is compiled, and when the resulting delegate
is invoked. You’ll be met with a ReferencedAssemblyNotFoundException
in cases where it is not present.

Summary

Expression Trees that represent lambda expressions can be compiled
to create a delegate that you can execute. This provides one
mechanism to execute the code represented by an expression tree.

The Expression Tree does represent the code that would execute for
any given construct you create. As long as the environment where
you compile and execute the code matches the environment where you
create the expression, everything works as expected. When that
doesn’t happen, the errors are very predictable, and they will
be caught in your first tests of any code using the expression
trees.

Next – Interpreting Expressions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/selecting-a-collection-class.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Selecting a Collection Class
description: Selecting a Collection Class
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0a60fca7-e082-48d4-9dda-30b0d3e67ec7

Selecting a Collection Class

Be sure to choose your collection class carefully. Using the wrong type can restrict your use of the collection. The generic and concurrent versions of the collections are to be preferred because of their greater type safety and other improvements. In general, avoid using the types in the System.Collections namespace unless you are specifically targeting .NET Framework version 1.1.

Consider the following questions:

		Do you need a sequential list where the element is typically discarded after its value is retrieved?
		If yes, consider using the System.Collections.Generic.Queue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] generic class if you need first-in, first-out (FIFO) behavior. Consider using the System.Collections.Generic.Stack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] generic class if you need last-in, first-out (LIFO) behavior. For safe access from multiple threads, use the concurrent versions System.Collections.Concurrent.ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and System.Collections.Concurrent.ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1].

		If not, consider using the other collections.

		Do you need to access the elements in a certain order, such as FIFO, LIFO, or random?
		The System.Collections.Generic.Queue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] or System.Collections.Concurrent.ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] generic class offer FIFO access. For more information, see When to Use a Thread-Safe Collection.

		The System.Collections.Generic.Stack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] orSystem.Collections.Concurrent.ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] generic class offer LIFO access. For more information, see When to Use a Thread-Safe Collection.

		The System.Collections.Generic.LinkedList<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] generic class allows sequential access either from the head to the tail, or from the tail to the head.

		Do you need to access each element by index?
		The System.Collections.Specialized.StringCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringCollection] class and the System.Collections.Generic.List<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] generic class offer access to their elements by the zero-based index of the element.

		The System.Collections.Specialized.ListDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.ListDictionary] and System.Collections.Specialized.StringDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringDictionary] classes, and the System.Collections.Generic.Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and System.Collections.Generic.SortedDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] generic classes offer access to their elements by the key of the element.

		The System.Collections.Specialized.NameObjectCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameObjectCollectionBase] and System.Collections.Specialized.NameValueCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameValueCollection] classes, and the System.Collections.ObjectModel.KeyedCollection<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] and System.Collections.Generic.SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes offer access to their elements by either the zero-based index or the key of the element.

		Will each element contain one value, a combination of one key and one value, or a combination of one key and multiple values?
		One value: Use any of the collections based on the System.Collections.Generic.IList<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1] generic interface.

		One key and one value: Use any of the collections based on the System.Collections.Generic.IDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface.

		One value with embedded key: Use the System.Collections.ObjectModel.KeyedCollection<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] generic class.

		One key and multiple values: Use the System.Collections.Specialized.NameValueCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameValueCollection] class.

		Do you need to sort the elements differently from how they were entered?
		The System.Collections.Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class sorts its elements by their hash codes.

		The System.Collections.Generic.SortedDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] and System.Collections.Generic.SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes sort their elements by the key, based on implementations of the System.Collections.IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer] interface and the System.Collections.Generic.IComparer<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] generic interface.

		System.Collections.Generic.List<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] generic class, provides a Sort method that takes an implementation of the IComparer<T> generic interface as a parameter.

		Do you need collections that accept only strings?
		StringCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringCollection] (based on System.Collections.IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList]) and StringDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringDictionary] (based on System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]) are in the System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized] namespace.

		In addition, you can use any of the generic collection classes in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace as strongly typed string collections by specifying the String class for their generic type arguments.

LINQ to Objects

LINQ to Objects enables developers to use LINQ queries to access in-memory objects as long as the object type implements System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1]. LINQ queries provide a common pattern for accessing data, are typically more concise and readable than standard foreach loops, and provide filtering, ordering, and grouping capabilities. For more information, see Language Integrated Query (LINQ).

See Also

System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]

System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized]

System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/commonly-used-collection-types.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Commonly Used Collection Types
description: Commonly Used Collection Types
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 55861611-1e40-4cc2-9ec5-0b2df4ba6c0c

Commonly Used Collection Types

Collection types are the common variations of data collections, such as hash tables, queues, stacks, bags, dictionaries, and lists.

Collections are based on the ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection] interface, the IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList] interface, the IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface, or their generic counterparts. The IList interface and the IDictionary interface are both derived from the ICollection interface; therefore, all collections are based on the ICollection interface either directly or indirectly. In collections based on the IList interface (such as Array [https://docs.microsoft.com/dotnet/core/api/System.Array], ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList], or List<T>) [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] or directly on the ICollection interface (such as Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue], ConcurrentQueue<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1], Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack], ConcurrentStack<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] or LinkedList<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1]), every element contains only a value. In collections based on the IDictionary interface (such as the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] and SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] classes, the Dictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and SortedList<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes), or the ConcurrentDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] classes, every element contains both a key and a value. The KeyedCollection<TKey, TItem> [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] class is unique because it is a list of values with keys embedded within the values and, therefore, it behaves like a list and like a dictionary.

Generic collections are the best solution to strong typing. However, if your language does not support generics, the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace includes base collections, such as CollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.CollectionBase], ReadOnlyCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.ReadOnlyCollectionBase], and DictionaryBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.DictionaryBase], which are abstract base classes that can be extended to create collection classes that are strongly typed. When efficient multi-threaded collection access is required, use the generic collections in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace.

Collections can vary, depending on how the elements are stored, how they are sorted, how searches are performed, and how comparisons are made. The Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue] class and the Queue<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] generic class provide first-in-first-out lists, while the Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack] class and the Stack<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] generic class provide last-in-first-out lists. The SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class and the SortedList<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic class provide sorted versions of the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class and the Dictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] generic class. The elements of a Hashtable or a Dictionary<TKey, TValue> are accessible only by the key of the element, but the elements of a SortedList or a KeyedCollection<TKey, TItem> [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] are accessible either by the key or by the index of the element. The indexes in all collections are zero-based, except Array [https://docs.microsoft.com/dotnet/core/api/System.Array], which allows arrays that are not zero-based.

The LINQ to Objects feature allows you to use LINQ queries to access in-memory objects as long as the object type implements IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or IEnumerable<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1]. LINQ queries provide a common pattern for accessing data; are typically more concise and readable than standard foreach loops; and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.

Related Topics

Title | Description
—– | ———–
Collections and Data Structures | Discusses the various collection types available in the .NET Framework, including stacks, queues, lists, arrays, and dictionaries.
Hashtable and Dictionary Collection Types | Describes the features of generic and non-generic hash-based dictionary types.
Sorted Collection Types | Describes sorted collections performance and characteristics.

Reference

System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]

System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]

System.Collections.ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection]

System.Collections.Generic.ICollection<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ICollection-1]

System.Collections.IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList]

System.Collections.Generic.IList<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1]

System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]

System.Collections.Generic.IDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]

System.Linq [https://docs.microsoft.com/dotnet/core/api/System.Linq]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-use-foreach-to-remove.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Use ForEach to Remove Items in a BlockingCollection”
description: “How to: Use ForEach to Remove Items in a BlockingCollection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f3db5825-b5c9-4e8b-80bc-e11760d9523e

How to: Use ForEach to Remove Items in a BlockingCollection

In addition to taking items from a BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] by using the Take and TryTake methods, you can also use a foreach loop to remove items until adding is completed and the collection is empty. This is called a mutating enumeration or consuming enumeration because, unlike a typical foreach loop, this enumerator modifies the source collection by removing items.

Example

The following example shows how to remove all the items in a BlockingCollection<T> by using a foreach loop.

using System;
using System.Collections.Concurrent;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;

class Example
{
 // Limit the collection size to 2000 items at any given time.
 // Set itemsToProduce to > 500 to hit the limit.
 const int upperLimit = 1000;

 // Adjust this number to see how it impacts the producing-consuming pattern.
 const int itemsToProduce = 100;

 static BlockingCollection<long> collection = new BlockingCollection<long>(upperLimit);

 // Variables for diagnostic output only.
 static Stopwatch sw = new Stopwatch();
 static int totalAdditions = 0;

 // Counter for synchronizing producers.
 static int producersStillRunning = 2;

 static void Main()
 {
 // Start the stopwatch.
 sw.Start();

 // Queue the Producer threads. Store in an array
 // for use with ContinueWhenAll
 Task[] producers = new Task[2];
 producers[0] = Task.Run(() => RunProducer("A", 0));
 producers[1] = Task.Run(() => RunProducer("B", itemsToProduce));

 // Create a cleanup task that will call CompleteAdding after
 // all producers are done adding items.
 Task cleanup = Task.Factory.ContinueWhenAll(producers, (p) => collection.CompleteAdding());

 // Queue the Consumer thread. Put this call
 // before Parallel.Invoke to begin consuming as soon as
 // the producers add items.
 Task.Run(() => RunConsumer());

 // Keep the console window open while the
 // consumer thread completes its output.
 Console.ReadKey(true);
 }

 static void RunProducer(string ID, int start)
 {

 int additions = 0;
 for (int i = start; i < start + itemsToProduce; i++)
 {
 // The data that is added to the collection.
 long ticks = sw.ElapsedTicks;

 // Display additions and subtractions.
 Console.WriteLine("{0} adding tick value {1}. item# {2}", ID, ticks, i);

 if(!collection.IsAddingCompleted)
 collection.Add(ticks);

 // Counter for demonstration purposes only.
 additions++;

 // Uncomment this line to
 // slow down the producer threads ing.
 Thread.SpinWait(100000);
 }

 Interlocked.Add(ref totalAdditions, additions);
 Console.WriteLine("{0} is done adding: {1} items", ID, additions);
 }

 static void RunConsumer()
 {
 // GetConsumingEnumerable returns the enumerator for the
 // underlying collection.
 int subtractions = 0;
 foreach (var item in collection.GetConsumingEnumerable())
 {
 Console.WriteLine("Consuming tick value {0} : item# {1} : current count = {2}",
 item.ToString("D18"), subtractions++, collection.Count);
 }

 Console.WriteLine("Total added: {0} Total consumed: {1} Current count: {2} ",
 totalAdditions, subtractions, collection.Count);
 sw.Stop();

 Console.WriteLine("Press any key to exit");
 }
}

This example uses a foreach loop with the BlockingCollection<T>.GetConsumingEnumerable method in the consuming thread, which causes each item to be removed from the collection as it is enumerated. BlockingCollection<T> limits the maximum number of items that are in the collection at any time. Enumerating the collection in this way blocks the consumer thread if no items are available or if the collection is empty. In this example blocking is not a concern because the producer thread adds items faster than they can be consumed.

There is no guarantee that the items are enumerated in the same order in which they are added by the producer threads.

To enumerate the collection without modifying it, just use foreach without the GetConsumingEnumerable method. However, it is important to understand that this kind of enumeration represents a snapshot of the collection at a precise point in time. If other threads are adding or removing items concurrently while you are executing the loop, then the loop might not represent the actual state of the collection.

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

BlockingCollection Overview

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-create-an-object-pool.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Create an Object Pool by Using a ConcurrentBag”
description: “How to: Create an Object Pool by Using a ConcurrentBag”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 87a6ada1-ee27-423d-b587-82e7cb45361b

How to: Create an Object Pool by Using a ConcurrentBag

This example shows how to use a concurrent bag to implement an object pool. Object pools can improve application performance in situations where you require multiple instances of a class and the class is expensive to create or destroy. When a client program requests a new object, the object pool first attempts to provide one that has already been created and returned to the pool. If none is available, only then is a new object created.

ConcurrentBag

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] is used to store the objects because it supports fast insertion and removal, especially when the same thread is both adding and removing items. This example could be further augmented to be built around a IProducerConsumerCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1], which the bag data structure implements, as do ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1].

Example

using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

namespace ObjectPoolExample
{
 public class ObjectPool<T>
 {
 private ConcurrentBag<T> _objects;
 private Func<T> _objectGenerator;

 public ObjectPool(Func<T> objectGenerator)
 {
 if (objectGenerator == null) throw new ArgumentNullException("objectGenerator");
 {
 _objects = new ConcurrentBag<T>();
 _objectGenerator = objectGenerator;
 }
 }

 public T GetObject()
 {
 T item;
 if (_objects.TryTake(out item)) return item;
 {
 return _objectGenerator();
 }
 }

 public void PutObject(T item)
 {
 _objects.Add(item);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 CancellationTokenSource cts = new CancellationTokenSource();

 // Create an opportunity for the user to cancel.
 Task.Run(() =>
 {
 if (Console.ReadKey().KeyChar == 'c' || Console.ReadKey().KeyChar == 'C')
 cts.Cancel();
 });

 ObjectPool<MyClass> pool = new ObjectPool<MyClass> (() => new MyClass());

 // Create a high demand for MyClass objects.
 Parallel.For(0, 1000000, (i, loopState) =>
 {
 MyClass mc = pool.GetObject();
 Console.CursorLeft = 0;
 // This is the bottleneck in our application. All threads in this loop
 // must serialize their access to the static Console class.
 Console.WriteLine("{0:####.####}", mc.GetValue(i));

 pool.PutObject(mc);
 if (cts.Token.IsCancellationRequested)
 loopState.Stop();
 });
 Console.WriteLine("Press the Enter key to exit.");
 Console.ReadLine();
 cts.Dispose();
 }
 }

 // A toy class that requires some resources to create.
 // You can experiment here to measure the performance of the
 // object pool vs. ordinary instantiation.
 class MyClass
 {
 public int[] Nums {get; set;}
 public double GetValue(long i)
 {
 return Math.Sqrt(Nums[i]);
 }
 public MyClass()
 {
 Nums = new int[1000000];
 Random rand = new Random();
 for (int i = 0; i < Nums.Length; i++)
 Nums[i] = rand.Next();
 }
 }
}

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/comparisons-and-sorts-within-collections.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Comparisons and Sorts Within Collections
description: Comparisons and Sorts Within Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c7b7c005-628d-427a-91ad-af0c3958c00e

Comparisons and Sorts Within Collections

The System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] classes perform comparisons in almost all the processes involved in managing collections, whether searching for the element to remove or returning the value of a key-and-value pair.

Collections typically utilize an equality comparer and/or an ordering comparer. Two constructs are used for comparisons.

Checking for equality

Methods such as Contains, IndexOf, LastIndexOf, and Remove use an equality comparer for the collection elements. If the collection is generic, items are compared for equality according to the following guidelines:

		If type T implements the IEquatable<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1] generic interface, then the equality comparer is the Equals method of that interface.

		If type T does not implement IEquatable<T>, Object.Equals is used.

In addition, some constructor overloads for dictionary collections accept an IEqualityComparer

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEqualityComparer-1] implementation, which is used to compare keys for equality.

Determining sort order

Methods such as BinarySearch and Sort use an ordering comparer for the collection elements. The comparisons can be between elements of the collection, or between an element and a specified value. For comparing objects, there is the concept of a default comparer and an explicit comparer.

The default comparer relies on at least one of the objects being compared to implement the IComparable interface. It is a good practice to implement IComparable on all classes are used as values in a list collection or as keys in a dictionary collection. For a generic collection, equality comparison is determined according to the following:

		If type T implements the System.IComparable<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1] generic interface, then the default comparer is the CompareTo(T) method of that interface.

		If type T implements the non-generic System.IComparable [https://docs.microsoft.com/dotnet/core/api/System.IComparable] interface, then the default comparer is the CompareTo(Object) method of that interface.

		If type T doesn’t implement either interface, then there is no default comparer, and a comparer or comparison delegate must be provided explicitly.

To provide explicit comparisons, some methods accept an IComparer implementation as a parameter. For example, the List<T>.Sort method accepts an System.Collections.Generic.IComparer

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] implementation.

Equality and sort example

The following code demonstrates an implementation of IEquatable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1] and IComparable<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1] on a simple business object. In addition, when the object is stored in a list and sorted, you will see that calling the Sort() method results in the use of the default comparer for the ‘Part’ type, and the Sort(Comparison<T>) method implemented by using an anonymous method.

C#

using System;
using System.Collections.Generic;
// Simple business object. A PartId is used to identify the type of part
// but the part name can change.
public class Part : IEquatable<Part> , IComparable<Part>
{
 public string PartName { get; set; }

 public int PartId { get; set; }

 public override string ToString()
 {
 return "ID: " + PartId + " Name: " + PartName;
 }
 public override bool Equals(object obj)
 {
 if (obj == null) return false;
 Part objAsPart = obj as Part;
 if (objAsPart == null) return false;
 else return Equals(objAsPart);
 }
 public int SortByNameAscending(string name1, string name2)
 {

 return name1.CompareTo(name2);
 }

 // Default comparer for Part type.
 public int CompareTo(Part comparePart)
 {
 // A null value means that this object is greater.
 if (comparePart == null)
 return 1;

 else
 return this.PartId.CompareTo(comparePart.PartId);
 }
 public override int GetHashCode()
 {
 return PartId;
 }
 public bool Equals(Part other)
 {
 if (other == null) return false;
 return (this.PartId.Equals(other.PartId));
 }
 // Should also override == and != operators.

}
public class Example
{
 public static void Main()
 {
 // Create a list of parts.
 List<Part> parts = new List<Part>();

 // Add parts to the list.
 parts.Add(new Part() { PartName = "regular seat", PartId = 1434 });
 parts.Add(new Part() { PartName= "crank arm", PartId = 1234 });
 parts.Add(new Part() { PartName = "shift lever", PartId = 1634 }); ;
 // Name intentionally left null.
 parts.Add(new Part() { PartId = 1334 });
 parts.Add(new Part() { PartName = "banana seat", PartId = 1444 });
 parts.Add(new Part() { PartName = "cassette", PartId = 1534 });

 // Write out the parts in the list. This will call the overridden
 // ToString method in the Part class.
 Console.WriteLine("\nBefore sort:");
 foreach (Part aPart in parts)
 {
 Console.WriteLine(aPart);
 }

 // Call Sort on the list. This will use the
 // default comparer, which is the Compare method
 // implemented on Part.
 parts.Sort();

 Console.WriteLine("\nAfter sort by part number:");
 foreach (Part aPart in parts)
 {
 Console.WriteLine(aPart);
 }

 // This shows calling the Sort(Comparison(T) overload using
 // an anonymous method for the Comparison delegate.
 // This method treats null as the lesser of two values.
 parts.Sort(delegate(Part x, Part y)
 {
 if (x.PartName == null && y.PartName == null) return 0;
 else if (x.PartName == null) return -1;
 else if (y.PartName == null) return 1;
 else return x.PartName.CompareTo(y.PartName);
 });

 Console.WriteLine("\nAfter sort by name:");
 foreach (Part aPart in parts)
 {
 Console.WriteLine(aPart);
 }

 /*

 Before sort:
 ID: 1434 Name: regular seat
 ID: 1234 Name: crank arm
 ID: 1634 Name: shift lever
 ID: 1334 Name:
 ID: 1444 Name: banana seat
 ID: 1534 Name: cassette

 After sort by part number:
 ID: 1234 Name: crank arm
 ID: 1334 Name:
 ID: 1434 Name: regular seat
 ID: 1444 Name: banana seat
 ID: 1534 Name: cassette
 ID: 1634 Name: shift lever

 After sort by name:
 ID: 1334 Name:
 ID: 1444 Name: banana seat
 ID: 1534 Name: cassette
 ID: 1234 Name: crank arm
 ID: 1434 Name: regular seat
 ID: 1634 Name: shift lever

 */

 }
}

See Also

IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer]

IEquatable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1]

IComparer

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1]

IComparable [https://docs.microsoft.com/dotnet/core/api/System.IComparable]

IComparable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Collections and Data Structures
description: Collections and Data Structures
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9e70255a-c02a-4046-86b7-10c84bab2d38

Collections and Data Structures

Similar data can often be handled more efficiently when stored and manipulated as a collection. You can use the System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array] class or the classes in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections], System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic], or System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespaces to add, remove, and modify either individual elements or a range of elements in a collection.

There are two main types of collections; generic collections and non-generic collections. Generic collections are type-safe at compile time. Because of this, generic collections typically offer better performance. Generic collections accept a type parameter when they are constructed and do not require that you cast to and from the Object [https://docs.microsoft.com/dotnet/core/api/System.Object] type when you add or remove items from the collection. Non-generic collections store items as Object [https://docs.microsoft.com/dotnet/core/api/System.Object] and require casting. You may see non-generic collections in older code.

The collections in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace provide efficient thread-safe operations for accessing collection items from multiple threads.

Common collection features

All collections provide methods for adding, removing or finding items in the collection. In addition, all collections that directly or indirectly implement the ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection] interface or the ICollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ICollection-1] interface share these features:

		The ability to enumerate the collection

.NET Framework collections either implement System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] to enable the collection to be iterated through. An enumerator can be thought of as a movable pointer to any element in the collection. The foreach, in statement (C#) uses the enumerator exposed by the GetEnumerator method and hides the complexity of manipulating the enumerator. In addition, any collection that implements System.Collections.Generic.IEnumerable<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] is considered a queryable type and can be queried with LINQ. LINQ queries provide a common pattern for accessing data. They are typically more concise and readable than standard for each loops, and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.

		The ability to copy the collection contents to an array

All collections can be copied to an array using the CopyTo method; however, the order of the elements in the new array is based on the sequence in which the enumerator returns them. The resulting array is always one-dimensional with a lower bound of zero.

In addition, many collection classes contain the following features:

		Capacity and Count properties

The capacity of a collection is the number of elements it can contain. The count of a collection is the number of elements it actually contains. Some collections hide the capacity or the count or both.

Most collections automatically expand in capacity when the current capacity is reached. The memory is reallocated, and the elements are copied from the old collection to the new one. This reduces the code required to use the collection; however, the performance of the collection might be negatively affected. For example, for List

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], if Count is less than Capacity, adding an item is an O(1) operation. If the capacity needs to be increased to accommodate the new element, adding an item becomes an O(n) operation, where n is Count. The best way to avoid poor performance caused by multiple reallocations is to set the initial capacity to be the estimated size of the collection.

A BitArray [https://docs.microsoft.com/dotnet/core/api/System.Collections.BitArray] is a special case; its capacity is the same as its length, which is the same as its count.

		A consistent lower bound

The lower bound of a collection is the index of its first element. All indexed collections in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespaces have a lower bound of zero, meaning they are 0-indexed. Array [https://docs.microsoft.com/dotnet/core/api/System.Array] has a lower bound of zero by default, but a different lower bound can be defined when creating an instance of the Array class using Array.CreateInstance.

		Synchronization for access from multiple threads (System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] classes only).

Non-generic collection types in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace provide some thread safety with synchronization; typically exposed through the SyncRoot and IsSynchronized members. These collections are not thread-safe by default. If you require scalable and efficient multi-threaded access to a collection, use one of the classes in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace or consider using an immutable collection. For more information, see Thread-Safe Collections.

Choosing a collection

In general, you should use generic collections. The following table describes some common collection scenarios and the collection classes you can use for those scenarios. If you are new to generic collections, this table will help you choose the generic collection that works the best for your task.

I want to… | Generic collection option(s) | Non-generic collection option(s)
———- | —————————- | ——————————–
Store items as key/value pairs for quick look-up by key | System.Collections.Generic.Dictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] | Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable]
Access items by index | System.Collections.Generic.List<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] | System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array], System.Collections.ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList]
Use items first-in-first-out (FIFO) | System.Collections.Generic.Queue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] | System.Collections.Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue]
Use data Last-In-First-Out (LIFO) | System.Collections.Generic.Stack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] | System.Collections.Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack]
Access items sequentially | System.Collections.Generic.LinkedList<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] | No recommendation
Receive notifications when items are removed or added to the collection. (implements INotifyPropertyChanged [https://docs.microsoft.com/dotnet/core/api/System.ComponentModel.INotifyPropertyChanged] and INotifyCollectionChanged [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.INotifyCollectionChanged]) | System.Collections.ObjectModel.ObservableCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.ObservableCollection-1] | No recommendation
Use a sorted collection | System.Collections.Generic.SortedList<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] | System.Collections.SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList]
Manage efficient storage and access of unique elements | System.Collections.Generic.HashSet<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1], System.Collections.Generic.SortedSet<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedSet-1] | No recommendation

Related Topics

Title | Description
—– | ———–
Selecting a Collection Class | Describes the different collections and helps you select one for your scenario.
Commonly Used Collection Types | Describes commonly used generic and nongeneric collection types such as System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array], System.Collections.Generic.List

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], and System.Collections.Generic.Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2].
When to Use Generic Collections | Discusses the use of generic collection types.
Comparisons and Sorts Within Collections | Discusses the use of equality comparisons and sorting comparisons in collections.
Sorted Collection Types | Describes sorted collections performance and characteristics.
Hashtable and Dictionary Collection Types | Describes the features of generic and non-generic hash-based dictionary types.
Thread-Safe Collections | Describes collection types such as System.Collections.Concurrent.BlockingCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] and System.Collections.Concurrent.ConcurrentBag<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] that support safe and efficient concurrent access from multiple threads.

Reference

System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array]

System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]

System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized]

System.Linq [https://docs.microsoft.com/dotnet/core/api/System.Linq]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/blockingcollection-overview.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: BlockingCollection Overview
description: BlockingCollection Overview
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a1a867de-53c2-49ca-9a1a-e5770a942724

BlockingCollection Overview

BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] is a thread-safe collection class that provides the following features:

		An implementation of the Producer-Consumer pattern.

		Thread-safe addition and removal of items from a collection.

		Optional maximum capacity.

		Insertion and removal operations that block when collection is empty or full.

		Insertion and removal “try” operations that do not block or that block up to a specified period of time.

		Encapsulates any collection type that implements IProducerConsumerCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1].

		Cancellation with cancellation tokens.

		Two kinds of enumeration with foreach:
		Read-only enumeration.

		Enumeration that removes items as they are enumerated.

Bounding and Blocking Support

BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] supports bounding and blocking. Bounding means you can set the maximum capacity of the collection. Bounding is important in certain scenarios because it enables you to control the maximum size of the collection in memory, and it prevents the producing threads from moving too far ahead of the consuming threads.

Multiple threads or tasks can add items to the collection concurrently, and if the collection reaches its specified maximum capacity, the producing threads will block until an item is removed. Multiple consumers can remove items concurrently, and if the collection becomes empty, the consuming threads will block until a producer adds an item. A producing thread can call CompleteAdding to indicate that no more items will be added. Consumers monitor the IsCompleted property to know when the collection is empty and no more items will be added. The following example shows a simple BlockingCollection with a bounded capacity of 100. A producer task adds items to the collection as long as some external condition is true, and then calls CompleteAdding. The consumer task takes items until the IsCompleted property is true.

// A bounded collection. It can hold no more
// than 100 items at once.
BlockingCollection<Data> dataItems = new BlockingCollection<Data>(100);

// A simple blocking consumer with no cancellation.
Task.Run(() =>
{
 while (!dataItems.IsCompleted)
 {

 Data data = null;
 // Blocks if number.Count == 0
 // IOE means that Take() was called on a completed collection.
 // Some other thread can call CompleteAdding after we pass the
 // IsCompleted check but before we call Take.
 // In this example, we can simply catch the exception since the
 // loop will break on the next iteration.
 try
 {
 data = dataItems.Take();
 }
 catch (InvalidOperationException) { }

 if (data != null)
 {
 Process(data);
 }
 }
 Console.WriteLine("\r\nNo more items to take.");
});

// A simple blocking producer with no cancellation.
Task.Run(() =>
{
 while (moreItemsToAdd)
 {
 Data data = GetData();
 // Blocks if numbers.Count == dataItems.BoundedCapacity
 dataItems.Add(data);
 }
 // Let consumer know we are done.
 dataItems.CompleteAdding();
});

For a complete example, see How to: Add and Take Items Individually from a BlockingCollection.

Timed Blocking Operations

In timed blocking TryAdd and TryTake operations on bounded collections, the method tries to add or take an item. If an item is available it is placed into the variable that was passed in by reference, and the method returns true. If no item is retrieved after a specified time-out period the method returns false. The thread is then free to do some other useful work before trying again to access the collection. For an example of timed blocking access, see the second example in How to: Add and Take Items Individually from a BlockingCollection.

Cancelling Add and Take Operations

Add and Take operations are typically performed in a loop. You can cancel a loop by passing in a CancellationToken to the TryAdd or TryTake method, and then checking the value of the token’s IsCancellationRequested property on each iteration. If the value is true, then it is up to you to respond the cancellation request by cleaning up any resources and exiting the loop. The following example shows an overload of TryAdd that takes a cancellation token, and the code that uses it:

BlockingCollection<string> bc = new BlockingCollection<string>(new ConcurrentBag<string>(), 1000);

Specifying the Collection Type

When you create a BlockingCollection<T>;, you can specify not only the bounded capacity but also the type of collection to use. For example, you could specify a ConcurrentQueue

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] for first in-first out (FIFO) behavior, or a ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] for last in-first out (LIFO) behavior. You can use any collection class that implements the IProducerConsumerCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] interface. The default collection type for BlockingCollection<T> is ConcurrentQueue<T>. The following code example shows how to create a BlockingCollection<T> of strings that has a capacity of 1000 and uses a ConcurrentBag<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1]:

BlockingCollection<string> bc = new BlockingCollection<string>(new ConcurrentBag<string>(), 1000);

IEnumerable Support

BlockingCollection<T> provides a GetConsumingEnumerable method that enables consumers to use a foreach statement to remove items until the collection is completed, which means it is empty and no more items will be added. For more information, see How to: Use ForEach to Remove Items in a BlockingCollection.

Using Many BlockingCollections As One

For scenarios in which a consumer needs to take items from multiple collections simultaneously, you can create arrays of BlockingCollection<T> and use the static methods such as TakeFromAny and AddToAny that will add to or take from any of the collections in the array. If one collection is blocking, the method immediately tries another until it finds one that can perform the operation. For more information, see How to: Use Arrays of Blocking Collections in a Pipeline.

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Collections and Data Structures

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/when-to-use-a-thread-safe-collection.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: When to Use a Thread-Safe Collection
description: When to Use a Thread-Safe Collection
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a2a42d44-f6a5-4f16-9000-026221d66349

When to Use a Thread-Safe Collection

The ConcurrentQueue, ConcurrentStack, ConcurrentDictionary, ConcurrentBag, and BlockingCollection collection types are specially designed to support multi-threaded add and remove operations. To achieve thread-safety, these new types use various kinds of efficient locking and lock-free synchronization mechanisms. Synchronization adds overhead to an operation. The amount of overhead depends on the kind of synchronization that is used, the kind of operations that are performed, and other factors such as the number of threads that are trying to concurrently access the collection.

In some scenarios, synchronization overhead is negligible and enables the multi-threaded type to perform significantly faster and scale far better than its non-thread-safe equivalent when protected by an external lock. In other scenarios, the overhead can cause the thread-safe type to perform and scale about the same or even more slowly than the externally-locked, non-thread-safe version of the type.

The following sections provide general guidance about when to use a thread-safe collection versus its non-thread-safe equivalent that has a user-provided lock around its read and write operations. Because performance may vary depending on many factors, the guidance is not specific and is not necessarily valid in all circumstances. If performance is very important, then the best way to determine which collection type to use is to measure performance based on representative computer configurations and loads. This document uses the following terms:

Pure producer-consumer scenario: Any given thread is either adding or removing elements, but not both.

Mixed producer-consumer scenario: Any given thread is both adding and removing elements.

Speedup: Faster algorithmic performance relative to another type in the same scenario.

Scalability: The increase in performance that is proportional to the number of cores on the computer. An algorithm that scales performs faster on eight cores than it does on two cores.

ConcurrentQueue<

T>

 vs. Queue<

T>

In pure producer-consumer scenarios, where the processing time for each element is very small (a few instructions), then System.Collections.Concurrent.ConcurrentQueue

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] can offer modest performance benefits over a System.Collections.Generic.Queue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] that has an external lock. In this scenario, ConcurrentQueue<T> performs best when one dedicated thread is queuing and one dedicated thread is de-queuing. If you do not enforce this rule, then Queue<T> might even perform slightly faster than ConcurrentQueue<T> on computers that have multiple cores.

When processing time is around 500 FLOPS (floating point operations) or more, then the two-thread rule does not apply to ConcurrentQueue<T>, which then has very good scalability. Queue<T> does not scale well in this scenario.

In mixed producer-consumer scenarios, when the processing time is very small, a Queue<T> that has an external lock scales better than ConcurrentQueue<T> does. However, when processing time is around 500 FLOPS or more, then the ConcurrentQueue<T> scales better.

ConcurrentStack vs. Stack

In pure producer-consumer scenarios, when processing time is very small, then System.Collections.Concurrent.ConcurrentStack

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] and System.Collections.Generic.Stack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] that has an external lock will probably perform about the same with one dedicated pushing thread and one dedicated popping thread. However, as the number of threads increases, both types slow down because of increased contention, and Stack<T> might perform better than ConcurrentStack<T>. When processing time is around 500 FLOPS or more, then both types scale at about the same rate.

In mixed producer-consumer scenarios, ConcurrentStack<T> is faster for both small and large workloads.

The use of the PushRange and TryPopRange may greatly speed up access times.

ConcurrentDictionary vs. Dictionary

In general, use a System.Collections.Concurrent.ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] in any scenario where you are adding and updating keys or values concurrently from multiple threads. In scenarios that involve frequent updates and relatively few reads, the ConcurrentDictionary<TKey, TValue> generally offers modest benefits. In scenarios that involve many reads and many updates, the ConcurrentDictionary<TKey, TValue> generally is significantly faster on computers that have any number of cores.

In scenarios that involve frequent updates, you can increase the degree of concurrency in the ConcurrentDictionary<TKey, TValue> and then measure to see whether performance increases on computers that have more cores. If you change the concurrency level, avoid global operations as much as possible.

If you are only reading key or values, the System.Collections.Generic.Dictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] is faster because no synchronization is required if the dictionary is not being modified by any threads.

ConcurrentBag

In pure producer-consumer scenarios, System.Collections.Concurrent.ConcurrentBag

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] will probably perform more slowly than the other concurrent collection types.

In mixed producer-consumer scenarios, ConcurrentBag<T> is generally much faster and more scalable than any other concurrent collection type for both large and small workloads.

BlockingCollection

When bounding and blocking semantics are required, System.Collections.Concurrent.BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] will probably perform faster than any custom implementation. It also supports rich cancellation, enumeration, and exception handling.

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-add-and-remove-items.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Add and Remove Items from a ConcurrentDictionary”
description: “How to: Add and Remove Items from a ConcurrentDictionary”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b7c04a5f-a8e6-42ae-8c84-0e1ae18896eb

How to: Add and Remove Items from a ConcurrentDictionary

This example shows how to add, retrieve, update, and remove items from a System.Collections.Concurrent.ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]. This collection class is a thread-safe implementation. We recommend that you use it whenever multiple threads might be attempting to access the elements concurrently.

ConcurrentDictionary<TKey, TValue> provides several convenience methods that make it unnecessary for code to first check whether a key exists before it attempts to add or remove data. The following table lists these convenience methods and describes when to use them.

Method | Use when...
—— | ———–
AddOrUpdate | You want to add a new value for a specified key and, if the key already exists, you want to replace its value.
GetOrAdd | You want to retrieve the existing value for a specified key and, if the key does not exist, you want to specify a key/value pair.
TryAdd, TryGetValue, TryUpdate, TryRemove | You want to add, get, update, or remove a key/value pair, and, if the key already exists or the attempt fails for any other reason, you want to take some alternative action.

Example

namespace DictionaryHowTo
{
 using System;
 using System.Collections.Concurrent;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Threading;
 using System.Threading.Tasks;

 // The type of the Value to store in the dictionary:
 class CityInfo : IEqualityComparer<CityInfo>
 {
 public string Name { get; set; }
 public DateTime lastQueryDate { get; set; }
 public decimal Longitude { get; set; }
 public decimal Latitude { get; set; }
 public int[] RecentHighTemperatures { get; set; }

 public CityInfo(string name, decimal longitude, decimal latitude, int[] temps)
 {
 Name = name;
 lastQueryDate = DateTime.Now;
 Longitude = longitude;
 Latitude = latitude;
 RecentHighTemperatures = temps;
 }

 public CityInfo()
 {
 }

 public CityInfo(string key)
 {
 Name = key;
 // MaxValue means "not initialized"
 Longitude = Decimal.MaxValue;
 Latitude = Decimal.MaxValue;
 lastQueryDate = DateTime.Now;
 RecentHighTemperatures = new int[] { 0 };

 }
 public bool Equals(CityInfo x, CityInfo y)
 {
 return x.Name == y.Name && x.Longitude == y.Longitude && x.Latitude == y.Latitude;
 }

 public int GetHashCode(CityInfo obj)
 {
 CityInfo ci = (CityInfo)obj;
 return ci.Name.GetHashCode();
 }
 }

 class Program
 {
 // Create a new concurrent dictionary.
 static ConcurrentDictionary<string, CityInfo> cities = new ConcurrentDictionary<string, CityInfo>();

 static void Main(string[] args)
 {
 CityInfo[] data =
 {
 new CityInfo(){ Name = "Boston", Latitude = 42.358769M, Longitude = -71.057806M, RecentHighTemperatures = new int[] {56, 51, 52, 58, 65, 56,53}},
 new CityInfo(){ Name = "Miami", Latitude = 25.780833M, Longitude = -80.195556M, RecentHighTemperatures = new int[] {86,87,88,87,85,85,86}},
 new CityInfo(){ Name = "Los Angeles", Latitude = 34.05M, Longitude = -118.25M, RecentHighTemperatures = new int[] {67,68,69,73,79,78,78}},
 new CityInfo(){ Name = "Seattle", Latitude = 47.609722M, Longitude = -122.333056M, RecentHighTemperatures = new int[] {49,50,53,47,52,52,51}},
 new CityInfo(){ Name = "Toronto", Latitude = 43.716589M, Longitude = -79.340686M, RecentHighTemperatures = new int[] {53,57, 51,52,56,55,50}},
 new CityInfo(){ Name = "Mexico City", Latitude = 19.432736M, Longitude = -99.133253M, RecentHighTemperatures = new int[] {72,68,73,77,76,74,73}},
 new CityInfo(){ Name = "Rio de Janiero", Latitude = -22.908333M, Longitude = -43.196389M, RecentHighTemperatures = new int[] {72,68,73,82,84,78,84}},
 new CityInfo(){ Name = "Quito", Latitude = -0.25M, Longitude = -78.583333M, RecentHighTemperatures = new int[] {71,69,70,66,65,64,61}}
 };

 // Add some key/value pairs from multiple threads.
 Task[] tasks = new Task[2];

 tasks[0] = Task.Run(() =>
 {
 for (int i = 0; i < 2; i++)
 {
 if (cities.TryAdd(data[i].Name, data[i]))
 Console.WriteLine("Added {0} on thread {1}", data[i],
 Thread.CurrentThread.ManagedThreadId);
 else
 Console.WriteLine("Could not add {0}", data[i]);
 }
 });

 tasks[1] = Task.Run(() =>
 {
 for (int i = 2; i < data.Length; i++)
 {
 if (cities.TryAdd(data[i].Name, data[i]))
 Console.WriteLine("Added {0} on thread {1}", data[i],
 Thread.CurrentThread.ManagedThreadId);
 else
 Console.WriteLine("Could not add {0}", data[i]);
 }
 });

 // Output results so far.
 Task.WaitAll(tasks);

 // Enumerate collection from the app main thread.
 // Note that ConcurrentDictionary is the one concurrent collection
 // that does not support thread-safe enumeration.
 foreach (var city in cities)
 {
 Console.WriteLine("{0} has been added.", city.Key);
 }

 AddOrUpdateWithoutRetrieving();
 RetrieveValueOrAdd();
 RetrieveAndUpdateOrAdd();

 Console.WriteLine("Press any key.");
 Console.ReadKey();
 }

 // This method shows how to add key-value pairs to the dictionary
 // in scenarios where the key might already exist.
 private static void AddOrUpdateWithoutRetrieving()
 {
 // Sometime later. We receive new data from some source.
 CityInfo ci = new CityInfo() { Name = "Toronto",
 Latitude = 43.716589M,
 Longitude = -79.340686M,
 RecentHighTemperatures = new int[] { 54, 59, 67, 82, 87, 55, -14 } };

 // Try to add data. If it doesn't exist, the object ci is added. If it does
 // already exist, update existingVal according to the custom logic in the
 // delegate.
 cities.AddOrUpdate(ci.Name, ci,
 (key, existingVal) =>
 {
 // If this delegate is invoked, then the key already exists.
 // Here we make sure the city really is the same city we already have.
 // (Support for multiple cities of the same name is left as an exercise for the reader.)
 if (ci != existingVal)
 throw new ArgumentException("Duplicate city names are not allowed: {0}.", ci.Name);

 // The only updatable fields are the temerature array and lastQueryDate.
 existingVal.lastQueryDate = DateTime.Now;
 existingVal.RecentHighTemperatures = ci.RecentHighTemperatures;
 return existingVal;
 });

 // Verify that the dictionary contains the new or updated data.
 Console.Write("Most recent high temperatures for {0} are: ", cities[ci.Name].Name);
 int[] temps = cities[ci.Name].RecentHighTemperatures;
 foreach (var temp in temps) Console.Write("{0}, ", temp);
 Console.WriteLine();
 }

 // This method shows how to use data and ensure that it has been
 // added to the dictionary.
 private static void RetrieveValueOrAdd()
 {
 string searchKey = "Caracas";
 CityInfo retrievedValue = null;

 try
 {
 retrievedValue = cities.GetOrAdd(searchKey, GetDataForCity(searchKey));
 }
 catch (ArgumentException e)
 {
 Console.WriteLine(e.Message);
 }

 // Use the data.
 if (retrievedValue != null)
 {
 Console.Write("Most recent high temperatures for {0} are: ", retrievedValue.Name);
 int[] temps = cities[retrievedValue.Name].RecentHighTemperatures;
 foreach (var temp in temps) Console.Write("{0}, ", temp);
 }
 Console.WriteLine();
 }

 // This method shows how to retrieve a value from the dictionary,
 // when you expect that the key/value pair already exists,
 // and then possibly update the dictionary with a new value for the key.
 private static void RetrieveAndUpdateOrAdd()
 {
 CityInfo retrievedValue;
 string searchKey = "Buenos Aires";

 if (cities.TryGetValue(searchKey, out retrievedValue))
 {
 // use the data
 Console.Write("Most recent high temperatures for {0} are: ", retrievedValue.Name);
 int[] temps = retrievedValue.RecentHighTemperatures;
 foreach (var temp in temps) Console.Write("{0}, ", temp);

 // Make a copy of the data. Our object will update its lastQueryDate automatically.
 CityInfo newValue = new CityInfo(retrievedValue.Name,
 retrievedValue.Longitude,
 retrievedValue.Latitude,
 retrievedValue.RecentHighTemperatures);

 // Replace the old value with the new value.
 if (!cities.TryUpdate(searchKey, retrievedValue, newValue))
 {
 //The data was not updated. Log error, throw exception, etc.
 Console.WriteLine("Could not update {0}", retrievedValue.Name);
 }
 }
 else
 {
 // Add the new key and value. Here we call a method to retrieve
 // the data. Another option is to add a default value here and
 // update with real data later on some other thread.
 CityInfo newValue = GetDataForCity(searchKey);
 if(cities.TryAdd(searchKey, newValue))
 {
 // use the data
 Console.Write("Most recent high temperatures for {0} are: ", newValue.Name);
 int[] temps = newValue.RecentHighTemperatures;
 foreach (var temp in temps) Console.Write("{0}, ", temp);
 }
 else
 Console.WriteLine("Unable to add data for {0}", searchKey);
 }
 }

 //Assume this method knows how to find long/lat/temp info for any specified city.
 static CityInfo GetDataForCity(string name)
 {
 // Real implementation left as exercise for the reader.
 if (String.CompareOrdinal(name, "Caracas") == 0)
 return new CityInfo() { Name = "Caracas",
 Longitude = 10.5M,
 Latitude = -66.916667M,
 RecentHighTemperatures = new int[] { 91, 89, 91, 91, 87, 90, 91 } };
 else if (String.CompareOrdinal(name, "Buenos Aires") == 0)
 return new CityInfo() { Name = "Buenos Aires",
 Longitude = -34.61M,
 Latitude = -58.369997M,
 RecentHighTemperatures = new int[] { 80, 86, 89, 91, 84, 86, 88 } };
 else
 throw new ArgumentException("Cannot find any data for {0}", name);
 }
 }
}

ConcurrentDictionary

<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] is designed for multithreaded scenarios. You do not have to use locks in your code to add or remove items from the collection. However, it is always possible for one thread to retrieve a value, and another thread to immediately update the collection by giving the same key a new value.

Also, although all methods of ConcurrentDictionary<TKey, TValue> are thread-safe, not all methods are atomic, specifically GetOrAdd and AddOrUpdate. The user delegate that is passed to these methods is invoked outside of the dictionary’s internal lock. (This is done to prevent unknown code from blocking all threads.) Therefore it is possible for this sequence of events to occur:

		threadA calls GetOrAdd, finds no item and creates a new item to Add by invoking the valueFactory delegate.

		threadB calls GetOrAdd concurrently, its valueFactory delegate is invoked and it arrives at the internal lock before threadA, and so its new key-value pair is added to the dictionary.

		threadA’s user delegate completes, and the thread arrives at the lock, but now sees that the item exists already

		threadA performs a “Get”, and returns the data that was previously added by threadB.

Therefore, it is not guaranteed that the data that is returned by GetOrAdd is the same data that was created by the thread’s valueFactory. A similar sequence of events can occur when AddOrUpdate is called.

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Thread-Safe Collections
description: Thread-Safe Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 92d5515d-f5d6-4a09-8bbb-31865d678643

Thread-Safe Collections

The System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace includes several collection classes that are both thread-safe and scalable. Multiple threads can safely and efficiently add or remove items from these collections, without requiring additional synchronization in user code. When you write new code, use the concurrent collection classes whenever the collection will be writing to multiple threads concurrently. If you are only reading from a shared collection, then you can use the classes in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace. We recommend that you do not use System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] collection classes unless you are required to target the .NET Framework 1.1 or earlier runtime.

Fine-Grained Locking and Lock-Free Mechanisms

Some of the concurrent collection types use lightweight synchronization mechanisms such as SpinLock [https://docs.microsoft.com/dotnet/core/api/System.Threading.SpinLock], SpinWait [https://docs.microsoft.com/dotnet/core/api/System.Threading.SpinWait], SemaphoreSlim [https://docs.microsoft.com/dotnet/core/api/System.Threading.SemaphoreSlim], and CountdownEvent [https://docs.microsoft.com/dotnet/core/api/System.Threading.CountdownEvent]. These synchronization types typically use busy spinning for brief periods before they put the thread into a true Wait state. When wait times are expected to be very short, spinning is far less computationally expensive than waiting, which involves an expensive kernel transition. For collection classes that use spinning, this efficiency means that multiple threads can add and remove items at a very high rate.

The ConcurrentQueue

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] classes do not use locks at all. Instead, they rely on Interlocked operations to achieve thread-safety.

[!NOTE]
Because the concurrent collections classes support ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection], they provide implementations for the IsSynchronized and SyncRoot properties, even though these properties are irrelevant. IsSynchronized always returns false and SyncRoot is always null.

The following table lists the collection types in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace.

Type | Description
—- | ———–
BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] | Provides bounding and blocking functionality for any type that implements IProducerConsumerCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1]. For more information, see BlockingCollection Overview.
ConcurrentBag<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] | Thread-safe implementation of an unordered collection of elements.
ConcurrentDictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] | Thread-safe implementation of a dictionary of key-value pairs.
ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] | Thread-safe implementation of a FIFO (first-in, first-out) queue.
ConcurrentStack<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] | Thread-safe implementation of a LIFO (last-in, first-out) stack.
IProducerConsumerCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] | The interface that a type must implement to be used in a BlockingCollection.

Thread Synchronization in the .NET Framework version 1.0 and 2.0 Collections

The collections first introduced in the .NET Framework version 1.0 are found in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace. These collections, which include the commonly used ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList] and Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable], provide some thread-safety through the Synchronized property, which returns a thread-safe wrapper around the collection. The wrapper works by locking the entire collection on every add or remove operation. Therefore, each thread that is attempting to access the collection must wait for its turn to take the one lock. This is not scalable and can cause significant performance degradation for large collections. Also, the design is not completely protected from race conditions.

The collection classes first introduced in the .NET Framework version 2.0 are found in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace. These include List

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], Dictionary<

TKey, TValue>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2], and so on. These classes provide improved type safety and performance compared to the System.Collections classes. However, the System.Collections.Generic collection classes do not provide any thread synchronization; user code must provide all synchronization when items are added or removed on multiple threads concurrently.

We recommend the System.Collections.Concurrent collection classes because they provide not only the type safety of the System.Collections.Generic collection classes, but also more efficient and more complete thread safety than the System.Collections collections provide.

Related Topics

Title | Description
—– | ———–
BlockingCollection Overview | Describes the functionality provided by the BlockingCollection<T> type.
When to Use a Thread-Safe Collection | Explains when is it appropriate to use a thread-safe collection.
How to: Add and Remove Items from a ConcurrentDictionary | Describes how to add and remove elements from a ConcurrentDictionary<TKey, TValue>.
How to: Add and Take Items Individually from a BlockingCollection | Describes how to add and retrieve items from a blocking collection without using the read-only enumerator.
How to: Add Bounding and Blocking Functionality to a Collection | Describes how to use any collection class as the underlying storage mechanism for an IProducerConsumerCollection<T>; collection.
How to: Use ForEach to Remove Items in a BlockingCollection | Describes how to use foreach to remove all items in a blocking collection.
How to: Use Arrays of Blocking Collections in a Pipeline | Describes how to use multiple blocking collections at the same time to implement a pipeline.
How to: Create an Object Pool by Using a ConcurrentBag | Shows how to use a concurrent bag to improve performance in scenarios where you can reuse objects instead of continually creating new ones.

Reference

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-add-bounding-and-blocking.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Add Bounding and Blocking Functionality to a Collection”
description: “How to: Add Bounding and Blocking Functionality to a Collection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 678d5df2-af63-418f-8b2a-e0be7ea2d77b

How to: Add Bounding and Blocking Functionality to a Collection

This example shows how to add bounding and blocking functionality to a custom collection class by implementing the System.Collections.Concurrent.IProducerConsumerCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] interface in the class, and then using a class instance as the internal storage mechanism for a System.Collections.Concurrent.BlockingCollection<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1]. For more information about bounding and blocking, see BlockingCollection Overview.

Example

The custom collection class is a basic priority queue in which the priority levels are represented as an array of System.Collections.Concurrent.ConcurrentQueue

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] objects. No additional ordering is performed within each queue.

In the client code, three tasks are started. The first task just polls for keyboard strokes to enable cancellation at any point during execution. The second task is the producer thread; it adds new items to the blocking collection and gives each item a priority based on a random value. The third task removes items from the collection as they become available.

You can adjust the behavior of the application by making one of the threads run faster than the other. If the producer runs faster, you will notice the bounding functionality as the blocking collection prevents items from being added if it already contains the number of items that is specified in the constructor. If the consumer runs faster, you will notice the blocking functionality as the consumer waits for a new item to be added.

namespace ProdConsumerCS
{
 using System;
 using System.Collections;
 using System.Collections.Concurrent;
 using System.Collections.Generic;
 using System.Diagnostics;
 using System.Linq;
 using System.Text;
 using System.Threading;
 using System.Threading.Tasks;

 // Implementation of a priority queue that has bounding and blocking functionality.
 public class SimplePriorityQueue<TPriority, TValue> : IProducerConsumerCollection<KeyValuePair<int, TValue>>
 {
 // Each internal queue in the array represents a priority level.
 // All elements in a given array share the same priority.
 private ConcurrentQueue<KeyValuePair<int, TValue>>[] _queues = null;

 // The number of queues we store internally.
 private int priorityCount = 0;
 private int m_count = 0;

 public SimplePriorityQueue(int priCount)
 {
 this.priorityCount = priCount;
 _queues = new ConcurrentQueue<KeyValuePair<int, TValue>>[priorityCount];
 for (int i = 0; i < priorityCount; i++)
 {
 _queues[i] = new ConcurrentQueue<KeyValuePair<int, TValue>>();
 }
 }

 // IProducerConsumerCollection members
 public bool TryAdd(KeyValuePair<int, TValue> item)
 {
 _queues[item.Key].Enqueue(item);
 Interlocked.Increment(ref m_count);
 return true;
 }

 public bool TryTake(out KeyValuePair<int, TValue> item)
 {
 bool success = false;

 // Loop through the queues in priority order
 // looking for an item to dequeue.
 for (int i = 0; i < priorityCount; i++)
 {
 // Lock the internal data so that the Dequeue
 // operation and the updating of m_count are atomic.
 lock (_queues)
 {
 success = _queues[i].TryDequeue(out item);
 if (success)
 {
 Interlocked.Decrement(ref m_count);
 return true;
 }
 }
 }

 // If we get here, we found nothing.
 // Assign the out parameter to its default value and return false.
 item = new KeyValuePair<int, TValue>(0, default(TValue));
 return false;
 }

 public int Count
 {
 get { return m_count; }
 }

 // Required for ICollection
 void ICollection.CopyTo(Array array, int index)
 {
 CopyTo(array as KeyValuePair<int, TValue>[], index);
 }

 // CopyTo is problematic in a producer-consumer.
 // The destination array might be shorter or longer than what
 // we get from ToArray due to adds or takes after the destination array was allocated.
 // Therefore, all we try to do here is fill up destination with as much
 // data as we have without running off the end.
 public void CopyTo(KeyValuePair<int, TValue>[] destination, int destStartingIndex)
 {
 if (destination == null) throw new ArgumentNullException();
 if (destStartingIndex < 0) throw new ArgumentOutOfRangeException();

 int remaining = destination.Length;
 KeyValuePair<int, TValue>[] temp = this.ToArray();
 for (int i = 0; i < destination.Length && i < temp.Length; i++)
 {
 destination[i] = temp[i];
 }
 }

 public KeyValuePair<int, TValue>[] ToArray()
 {
 KeyValuePair<int, TValue>[] result;

 lock (_queues)
 {
 result = new KeyValuePair<int, TValue>[this.Count];
 int index = 0;
 foreach (var q in _queues)
 {
 if (q.Count > 0)
 {
 q.CopyTo(result, index);
 index += q.Count;
 }
 }
 return result;
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 public IEnumerator<KeyValuePair<int, TValue>> GetEnumerator()
 {
 for (int i = 0; i < priorityCount; i++)
 {
 foreach (var item in _queues[i])
 yield return item;
 }
 }

 public bool IsSynchronized
 {
 get { throw new NotSupportedException(); }
 }

 public object SyncRoot
 {
 get { throw new NotSupportedException(); }
 }
 }

 public class TestBlockingCollection
 {
 static void Main()
 {

 int priorityCount = 7;
 SimplePriorityQueue<int, int> queue = new SimplePriorityQueue<int, int>(priorityCount);
 var bc = new BlockingCollection<KeyValuePair<int, int>>(queue, 50);

 CancellationTokenSource cts = new CancellationTokenSource();

 Task.Run(() =>
 {
 if (Console.ReadKey(true).KeyChar == 'c')
 {
 cts.Cancel();
 }
 });

 // Create a Task array so that we can Wait on it
 // and catch any exceptions, including user cancellation.
 Task[] tasks = new Task[2];

 // Create a producer thread. You can change the code to
 // make the wait time a bit slower than the consumer
 // thread to demonstrate the blocking capability.
 tasks[0] = Task.Run(() =>
 {
 // We randomize the wait time, and use that value
 // to determine the priority level (Key) of the item.
 Random r = new Random();

 int itemsToAdd = 40;
 int count = 0;
 while (!cts.Token.IsCancellationRequested && itemsToAdd-- > 0)
 {
 int waitTime = r.Next(2000);
 int priority = waitTime % priorityCount;
 var item = new KeyValuePair<int, int>(priority, count++);

 bc.Add(item);
 Console.WriteLine("added pri {0}, data={1}", item.Key, item.Value);
 }
 Console.WriteLine("Producer is done adding.");
 bc.CompleteAdding();
 },
 cts.Token);

 //Give the producer a chance to add some items.
 Thread.SpinWait(1000000);

 // Create a consumer thread. The wait time is
 // a bit slower than the producer thread to demonstrate
 // the bounding capability at the high end. Change this value to see
 // the consumer run faster to demonstrate the blocking functionality
 // at the low end.

 tasks[1] = Task.Run(() =>
 {
 while (!bc.IsCompleted && !cts.Token.IsCancellationRequested)
 {
 Random r = new Random();
 int waitTime = r.Next(2000);
 Thread.SpinWait(waitTime * 70);

 // KeyValuePair is a value type. Initialize to avoid compile error in if(success)
 KeyValuePair<int, int> item = new KeyValuePair<int, int>();
 bool success = false;
 success = bc.TryTake(out item);
 if (success)
 {
 // Do something useful with the data.
 Console.WriteLine("removed Pri = {0} data = {1} collCount= {2}", item.Key, item.Value, bc.Count);
 }
 else
 Console.WriteLine("No items to retrieve. count = {0}", bc.Count);
 }
 Console.WriteLine("Exited consumer loop");
 },
 cts.Token);

 try
 {
 Task.WaitAll(tasks, cts.Token);
 }
 catch (OperationCanceledException e)
 {
 if (e.CancellationToken == cts.Token)
 Console.WriteLine("Operation was canceled by user. Press any key to exit");
 }
 catch (AggregateException ae)
 {
 foreach (var v in ae.InnerExceptions)
 Console.WriteLine(v.Message);
 }
 finally
 {
 cts.Dispose();
 }

 Console.ReadKey(true);

 }
 }

}

By default, the storage for a BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] is ConcurrentQueue<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1].

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Thread-Safe Collections

BlockingCollection Overview

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-add-and-take-items.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Add and Take Items Individually from a BlockingCollection”
description: “How to: Add and Take Items Individually from a BlockingCollection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2b9d39ab-0993-4453-b021-b04870098bf7

How to: Add and Take Items Individually from a BlockingCollection

This example shows how to add and remove items from a BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] in both a blocking and non-blocking manner. For more information on BlockingCollection<T>, see BlockingCollection Overview.

For an example of how to enumerate a BlockingCollection<T> until it is empty and no more elements will be added, see How to: Use ForEach to Remove Items in a BlockingCollection.

Example

using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

class Program
{
 static void Main()
 {
 // Increase or decrease this value as desired.
 int itemsToAdd = 500;

 // Preserve all the display output for Adds and Takes
 Console.SetBufferSize(80, (itemsToAdd * 2) + 3);

 // A bounded collection. Increase, decrease, or remove the
 // maximum capacity argument to see how it impacts behavior.
 BlockingCollection<int> numbers = new BlockingCollection<int>(50);

 // A simple blocking consumer with no cancellation.
 Task.Run(() =>
 {
 int i = -1;
 while (!numbers.IsCompleted)
 {
 try
 {
 i = numbers.Take();
 }
 catch (InvalidOperationException)
 {
 Console.WriteLine("Adding was completed!");
 break;
 }
 Console.WriteLine("Take:{0} ", i);

 // Simulate a slow consumer. This will cause
 // collection to fill up fast and thus Adds will block.
 Thread.SpinWait(100000);
 }

 Console.WriteLine("\r\nNo more items to take. Press the Enter key to exit.");
 });

 // A simple blocking producer with no cancellation.
 Task.Run(() =>
 {
 for (int i = 0; i < itemsToAdd; i++) {
 numbers.Add(i);
 Console.WriteLine("Add:{0} Count={1}", i, numbers.Count);
 }

 // See documentation for this method.
 numbers.CompleteAdding();
 });

 // Keep the console display open in debug mode.
 Console.ReadLine();
 }
}

Example

This second example shows how to add and take items so that the operations will not block. If no item is present, or maximum capacity on a bounded collection has been reached, or the timeout period has elapsed, then the TryAdd or TryTake operation returns false. This allows the thread to do some other useful work for awhile and then try again later to either retrieve a new item, or try to add the same item that could not be added previously. The program also demonstrates how to implement cancellation when accessing a BlockingCollection<T>.

using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

class ProgramWithCancellation
{

 static int inputs = 2000;

 static void Main()
 {
 // The token source for issuing the cancelation request.
 CancellationTokenSource cts = new CancellationTokenSource();

 // A blocking collection that can hold no more than 100 items at a time.
 BlockingCollection<int> numberCollection = new BlockingCollection<int>(100);

 // Set console buffer to hold our prodigious output.
 Console.SetBufferSize(80, 2000);

 // The simplest UI thread ever invented.
 Task.Run(() =>
 {
 if (Console.ReadKey(true).KeyChar == 'c')
 cts.Cancel();
 });

 // Start one producer and one consumer.
 Task t1 = Task.Run(() => NonBlockingConsumer(numberCollection, cts.Token));
 Task t2 = Task.Run(() => NonBlockingProducer(numberCollection, cts.Token));

 // Wait for the tasks to complete execution
 Task.WaitAll(t1, t2);

 cts.Dispose();
 Console.WriteLine("Press the Enter key to exit.");
 Console.ReadLine();
 }

 static void NonBlockingConsumer(BlockingCollection<int> bc, CancellationToken ct)
 {
 while (!bc.IsCompleted)
 {
 int nextItem = 0;
 try
 {
 if (!bc.TryTake(out nextItem, 0, ct))
 {
 Console.WriteLine(" Take Blocked");
 }
 else
 {
 Console.WriteLine(" Take:{0}", nextItem);
 }
 }

 catch (OperationCanceledException)
 {
 Console.WriteLine("Taking canceled.");
 break;
 }

 // Slow down consumer just a little to cause
 // collection to fill up faster, and lead to "AddBlocked"
 Thread.SpinWait(500000);
 }

 Console.WriteLine("\r\nNo more items to take.");
 }

 static void NonBlockingProducer(BlockingCollection<int> bc, CancellationToken ct)
 {
 int itemToAdd = 0;
 bool success = false;

 do
 {
 // Cancellation causes OCE. We know how to handle it.
 try
 {
 // A shorter timeout causes more failures.
 success = bc.TryAdd(itemToAdd, 2, ct);
 }
 catch (OperationCanceledException)
 {
 Console.WriteLine("Add loop canceled.");
 // Let other threads know we're done in case
 // they aren't monitoring the cancellation token.
 bc.CompleteAdding();
 break;
 }

 if (success)
 {
 Console.WriteLine(" Add:{0}", itemToAdd);
 itemToAdd++;
 }
 else
 {
 Console.Write(" AddBlocked:{0} Count = {1}", itemToAdd.ToString(), bc.Count);
 // Don't increment nextItem. Try again on next iteration.

 //Do something else useful instead.
 UpdateProgress(itemToAdd);
 }

 } while (itemToAdd < inputs);

 // No lock required here because only one producer.
 bc.CompleteAdding();
 }

 static void UpdateProgress(int i)
 {
 double percent = ((double)i / inputs) * 100;
 Console.WriteLine("Percent complete: {0}", percent);
 }
}

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

BlockingCollection Overview

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/collections/threadsafe/how-to-use-arrays-of-blockingcollections.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “How to: Use Arrays of Blocking Collections in a Pipeline”
description: “How to: Use Arrays of Blocking Collections in a Pipeline”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 278a6566-09ba-4022-8802-e160e75b86af

How to: Use Arrays of Blocking Collections in a Pipeline

The following example shows how to use arrays of System.Collections.Concurrent.BlockingCollection

<

T>

 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] objects with static methods such as TryAddToAny and TryTakeFromAny to implement fast and flexible data transfer between components.

Example

The following example demonstrates a basic pipeline implementation in which each object is concurrently taking data from the input collection, transforming it, and passing it to the output collection.

using System;
using System.Collections.Concurrent;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;

class PipeLineDemo
{
 public static void Main()
 {
 CancellationTokenSource cts = new CancellationTokenSource();

 // Start up a UI thread for cancellation.
 Task.Run(() =>
 {
 if(Console.ReadKey(true).KeyChar == 'c')
 {
 cts.Cancel();
 }
 });

 //Generate some source data.
 BlockingCollection<int>[] sourceArrays = new BlockingCollection<int>[5];
 for(int i = 0; i < sourceArrays.Length; i++)
 sourceArrays[i] = new BlockingCollection<int>(500);
 Parallel.For(0, sourceArrays.Length * 500, (j) =>
 {
 int k = BlockingCollection<int>.TryAddToAny(sourceArrays, j);
 if(k >=0)
 Console.WriteLine("added {0} to source data", j);
 });

 foreach (var arr in sourceArrays)
 arr.CompleteAdding();

 // First filter accepts the ints, keeps back a small percentage
 // as a processing fee, and converts the results to decimals.
 var filter1 = new PipelineFilter<int, decimal>
 (
 sourceArrays,
 (n) => Convert.ToDecimal(n * 0.97),
 cts.Token,
 "filter1"
);

 // Second filter accepts the decimals and converts them to
 // System.Strings.
 var filter2 = new PipelineFilter<decimal, string>
 (
 filter1.m_output,
 (s) => String.Format("{0}", s),
 cts.Token,
 "filter2"
);

 // Third filter uses the constructor with an Action<T>
 // that renders its output to the screen,
 // not a blocking collection.
 var filter3 = new PipelineFilter<string, string>
 (
 filter2.m_output,
 (s) => Console.WriteLine("The final result is {0}", s),
 cts.Token,
 "filter3"
);

 // Start up the pipeline!
 try
 {
 Parallel.Invoke(
 () => filter1.Run(),
 () => filter2.Run(),
 () => filter3.Run()
);
 }
 catch (AggregateException ae)
 {
 foreach(var ex in ae.InnerExceptions)
 Console.WriteLine(ex.Message + ex.StackTrace);
 }
 finally
 {
 cts.Dispose();
 }
 // You will need to press twice if you ran to the end:
 // once for the cancellation thread, and once for this thread.
 Console.WriteLine("Press any key.");
 Console.ReadKey(true);
 }

 class PipelineFilter<TInput, TOutput>
 {
 Func<TInput, TOutput> m_processor = null;
 public BlockingCollection<TInput>[] m_input;
 public BlockingCollection<TOutput>[] m_output = null;
 Action<TInput> m_outputProcessor = null;
 CancellationToken m_token;
 public string Name { get; private set; }

 public PipelineFilter(
 BlockingCollection<TInput>[] input,
 Func<TInput, TOutput> processor,
 CancellationToken token,
 string name)
 {
 m_input = input;
 m_output = new BlockingCollection<TOutput>[5];
 for (int i = 0; i < m_output.Length; i++)
 {
 m_output[i] = new BlockingCollection<TOutput>(500);
 }
 m_processor = processor;
 m_token = token;
 Name = name;
 }

 // Use this constructor for the final endpoint, which does
 // something like write to file or screen, instead of
 // pushing to another pipeline filter.
 public PipelineFilter(
 BlockingCollection<TInput>[] input,
 Action<TInput> renderer,
 CancellationToken token,
 string name)
 {
 m_input = input;
 m_outputProcessor = renderer;
 m_token = token;
 Name = name;
 }

 public void Run()
 {
 Console.WriteLine("{0} is running", this.Name);
 while (!m_input.All(bc => bc.IsCompleted) && !m_token.IsCancellationRequested)
 {
 TInput receivedItem;
 int i = BlockingCollection<TInput>.TryTakeFromAny(
 m_input, out receivedItem, 50, m_token);
 if (i >= 0)
 {
 if (m_output != null) // we pass data to another blocking collection
 {
 TOutput outputItem = m_processor(receivedItem);
 BlockingCollection<TOutput>.AddToAny(m_output, outputItem);
 Console.WriteLine("{0} sent {1} to next", this.Name, outputItem);
 }
 else // we're an endpoint
 {
 m_outputProcessor(receivedItem);
 }
 }
 else
 {
 Console.WriteLine("Unable to retrieve data from previous filter");
 }
 }
 if (m_output != null)
 {
 foreach (var bc in m_output) bc.CompleteAdding();
 }
 }
 }
}

See Also

System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]

Thread-Safe Collections

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/packages.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Packages, Metapackages and Frameworks
description: Packages, Metapackages and Frameworks
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 609b0845-49e7-4864-957b-21ffe1b93bf2

Packages, Metapackages and Frameworks

.NET Core is a platform made of NuGet packages. Some product experiences benefit from fine-grained definition of packages while others from coarse-grained. To accommodate this duality, the product is distributed as a fine-grained set of packages and then described in courser chunks with a package type informally called a “metapackage”.

Each of the .NET Core packages support being run on multiple .NET runtimes, represented as
frameworks. Some of those frameworks are traditional frameworks, like net46, representing the .NET Framework. Another set is new frameworks that can be thought of as “package-based frameworks”, which establish a new model for defining frameworks. These package-based frameworks are entirely formed and defined as packages, forming a strong relationship between packages and frameworks.

Packages

.NET Core is split into a set of packages, which provide primitives, higher-level data types, app composition types and common utilities. Each of these packages represent a single assembly of the same name. For example, System.Runtime [https://www.nuget.org/packages/System.Runtime] contains System.Runtime.dll.

There are advantages to defining packages in a fine-grained manner:

		Fine-grained packages can ship on their own schedule with relatively limited testing of other packages.

		Fine-grained packages can provide differing OS and CPU support.

		Fine-grained packages can have dependencies specific to only one library.

		Apps are smaller because unreferenced packages don’t become part of the app distribution.

Some of these benefits are only used in certain circumstances. For example, NET Core packages will typically ship on the same schedule with the same platform support. In the case of servicing, fixes can be distributed and installed as small single package updates. Due to the narrow scope of change, the validation and time to make a fix available is limited to what is needed for a single library.

The following is a list of the key NuGet packages for .NET Core:

		System.Runtime [https://www.nuget.org/packages/System.Runtime] - The most fundamental .NET Core package, including Object [http://docs.microsoft.com/dotnet/core/api/System.Object], String [http://docs.microsoft.com/dotnet/core/api/System.String], Array [http://docs.microsoft.com/dotnet/core/api/System.Array], Action [http://docs.microsoft.com/dotnet/core/api/System.Action] and IList<

T>

 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1].

		System.Collections [https://www.nuget.org/packages/System.Collections] - A set of (primarily) generic collections, including List<

T>

 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] and Dictionary<

K,V>

 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2].

		System.Net.Http [https://www.nuget.org/packages/System.Net.Http] - A set of types for HTTP network communication, including HttpClient [http://docs.microsoft.com/dotnet/core/api/System.Net.Http.HttpClient] and HttpResponseMessage [http://docs.microsoft.com/dotnet/core/api/System.Net.Http.HttpResponseMessage].

		System.IO.FileSystem [https://www.nuget.org/packages/System.IO.FileSystem] - A set of types for reading and writing to local or networked disk-based storage, including File [http://docs.microsoft.com/dotnet/core/api/System.IO.File] and Directory [http://docs.microsoft.com/dotnet/core/api/System.IO.Directory].

		System.Linq [https://www.nuget.org/packages/System.Linq] - A set of types for querying objects, including Enumerable and ILookup<

TKey, TElement>

 [http://docs.microsoft.com/dotnet/core/api/System.Linq.ILookup-2];.

		System.Reflection [https://www.nuget.org/packages/System.Reflection] - A set of types for loading, inspecting and activating types, including Assembly [http://docs.microsoft.com/dotnet/core/api/System.Reflection.Assembly], TypeInfo [http://docs.microsoft.com/dotnet/core/api/System.Reflection.TypeInfo] and MethodInfo [http://docs.microsoft.com/dotnet/core/api/System.Reflection.MethodInfo].

Packages are referenced in project.json. In the example below, the System.Runtime [https://www.nuget.org/packages/System.Runtime/] package is referenced.

{
 "dependencies": {
 "System.Runtime": "4.1.0"
 },
 "frameworks": {
 "netstandard1.5": {}
 }
}

In most cases, you will not reference the lower-level .NET Core packages directly since you’ll end up with too many packages to manage. Instead, you’ll reference a metapackage.

Metapackages

Metapackages are a NuGet package convention for describing a set of packages that are meaningful together. They represent this set of packages by making them dependencies. They can optionally establish a
framework for this set of packages by specifying a framework.

By refg a metapackage, you are, in effect, adding a reference to each of its dependent packages as a single gesture. That means that all of the libraries in those packages (refs or libs) are available for IntelliSense (or similar experience) and for publishing (libs only) your app.

Note: The ‘lib’ and ‘ref’ terms refer to folders in NuGet packages. ‘ref’ folders describe the public API of a package via assembly metadata. ‘lib’ folders contain the implementation of that public API for a given
framework.

There are advantages to using metapackages:

		Provides a convenient user experience to reference a large set of fine-grained packages.

		Defines a set of packages (including specific versions) that are tested and work well together.

The .NET Standard Library metapackage:

		NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] - Describes the libraries that are part of the ”.NET Standard Library”. Applies to all .NET implementations (for example, .NET Framework, .NET Core and Mono) that support the .NET Standard Library. Establishes the ‘netstandard’ framework.
These are the key .NET Core metapackages:

		Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App] - Describes the libraries that are part of the .NET Core distribution. Establishes the .NETCoreApp framework [https://github.com/dotnet/core-setup/blob/master/pkg/projects/Microsoft.NETCore.App/Microsoft.NETCore.App.pkgproj]. Depends on the smaller NETStandard.Library.

		Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] - A set of compatibility facades that enable mscorlib-based Portable Class Libraries (PCLs) to run on .NET Core.

Metapackages are referenced just like any other NuGet package in project.json.

In the following example, the NETStandard.Library meta package is referenced, which is used for creating libraries that are portable across .NET runtimes.

{
 "dependencies": {
 "NETStandard.Library": "1.5.0"
 },
 "frameworks": {
 "netstandard1.5": {}
 }
}

In the following example, the Microsoft.NETCore.App metapackage is referenced, which is used for creating apps and libraries that are intended to run on and take full advantage of .NET Core. It provides access to a larger set of libraries than are provided by NETStandard.Library.

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.0"
 },
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

Frameworks

.NET Core packages each support a set of frameworks, declared with framework folders (within the lib and ref folders mentioned earlier). Frameworks describe an available API set (and potentially other characteristics) that you can rely on when you target a given framework. They are versioned as new APIs are added.

For example, System.IO.FileSystem [https://www.nuget.org/packages/System.IO.FileSystem] supports the following frameworks:

		.NETFramework,Version=4.6

		.NETStandard,Version=1.3

		6 Xamarin platforms (for example, xamarinios10)

It is useful to contrast the first two of these frameworks, since they are examples of the two different ways that frameworks are defined.

The .NETFramework,Version=4.6 framework represents the available APIs in the .NET Framework 4.6. You can produce libraries compiled with the .NET Framework 4.6 reference assemblies and then distribute those libraries in NuGet packages in a net46 lib folder. It will be used for apps that target the .NET Framework 4.6 or that are compatible with it. This is how all frameworks have traditionally worked.

The .NETStandard,Version=1.3 framework is a package-based framework. It relies on packages that target the framework to define and expose APIs in terms of the framework.

Package-based Frameworks

There is a two-way relationship between frameworks and packages. The first part is defining the APIs available for a given framework, for example netstandard1.3. Packages that target netstandard1.3 (or compatible frameworks, like netstandard1.0) define the APIs available for netstandard1.3. That may sound like a circular definition, but it isn’t. By virtue of being “package-based”, the API definition for the framework comes from packages. The framework itself doesn’t define any APIs.

The second part of the relationship is asset selection. Packages can contain assets for multiple frameworks. Given a reference to a set of packages and/or metapackages, the framework is needed to determine which asset should be selected, for example net46 or netstandard1.3. It is important to select the correct asset. For example, a net46 asset is not likely to be compatible with .NET Framework 4.0 or .NET Core 1.0.

[image: Package-based Framework Composition]

You can see this relationship in the image above. The API targets and defines the framework. The framework is used for asset selection. The asset gives you the API.

It is an interesting question of where a package-based framework’s definition ends and where consumption of that definition starts. One can consider your view of the framework as a function of a given project.json file. Your dependencies create your view of the framework, independent of the publisher(s) of those dependencies.

The two primary package-based frameworks used with .NET Core are:

		netstandard

		netcoreapp

.NET Standard

The .NET Standard (TFM: netstandard) framework represents the APIs defined by and built on top of the .NET Standard Library. Libraries that are intended to run on multiple runtimes should target this framework. They will be supported on any .NET Standard compliant runtime, such as .NET Core, .NET Framework and Mono/Xamarin. Each of these runtimes supports a set of .NET Standard versions, depending on which APIs they implement.

The NETStandard.Library metapackage targets the netstandard framework. The most common way to target netstandard is by referencing this metapackage. It describes and provides access to the ~40 .NET libraries and associated APIs that define the .NET Standard Library. You can reference additional packages that target netstandard to get access to additional APIs.

A given NETStandard.Library version matches the highest netstandard version it exposed (via its closure). The framework reference in project.json is used to select the correct assets from the underlying packages. In this case, netstandard1.5 assets are required, as opposed to netstandard1.4 or net46, for example.

{
 "dependencies": {
 "NETStandard.Library": "1.5.0"
 },
 "frameworks": {
 "netstandard1.5": {}
 }
}

The framework and metapackage references in project.json do not need to match. For example, the following project.json is valid.

{
 "dependencies": {
 "NETStandard.Library": "1.5.0"
 },
 "frameworks": {
 "netstandard1.3": {}
 }
}

It may seem strange to target netstandard1.3 but use the 1.5.0 version of NETStandard.Library. It is a valid use-case, since the metapackage maintains support for older netstandard versions. It could be the case you’ve standardized on the 1.5.0 version of the metapackage and use it for all your libraries, which target a variety of netstandard versions. With this approach, you only need to restore NETStandard.Library 1.5.0 and not earlier versions.

The reverse would not be valid: targeting netstandard1.5 with the 1.3.0 version of NETStandard.Library. You cannot target a higher framework with a lower metapackage, since the lower version metapackage will not expose any assets for that higher framework. The [versioning scheme] for metapackages asserts that metapackages match the highest version of the framework they describe. By virtue of the versioning scheme, the first version of NETStandard.Library is v1.5.0 given that it contains netstandard1.5 assets. v1.3.0 is used in the example above, for symmetry with the example above, but does not actually exist.

.NET Core Application

The .NET Core Application (TFM: netcoreapp) framework represents the packages and associated APIs that come with the .NET Core distribution and the console application model that it provides. .NET Core apps must use this framework, due to targeting the console application model, as should libraries that intended to run only on .NET Core. Using this framework restricts apps and libraries to running only on .NET Core.

The Microsoft.NETCore.App metapackage targets the netcoreapp framework. It provides access to ~60 libraries, ~40 provided by the NETStandard.Library package and ~20 more in addition. You can reference additional libraries that target netcoreapp or compatible frameworks, such as netstandard, to get access to additional APIs.

Most of the additional libraries provided by Microsoft.NETCore.App also target netstandard given that their dependencies are satisfied by other netstandard libraries. That means that netstandard libraries can also reference those packages as dependencies.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core
description: .NET Core
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f2b312cb-f80c-4b0d-9101-93908f06a6fa

.NET Core

Check out the “Getting Started” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.

.NET Core is a general purpose development platform maintained by Microsoft and the .NET community on GitHub [https://github.com/dotnet/core]. It is cross-platform, supporting Windows, macOS and Linux, and can be used in device, cloud, and embedded/IoT scenarios.

The following characteristics best define .NET Core:

		Flexible deployment: Can be included in your app or installed side-by-side user- or machine-wide.

		Cross-platform: Runs on Windows, macOS and Linux; can be ported to other OSes. The supported Operating Systems (OS) [https://github.com/dotnet/core/blob/master/roadmap.md], CPUs and application scenarios will grow over time, provided by Microsoft, other companies, and individuals.

		Command-line tools: All product scenarios can be exercised at the command-line.

		Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the .NET Standard Library.

		Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses. Documentation is licensed under CC-BY [http://creativecommons.org/licenses/by/4.0/]. .NET Core is a .NET Foundation [http://www.dotnetfoundation.org/] project.

		Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support [https://www.microsoft.com/net/core/support/]

Composition

.NET Core is composed of the following parts:

		A .NET runtime [https://github.com/dotnet/coreclr], which provides a type system, assembly loading, a garbage collector, native interop and other basic services.

		A set of framework libraries [https://github.com/dotnet/corefx], which provide primitive data types, app composition types and fundamental utilities.

		A set of SDK tools [https://github.com/dotnet/cli] and language compilers [https://github.com/dotnet/roslyn] that enable the base developer experience, available in the .NET Core SDK.

		The ‘dotnet’ app host, which is used to launch .NET Core apps. It selects the runtime and hosts the runtime, provides an assembly loading policy and launches the app. The same host is also used to launch SDK tools in much the same way.

Languages

The C# language (F# and VB are coming) can be used to write applications and libraries for .NET Core. The compilers run on .NET Core, enabling you to develop for .NET Core anywhere it runs. In general, you will not use the compilers directly, but indirectly using the SDK tools.

The C# Roslyn compiler and the .NET Core tools are or can be integrated into several text editors and IDEs, including Visual Studio, Visual Studio Code [https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp], Sublime Text and Vim, making .NET Core development an option in your favorite coding environment and OS. This integration is provided, in part, by the good folks of the OmniSharp project [http://www.omnisharp.net/].

.NET APIs and Compatibility

.NET Core can be thought of as a cross-platform version of the .NET Framework, at the layer of the .NET Framework Base Class Libraries (BCL). It implements the .NET Standard Library specification. .NET Core provides a subset of the APIs that are available in the .NET Framework or Mono/Xamarin. In some cases, types are not fully implemented (some members are not available or have been moved).

Look at the .NET Core roadmap [https://github.com/dotnet/core/blob/master/roadmap.md] to learn more about the .NET Core API roadmap.

Relationship to the .NET Standard Library

The .NET Standard Library is an API spec that describes the consistent set of .NET APIs that developers can expect in each .NET implementation. .NET implementations need to implement this spec in order to be considered .NET Standard Library compliant and to support libraries that target the .NET Standard Library.

.NET Core implements the .NET Standard Library, and therefore supports .NET Standard Libraries.

Workloads

By itself, .NET Core includes a single application model – console apps – which is useful for tools, local services and text-based games. Additional application models have been built on top of .NET Core to extend its functionality, such as:

		ASP.NET Core [http://asp.net]

		Windows 10 Universal Windows Platform (UWP) [https://developer.microsoft.com/windows]

		Xamarin.Forms [https://www.xamarin.com/forms]

Open Source

.NET Core [https://github.com/dotnet/core] is open source (MIT license) and was contributed to the .NET Foundation [http://dotnetfoundation.org] by Microsoft in 2014. It is now one of the most active .NET Foundation projects. It can be freely adopted by individuals and companies, including for personal, academic or commercial purposes. Multiple companies use .NET Core as part of apps, tools, new platforms and hosting services. Some of these companies make significant contributions to .NET Core on GitHub and provide guidance on the product direction as part of the .NET Foundation Technical Steering Group [http://www.dotnetfoundation.org/blog/tsg-welcome].

Acquisition

.NET Core is distributed in two main ways, as packages on NuGet.org and as standalone distributions.

Distributions

You can download .NET Core at the .NET Core Getting Started [https://www.microsoft.com/net/core] page.

		The Microsoft .NET Core distribution includes the CoreCLR runtime, associated libraries, a console application host and the dotnet app launcher. It is described by the Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App] metapackage.

		The Microsoft .NET Core SDK distribution includes .NET Core and a set of tools for restoring NuGet packages and compiling and building apps.

Typically, you will first install the .NET Core SDK to get started with .NET Core development. You may choose to install additional .NET Core (perhaps pre-release) builds.

Packages

		.NET Core Packages contain the .NET Core runtime and libraries (reference assemblies and implementations). For example, System.Net.Http [https://www.nuget.org/packages/System.Net.Http/].

		.NET Core Metapackages describe various layers and app-models by referencing the appropriate set of versioned library packages.

Architecture

.NET Core is a cross-platform .NET implementation. The primary architectural concerns unique to .NET Core are related to providing platform-specific implementations for supported platforms.

Environments

.NET Core is supported by Microsoft on Windows, macOS and Linux. On Linux, Microsoft primarily supports .NET Core running on Red Hat Enterprise Linux (RHEL) and Debian distribution families.

.NET Core currently supports X64 CPUs. On Windows, X86 is also supported. ARM64 and ARM32 are in progress.

The .NET Core Roadmap [https://github.com/dotnet/core/blob/master/roadmap.md] provides more detailed information on workload and OS and CPU environment support and plans.

Other companies or groups may support .NET Core for other app types and environment.

Designed for Adaptability

.NET Core has been built as a very similar but unique product relative to other .NET products. It has been designed to enable broad adaptability to new platforms, for new workloads and with new compiler toolchains. It has several OS and CPU ports in progress and may be ported to many more. An example is the LLILC [https://github.com/dotnet/llilc] project, which is an early prototype of native compilation for .NET Core via the LLVM [http://llvm.org/] compiler.

The product is broken into several pieces, enabling the various parts to be adapted to new platforms on different schedules. The runtime and platform-specific foundational libraries must be ported as a unit. Platform-agnostic libraries should work as-is on all platforms, by construction. There is a project bias to reducing platform-specific implementations to increase developer efficiency, preferring platform-neutral C# code whenever an algorithm or API can be implemented in-full or in-part that way.

People commonly ask how .NET Core is implemented in order to support multiple operating systems. They typically ask if there are separate implementations or if conditional compilation [https://en.wikipedia.org/wiki/Conditional_compilation] is used. It’s both, with a strong bias towards conditional compilation.

You can see in the chart below that the vast majority of CoreFX [https://github.com/dotnet/corefx] is platform-neutral code that is shared across all platforms. Platform-neutral code can be implemented as a single portable assembly that be used on all platforms.

[image: CoreFX: Lines of Code per Platform]

Windows and Unix implementations are similar in size. Windows has a larger implementation since CoreFX implements some Windows-only features, such as Microsoft.Win32.Registry [https://github.com/dotnet/corefx/tree/master/src/Microsoft.Win32.Registry] but does not yet implement any Unix-only concepts. You will also see that the majority of the Linux and macOS implementations are shared across a Unix implementation, while the Linux- and macOS-specific implementations are roughly similar in size.

There are a mix of platform-specific and platform-neutral libraries in .NET Core. You can see the pattern in a few examples:

		CoreCLR [https://github.com/dotnet/coreclr] is platform-specific. It’s built in C/C++, so is platform-specific by construction.

		System.IO [https://github.com/dotnet/corefx/tree/master/src/System.IO] and System.Security.Cryptography.Algorithms [https://github.com/dotnet/corefx/tree/master/src/System.Security.Cryptography.Algorithms] are platform-specific, given that the storage and cryptography APIs differ significantly on each OS.

		System.Collections [https://github.com/dotnet/corefx/tree/master/src/System.Collections] and System.Linq [https://github.com/dotnet/corefx/tree/master/src/System.Linq] are platform-neutral, given that they create and operate over data structures.

Comparisons to other .NET Platforms

It is perhaps easiest to understand the size and shape of .NET Core by comparing it to existing .NET platforms.

Comparison with .NET Framework

The .NET platform was first announced by Microsoft in 2000 and then evolved from there. The .NET Framework has been the primary .NET product produced by Microsoft during that 15+ year span.

The major differences between .NET Core and the .NET Framework:

		App-models – .NET Core does not support all the .NET Framework app-models, in part because many of them are built on Windows technologies, such as WPF (built on top of DirectX). The console and ASP.NET Core app-models are supported by both .NET Core and .NET Framework.

		APIs – .NET Core contains many of the same, but fewer, APIs as the .NET Framework, and with a different factoring (assembly names are different; type shape differs in key cases). These differences currently typically require changes to port source to .NET Core. .NET Core implements the .NET Standard Library API, which will grow to include more of the .NET Framework BCL API over time.

		Subsystems – .NET Core implements a subset of the subsystems in the .NET Framework, with the goal of a simpler implementation and programming model. For example, Code Access Security (CAS) is not supported, while reflection is supported.

		Platforms – The .NET Framework supports Windows and Windows Server while .NET Core also supports macOS and Linux.

		Open Source – .NET Core is open source, while a read-only subset of the .NET Framework [https://github.com/microsoft/referencesource] is open source.

While .NET Core is unique and has significant differences to the .NET Framework and other .NET platforms, it is straightforward to share code, using either source or binary sharing techniques.

Comparison with Mono

Mono [http://www.mono-project.com/] is the original cross-platform and open source [https://github.com/mono/mono] .NET implementation, first shipping in 2004. It can be thought of as a community clone of the .NET Framework. The Mono project team relied on the open .NET standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] (notably ECMA 335) published by Microsoft in order to provide a compatible implementation.

The major differences between .NET Core and Mono:

		App-models – Mono supports a subset of the .NET Framework app-models (for example, Windows Forms) and some additional ones (for example, Xamarin.iOS [https://www.xamarin.com/platform]) through the Xamarin product. .NET Core doesn’t support these.

		APIs – Mono supports a large subset [http://docs.go-mono.com/?link=root%3a%2fclasslib] of the .NET Framework APIs, using the same assembly names and factoring.

		Platforms – Mono supports many platforms and CPUs.

		Open Source – Mono and .NET Core both use the MIT license and are .NET Foundation projects.

		Focus – The primary focus of Mono in recent years is mobile platforms, while .NET Core is focused on cloud workloads.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/getting-started.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with .NET Core
description: Getting started with .NET Core
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d1453a0d-317c-4da6-b68e-422a2c0bfe49

Getting started with .NET Core

.NET Core runs on Windows, Linux, and macOS / OS X

Windows

Install .NET Core on Windows [https://www.microsoft.com/net/core#windows].

You can get started developing .NET Core apps by following these step-by-step tutorials.

		Getting started with .NET Core on Windows, using Visual Studio 2015 - Use Visual Studio [https://www.visualstudio.com/], the full-featured integrated development environment (IDE) for Windows.

		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor. This tutorial is written for macOS, but Visual Studio Code also works on Windows.

		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).

.NET Core is supported by the following versions of Windows (both 32-bit and 64-bit):

		Windows 7 SP1

		Windows 8.1

		Windows 10

		Windows Server 2008 R2 SP1 (Full Server or Server Core)

		Windows Server 2012 SP1 (Full Server or Server Core)

		Windows Server 2012 R2 SP1 (Full Server or Server Core)

		Windows Server 2016 (Full Server, Server Core or Nano Server)

Linux

Install Linux on your distribution/version:

		Red Hat Enterprise Linux 7 Server [https://www.microsoft.com/net/core#redhat]

		Ubuntu 14.04, 16.04 & Linux Mint 17 [https://www.microsoft.com/net/core#ubuntu]

		Debian 8.2 [https://www.microsoft.com/net/core#debian]

		Fedora 23 [https://www.microsoft.com/net/core#fedora]

		CentOS 7.1 & Oracle Linux 7.1 [https://www.microsoft.com/net/core#centos]

		openSUSE 13.2 [https://www.microsoft.com/net/core#opensuse]

You can get started developing .NET Core apps by following these step-by-step tutorials.

		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor. This tutorial is written for macOS, but Visual Studio Code also works on Linux.

		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).

.NET Core is supported by the Linux distributions and versions listed above in the installation links.

OS X / macOS

Install .NET Core for Mac OS X 10.11 [https://www.microsoft.com/net/core#macos].

You can get started developing .NET Core apps by following these step-by-step tutorials.

		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor.

		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).

.NET Core is supported by 64-bit OS X 10.11 (El Capitan). It isn’t yet supported by macOS Sierra, but will be soon.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/tutorials/working-with-linq.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Working with LINQ
description: Working with LINQ
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0db12548-82cb-4903-ac88-13103d70aa77

Working with LINQ

Introduction

This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:

		How to generate sequences with LINQ

		How to write methods that can be easily used in LINQ queries.

		How to distinguish between eager and lazy evaluation.

You’ll learn these techniques by building an application that demonstrates
one of the basic skills of any magician: the
faro shuffle [https://en.wikipedia.org/wiki/Faro_shuffle]. Briefly,
a faro shuffle is a technique where you split a card deck exactly in half,
then the shuffle interleaves each one card from each half to rebuild the
original deck.

Magicians use this technique because every card is in a known location
after each shuffle, and the order is a repeating pattern.

For our purposes, it is a light hearted look at manipulating sequences
of data. The application you’ll build will construct a card deck, and
then perform a sequence of shuffles, writing the sequence out each time.
You’ll also compare the updated order to the original order.

This tutorial has multiple steps. After each step, you can run the
application and see the progress.

Prerequisites

You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Ubuntu Linux, OS X or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.

Create the Application

The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.

If you’ve never used C# before, this tutorial
explains the structure of a C# program. You can read that and then
return here to learn more about LINQ.

Creating the Data Set

Let’s start by creating a deck of cards. You’ll do this using a LINQ
query that has two sources (one for the four suits, one for the
thirteen values). You’ll combine those source into a 52 card deck.

Here’s the query:

var startingDeck = from s in Suits()
 from r in Ranks()
 select new { Suit = s, Rank = r };

The multiple from clauses produce a SelectMany, which creates
a single sequence from combining each element in the first sequence
with each element in the second sequence. The order is important
for our purposes. The first element in the first source sequence
(Suits) is combined with every element in the second sequence (Values).
This produces all thirteen cards of first suit. That process is repeated
with each element in the first sequence (Suits). The end result is a deck of cards
ordered by suits, followed by values.

Next, you’ll need to build the Suits() and Ranks() methods. Let’s start
with a really simple set of iterator methods that generate the sequence
as an enumerable of strings:

static IEnumerable<string> Suits()
{
 yield return "clubs";
 yield return "diamonds";
 yield return "hearts";
 yield return "spades";
}

static IEnumerable<string> Ranks()
{
 yield return "two";
 yield return "three";
 yield return "four";
 yield return "five";
 yield return "six";
 yield return "seven";
 yield return "eight";
 yield return "nine";
 yield return "ten";
 yield return "jack";
 yield return "queen";
 yield return "king";
 yield return "ace";
}

These two methods both utilize the yield return syntax to produce a sequence
as they run. The compiler builds an object that implements IEnumerable<T>
and generates the sequence of strings as they are requested.

Go ahead and run the sample you’ve built at this point. It will display
all 52 cards in the deck. You may find it very helpful to run this sample
under a debugger to observe how the Suits() and Values() methods
execute. You can clearly see that each string in each sequence is generated
only as it is needed.

Manipulating the Order

Next, let’s build a utility method that can perform the shuffle. The first step
is to split the deck in two. The Take() and Skip() methods that are
part of the LINQ APIs provide that feature for us:

var top = startingDeck.Take(26);
var bottom = startingDeck.Skip(26);

The shuffle method doesn’t exist in the standard library, so you’ll have
to write your own. This new method illustrates several techniques that you’ll
use with LINQ-based programs, so let’s explain each part of the method in
steps.

The signature for the method creates an extension method:

public static IEnumerable<T> InterleaveSequenceWith<T>
 (this IEnumerable<T> first, IEnumerable<T> second)

An extension method is a special purpose static method.
You can see the addition of the this modifier on the first
argument to the method. That means you call the method as though
it were a member method of the type of the first argument.

Extension methods can be declared only inside static classes, so
let’s create a new static class called extensions for this functionality.
You’ll add more extension methods as you continue this tutorial, and those
will be placed in the same class.

This method declaration also follows a standard idiom where the input and
output types are IEnumerable<T>. That practice enables LINQ methods to
be chained together to perform more complex queries.

using System.Collections.Generic;

namespace LinqFaroShuffle
{
 public static class Extensions
 {
 public static IEnumerable<T> InterleaveSequenceWith<T>
 (this IEnumerable<T> first, IEnumerable<T> second)
 {
 // implementation coming.
 }
 }
}

You will be enumerating both sequences at once, interleaving the elements,
and creating one object. Writing a LINQ method that works with two
sequences requires that you understand how IEnumerable works.

The IEnumerable interface has one method: GetEnumerator(). The object
returned by GetEnumerator() has a method to move to the next element,
and a property that retrieves the current element in the sequence. You
will use those two members to enumerate the collection and return the
elements. This Interleave method will be an iterator method, so instead
of building a collection and returning the collection, you’ll use the
yield return syntax shown above.

Here’s the implementation of that method:

public static IEnumerable<T> InterleaveSequenceWith<T>
 (this IEnumerable<T> first, IEnumerable<T> second)
{
 var firstIter = first.GetEnumerator();
 var secondIter = second.GetEnumerator();
 while (firstIter.MoveNext() && secondIter.MoveNext())
 {
 yield return firstIter.Current;
 yield return secondIter.Current;
 }
}

Now that you’ve written this method, go back to the Main method
and shuffle the deck once:

public static void Main(string[] args)
{
 var startingDeck = from s in Suits()
 from r in Ranks()
 select new { Suit = s, Rank = r };
 foreach (var c in startingDeck)
 Console.WriteLine(c);

 var top = startingDeck.Take(26);
 var bottom = startingDeck.Skip(26);

 var shuffle = top.InterleaveSequenceWith(bottom);
 foreach (var c in shuffle)
 Console.WriteLine(c);
}

Comparisons

Let’s see how many shuffles it takes to set the deck back to its
original order. You’ll need to write a method that determines if
two sequences are equal. After you have that method, you’ll need to
place the code that shuffles the deck in a loop, and check to see when
the deck is back in order.

Writing a method to determine if the two sequences are equal should
be straightforward. It’s a similar structure to the method you wrote
to shuffle the deck. Only this time, instead of yield returning each
element, you’ll compare the matching elements of each sequence. When
the entire sequence has been enumerated, if every element matches,
the sequences are the same:

public static bool SequenceEquals<T>(this IEnumerable<T> first, IEnumerable<T> second)
{
 var firstIter = first.GetEnumerator();
 var secondIter = second.GetEnumerator();
 while (firstIter.MoveNext() && secondIter.MoveNext())
 {
 if (!firstIter.Current.Equals(secondIter.Current))
 return false;
 }
 return true;
}

This shows a second Linq idiom: terminal methods. They take a sequence as input
(or in this case, two sequences), and return a single scalar value. These methods,
when they are used, are always the final method of a query. (Hence the name).

You can see this in action when you use it to determine when the deck
is back in its original order. Put the shuffle code inside a loop, and stop when
the sequence is back in its original order by applying the SequenceEquals()
method. You can see it would always be the final method in any query, because it
returns a single value instead of a sequence:

var times = 0;
var shuffle = startingDeck;
do
{
 shuffle = shuffle.Take(26).InterleaveSequenceWith(shuffle.Skip(26));

 foreach (var c in shuffle)
 Console.WriteLine(c);

 Console.WriteLine();
 times++;
} while (!startingDeck.SequenceEquals(shuffle));
Console.WriteLine(times);

Run the sample, and see how the deck rearranges on each shuffle, until
it returns to its original configuration after 8 iterations.

Optimizations

The sample you’ve built so far executes an in shuffle, where the
top and bottom cards stay the same on each run. Let’s make one change,
and run an out shuffle, where all 52 cards change position. For an out shuffle,
you interleave the deck so that the first card in the bottom half becomes the
first card in the deck. That means the last card in the top half becomes the bottom
card. That’s just a one line change. Update the call to shuffle to change the order
of the top and bottom halves of the deck:

shuffle = shuffle.Skip(26).InterleaveSequenceWith(shuffle.Take(26));

Run the program again, and you’ll see that it takes 52 iterations for the
deck to reorder itself. You’ll also start to notice some serious performance degradations
as the program continues to run.

There are a number of reasons for this. Let’s tackle one of the major causes: inefficient
use of lazy evaluation.

LINQ queries are evaluated lazily. The sequences are generated only as the elements are requested.
Usually, that’s a major benefit of LINQ. However, in a use such as this program, this causes
exponential growth in execution time.

The original deck was generated using a LINQ query. Each shuffle is generated by performing three
LINQ queries on the previous deck. All these are performed lazily. That also means they are performed
again each time the sequence is requested. By the time you get to the 52nd iteration, you’re regenerating
the original deck many, many times. Let’s write a log to demonstrate this behavior. Then, you’ll fix it.

Here’s a log method that can be appended to any query to mark that the query executed.

public static IEnumerable<T> LogQuery<T>(this IEnumerable<T> sequence, string tag)
{
 using (var writer = File.AppendText("debug.log"))
 {
 writer.WriteLine($"Executing Query {tag}");
 }
 return sequence;
}

Next, instrument the definition of each query with a log message:

public static void Main(string[] args)
{
var startingDeck = (from s in Suits().LogQuery("Suit Generation")
 from r in Ranks().LogQuery("Rank Generation")
 select new { Suit = s, Rank = r }).LogQuery("Starting Deck");
 foreach (var c in startingDeck)
 Console.WriteLine(c);

 Console.WriteLine();
 var times = 0;
 var shuffle = startingDeck;
 do
 {
 //shuffle = shuffle.Take(26).LogQuery("Top Half")
 // .InterleaveSequenceWith(shuffle.Skip(26).LogQuery("Bottom Half")).LogQuery("Shuffle");

 shuffle = shuffle.Skip(26).LogQuery("Bottom Half")
 .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top Half")).LogQuery("Shuffle");

 foreach (var c in shuffle)
 Console.WriteLine(c);
 times++;
 Console.WriteLine(times);
 } while (!startingDeck.SequenceEquals(shuffle));
 Console.WriteLine(times);
}

Notice that you don’t log every time you access a query. You log only when you create
the original query. The program still takes a long time to run, but now you can see why.
If you run out of patience running the outer shuffle with logging turned on, switch back
to the inner shuffle. You’ll still see the lazy evaluation effects. In one run, it executes
2592 queries, including all the value and suit generation.

There is an easy way to update this program to avoid all those executions. There are
LINQ methods ToArray() and ToList() that cause the query to run, and store the results
in an array or a list, respectively. You use these methods to cache the data results of a query
rather than execute the source query again. Append the queries that generate the card decks
with a call to ToArray() and run the query again:

public static void Main(string[] args)
{
var startingDeck = (from s in Suits().LogQuery("Suit Generation")
 from v in Ranks().LogQuery("Rank Generation")
 select new { Suit = s, Rank = r })
 .LogQuery("Starting Deck")
 .ToArray();
 foreach (var c in startingDeck)
 Console.WriteLine(c);

 Console.WriteLine();
 var times = 0;
 var shuffle = startingDeck;
 do
 {
 shuffle = shuffle.Take(26).LogQuery("Top Half")
 .InterleaveSequenceWith(shuffle.Skip(26).LogQuery("Bottom Half")).LogQuery("Shuffle").ToArray();

 //shuffle = shuffle.Skip(26).LogQuery("Bottom Half")
 // .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top Half")).LogQuery("Shuffle");

 foreach (var c in shuffle)
 Console.WriteLine(c);
 times++;
 Console.WriteLine(times);
 } while (!startingDeck.SequenceEquals(shuffle));
 Console.WriteLine(times);
}

Run again, and the inner shuffle is down to 30 queries. Run again with the outer shuffle
and you’ll see similar improvements. (It now executes 162 queries).

Don’t misinterpret this example by thinking that all queries should run
eagerly. This example is designed to highlight the use cases where lazy
evaluation can cause performance difficulties. That’s because each new
arrangement of the deck of cards is built from the previous arrangement.
Using lazy evaluation means each new deck configuration is built from
the original deck, even executing the code that built the startingDeck.
That causes a large amount of extra work.

In practice, some algorithms run much better using eager evaluation, and others run much
better using lazy evaluation. (In general, lazy evaluation is a much better choice
when the data source is a separate process, like a database engine. In those cases,
lazy evaluation enables more complex queries to execute only one round trip to the
database process.) LINQ enables both lazy and eager evaluation. Measure, and pick
the best choice.

Preparing for New Features

The code you’ve written for this sample is an example of creating a simple prototype that does the
job. This is a great way to explore a problem space, and for many features, it may be
the best permanent solution. You’ve leveraged anonymous types for the cards, and each
card is represented by strings.

Anonymous Types have many productivity advantages. You don’t need to define a class yourself
to represent the storage. The compiler generates the type for you. The compiler generated type
utilizes many of the best practices for simple data objects. It’s immutable, meaning that
none of its properties can be changed after it has been constructed. Anonymous types are
internal to an assembly, so they aren’t seen as part of the public API for that assembly.
Anonymous types also contain an override of the ToString() method that returns a formatted
string with each of the values.

Anonymous types also have disadvantages. They don’t have accessible names, so you can’t use
them as return values or arguments. You’ll notice that any methods above that used these anonymous
types are generic methods. The override of ToString() may not be what you want as the application
grows more features.

The sample also uses strings for the suit and the rank of each card. That’s quite open ended.
The C# type system can help us make better code, by leveraging enum types for those
values.

Start with the suits. This is a perfect time to use an enum:

public enum Suit
{
 Clubs,
 Diamonds,
 Hearts,
 Spades
}

The Suits() method also changes type and implementation:

static IEnumerable<Suit> Suits()
{
 yield return Suit.Clubs;
 yield return Suit.Diamonds;
 yield return Suit.Hearts;
 yield return Suit.Spades;
}

Next, do the same change with the Rank of the cards:

public enum Rank
{
 Two,
 Three,
 Four,
 Five,
 Six,
 Seven,
 Eight,
 Nine,
 Ten,
 Jack,
 Queen,
 King,
 Ace
}

And the method that generates them:

static IEnumerable<Rank> Values()
{
 yield return Rank.Two;
 yield return Rank.Three;
 yield return Rank.Four;
 yield return Rank.Five;
 yield return Rank.Six;
 yield return Rank.Seven;
 yield return Rank.Eight;
 yield return Rank.Nine;
 yield return Rank.Ten;
 yield return Rank.Jack;
 yield return Rank.Queen;
 yield return Rank.King;
 yield return Rank.Ace;
}

As one final cleanup, let’s make a type to represent the card, instead of
relying on an anonymous type. Anonymous types are great for lightweight,
local types, but in this example, the playing card is one of the main
concepts. It should be a concrete type.

public class PlayingCard
{
 public Suit CardSuit { get; }
 public Rank CardRank { get; }

 public PlayingCard(Suit s, Rank r)
 {
 CardSuit = s;
 CardRank = r;
 }

 public override string ToString()
 {
 return $"{CardRank} of {CardSuit}";
 }
}

This type uses auto-implemented read-only properties which are set
in the constructor, and then cannot be modified. It also makes use of
the new string interpolation feature that makes it easier to format
string output.

Update the query that generates the starting deck to use the new type:

var startingDeck = (from s in Suits().LogQuery("Suit Generation")
 from r in Ranks().LogQuery("Value Generation")
 select new PlayingCard(s, r))
 .LogQuery("Starting Deck")
 .ToArray();

Compile and run again. The output is a little cleaner, and the code is a bit
more clear and can be extended more easily.

Conclusion

This sample should you some of the methods used in LINQ, how to create your
own methods that will be easily used with LINQ enabled code. It also showed
you the differences between lazy and eager evaluation, and the affect that
decision can have on performance.

And, you learned a bit about one magician’s technique. Magician’s use the
faro shuffle because they can control where every card moves in the deck.
In some tricks, the magician has an audience member place a card on top
of the deck, and shuffles a few times, knowing where that card goes. Other
illusions require the deck set a certain way. A magician will set the deck
prior to performing the trick. Then she will shuffle the deck 5 times
using an inner shuffle. On stage, she can show what looks like a random
deck, shuffle it 3 more times, and have the deck set exactly how she wants.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/rid-catalog.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Runtime IDentifier (RID) catalog
description: .NET Core Runtime IDentifier (RID) catalog
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b2032f5d-771f-48d9-917c-587d9509035c

.NET Core Runtime IDentifier (RID) catalog

What are RIDs?

RID is short for Runtime IDentifier. RIDs are used to identify target operating systems where an application or asset
(that is, assembly) will run. They look like this: “ubuntu.14.04-x64”, “win7-x64”, “osx.10.11-x64”.
For the packages with native dependencies, it will designate on which platforms the package can be restored.

It is important to note that RIDs are really opaque strings. This means that they have to match exactly for operations
using them to work. As an example, let us consider the case of Elementary OS [https://elementary.io/], which is a straightforward clone of
Ubuntu 14.04. Although .NET Core and CLI work on top of that version of Ubuntu, if you try to use them on Elementary OS
without any modifications, the restore operation for any package will fail. This is because we currently (May 3rd, 2016) don’t
have a RID that designates Elementary OS as a platform.

RIDs that represent concrete operating systems should be of the form: [os].[version]-[arch] where:

		[os] is the operating system moniker, for example, win

		[version] is the operating system version in the form of a dot (.) separated version number, for example, 10.1511,
accurate enough to reasonably enable assets to target operating system platform APIs represented by that version.
		This shouldn’t be marketing versions, as they often represent multiple discrete versions of the operating
system with varying platform API surface area, for example, win.10-x64

		[arch] is the processor architecture, for example, x86, x64, arm, arm64, etc.

The RID graph is defined in a package called Microsoft.NETCore.Platforms in a file called runtime.json which you can
see on the CoreFX repo [https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/runtime.json]. If
you use this file, you will notice that some of the RIDs have an "#import" statement in them. These statements are
compatibility statements. That means that a RID that has an imported RID in it, can be a target for restoring packages
for that RID. Slightly confusing, but let’s look at an example. Let’s take a look at macOS:

"osx.10.11-x64": {
 "#import": ["osx.10.11", "osx.10.10-x64"]
}

The above RID specifies that osx.10.11-x64 imports osx.10.10-x64. This means that when restoring packages, NuGet will
be able to restore packages that specify that they need osx.10.10-x64 on osx.10.11-x64.

A slightly bigger example RID graph:

		win.10.1511-x64
		win.10.1511

		win.10-x64
		win.10

		win.6.3.9200-x64
		win.6.3-x64

		win.6.3

		win.6.3.9200

		win.6.2.9200-x64
		win.6.2.9200

		win.6.1.7600-x64
		win.6.1.7600

		win.6.1-x64
		win.6.1
		win
		any

All RIDs eventually map back to the root any RID.

Although they look easy enough to use, there are some special things about RIDs that you have to keep in mind when
working with them:

		They are opaque strings and should be treated as black boxes
		You should not construct RIDs programmatically

		You need to use the RIDs that are already defined for the platform and this document shows that

		The RIDs do need to be specific so don’t assume anything from the actual RID value; please consult this document
to determine which RID(s) you need for a given platform

Using RIDs

In order to use RIDs, you have to know which RIDs there are. This document lists out the currently supported RIDs in
.NET Core. Please be aware that this document is getting updated regularly as new RIDs are added to the platform. If you
wish to check if new ones are added, please check back here.

We are working towards getting this information into a more interactive form. When that happens, this page will be
updated to point to that tool and/or its usage documentation.

Windows RIDs

		Windows 7
		win7-x64

		win7-x86

		Windows 8
		win8-x64

		win8-x86

		Windows 10
		win10-x64

		win10-x86

Linux RIDs

		Red Hat Enterprise Linux
		rhel.7.0-x64

		rhel.7.1-x64

		rhel.7.2-x64

		Ubuntu
		ubuntu.14.04-x64

		ubuntu.14.10-x64

		ubuntu.15.04-x64

		CentOS
		centos.7-x64

		centos.7.1-x64

		Debian
		debian.8-x64

		debian.8.2-x64

		Currently supported Ubuntu derivatives
		linuxmint.17-x64

		linuxmint.17.1-x64

		linuxmint.17.2-x64

		linuxmint.17.3-x64

OS X RIDs

		osx.10.10-x64

		osx.10.11-x64

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/tutorials/microservices.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Microservices hosted in Docker
description: Microservices hosted in Docker
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 87e93838-a363-4813-b859-7356023d98ed

Microservices hosted in Docker

##Introduction

This tutorial details the tasks necessary to build and deploy
an ASP.NET Core microservice in a Docker container. During the course
of this tutorial, you’ll learn:

		How to generate an ASP.NET Core application using Yeoman

		How to create a development Docker environment

		How to build a Docker image based on an existing image.

		How to deploy your service into a Docker container.

Along the way, you’ll also see some C# language features:

		How to convert C# objects into JSON payloads.

		How to build immutable Data Transfer Objects

		How to process incoming HTTP Requests and generate the HTTP Response

		How to work with nullable value types

Why Docker?

Docker makes it easy to create standard machine images to
host your services in a data center, or the public cloud. Docker
enables you to configure the image, and replicate it as needed to
scale the installation of your application.

All the code in this tutorial will work in any .NET Core environment.
The additional tasks for a Docker installation will work for an ASP.NET
Core application.

Prerequisites

You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page.
You can run this application on Windows, Ubuntu Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.

You’ll also need to install the Docker engine. See the
Docker Installation page [https://docs.docker.com/engine/installation/]
for instructions.
Docker can be installed in many Linux distributions, macOS, or Windows. The page
referenced above contains links to each of the available installations.

You’ll also need to install a number of command line tools that support
ASP.NET core development. The command line templates use Yeoman, Bower,
Grunt, and Gulp. You may already have many of these tools, but if not,
run the following command in your favorite shell:

npm install -g yo bower grunt-cli gulp

This instructs the node package manager (npm) to install the needed tools.
The ‘-g’ option indicates that it is a global install, and those tools are
available system wide. (A local install scopes the package to a single
project). Once you’ve installed those core tools, you need to install
the yeoman asp.net template generators:

npm install -g generator-aspnet

Create the Application

Now that you’ve installed all the tools, create a new asp.net core
application. To use the command line generator, execute the following
yeoman command in your favorite shell:

yo aspnet

This command prompts you to select what Type of application you want to
create. For this microservice, you want the simplest, most lightweight
web application possible, so select ‘Empty Web Application’. The template
will prompt you for a name. Select ‘WeatherMicroservice’.

The template creates eight files for you:

		A .gitignore, customized for asp.net core applications.

		A Startup.cs file. This contains the basis of the application.

		A Program.cs file. This contains the entry point of the application.

		A project.json file. This is the build file for the application.

		A Dockerfile. This script creates a Docker image for the application.

		A README.md. This contains links to other asp.net core resources.

		A web.config file. This contains basic configuration information.

		A Properties/launchSettings.json file. This contains debugging settings used by IDEs.

Now you can run the template generated application. That’s done using a series
of tools from the command line. The dotnet command runs the tools necessary
for .NET development. Each verb executes a different command

The first step is to restore all the dependencies:

dotnet restore

Dotnet restore uses the NuGet package manager to install all the necessary packages
into the application directory. It also generates a project.json.lock file. This
file contains information about each package that is referenced. After restoring
all the dependencies, you build the application:

dotnet build

And once you build the application, you run it from the command line:

dotnet run

The default configuration listens to http://localhost:5000. You can open a
browser and navigate to that page and see a “Hello World!” message.

Anatomy of an ASP.NET Core application

Now that you’ve built the application, let’s look at how this functionality
is implemented. There are two of the generated files that are particularly
interesting at this point: project.json and Startup.cs.

Project.json contains information about the project. The two nodes you’ll
often work with are ‘dependencies’ and ‘frameworks’. The
dependencies node lists all the packages that are needed for this application.
At the moment, this is a small node, needing only the packages that run the
web server.

The ‘frameworks’ node specifies the versions and configurations of the .NET
framework that will run this application.

The application is implemented in Startup.cs. This file contains the startup
class.

The two methods are called by the asp.net core infrastructure to configure
and run the application. The ConfigureServices method describes the services that are
necessary for this application. You’re building a lean microservice, so it doesn’t
need to configure any dependencies. The Configure method configures the handlers
for incoming HTTP Requests. The template generates a simple handler that responds
to any request with the text ‘Hello World!‘.

Build a microservice

The service you’re going to build will deliver weather reports from anywhere
around the globe. In a production application, you’d call some service
to retrieve weather data. For our sample, we’ll generate a random weather
forecast.

There are a number of tasks you’ll need to perform in order to implement
our random weather service:

		Parse the incoming request to read the latitude and longitude.

		Generate some random forecast data.

		Convert that random forecast data from C# objects into JSON packets.

		Set the response header to indicate that your service sends back JSON.

		Write the response.

The next sections walk you through each of these steps.

Parsing the Query String.

You’ll begin by parsing the query string. The service will accept
‘lat’ and ‘long’ arguments on the query string in this form:

http://localhost:5000/?lat=-35.55&long=-12.35

All the changes you need to make are in the lambda expression
defined as the argument to app.Run in your startup class.

The argument on the lambda expression is the HttpContext for the
request. One of its properties is the Request object. The Request
object has a Query property that contains a dictionary of all the
values on the query string for the request. The first addition is to
find the latitude and longitude values:

var latString = context.Request.Query["lat"].FirstOrDefault();
var longString = context.Request.Query["long"].FirstOrDefault();

The Query dictionary values are StringValue type. That type can
contain a collection of strings. For your weather service, each
value is a single string. That’s why there’s the call to FirstOrDefault()
in the code above.

Next, you need to convert the strings to doubles. The method you’ll use
to convert the string to a double is double.TryParse():

bool TryParse(string s, out double result);

This method leverages C# out parameters to indicate if the input string
can be converted to a double. If the string does represent a valid
representation for a double, the method returns true, and the result
argument contains the value. If the string does not represent a valid
double, the method returns false.

You can adapt that API with the use of an extension method that returns
a nullable double. A nullable value type is a type that represents
some value type, and can also hold a missing, or null value. A nullable
type is represented by appending the ? character to the type declaration.

Extension methods are methods that are defined as static methods, but
by adding the this modifier on the first parameter, can be called as
though they are members of that class. Extension methods may only be
defined in static classes. Here’s the definition of the class containing
the extension method for parse:

public static class Extensions
{
 public static double? TryParse(this string input)
 {
 double result;
 if (double.TryParse(input, out result))
 return result;
 else
 return default(double?);
 }
}

The default(double?) expression returns the default value for the
double? type. That default value is the null (or missing) value.

You can use this extension method to convert the query string arguments
into the double type:

var latitude = latString.TryParse();
var longitude = longString.TryParse();

To easily test the parsing code, update the response to include the values
of the arguments:

await context.Response.WriteAsync($"Retrieving Weather for lat: {latitude}, long: {longitude}");

At this point, you can run the web application and see if your parsing
code is working. Add values to the web request in a browser, and you should see
the updated results.

Build a random weather forecast

Your next task is to build a random weather forecast. Let’s start with a data
container that holds the values you’d want for a weather forecast:

public class WeatherReport
{
 private static readonly string[] PossibleConditions = new string[]
 {
 "Sunny",
 "Mostly Sunny",
 "Partly Sunny",
 "Partly Cloudy",
 "Mostly Cloudy",
 "Rain"
 };

 public int HiTemperature { get; }
 public int LoTemperature { get; }
 public int AverageWindSpeed { get; }
 public string Conditions { get; }
}

Next, build a constructor that randomly sets those values:

public WeatherReport(double latitude, double longitude, int daysInFuture)
{
 var generator = new Random((int)(latitude + longitude) + daysInFuture);

 HiTemperature = generator.Next(40, 100);
 LoTemperature = generator.Next(0, HiTemperature);
 AverageWindSpeed = generator.Next(0, 45);
 Conditions = PossibleConditions[generator.Next(0, PossibleConditions.Length - 1)];
}

You can now generate the 5-day forecast in your response method:

if (latitude.HasValue && longitude.HasValue)
{
 var forecast = new List<WeatherReport>();
 for (var days = 1; days < 6; days++)
 {
 forecast.Add(new WeatherReport(latitude.Value, longitude.Value, days));
 }
}

Build the JSON response.

The final code task on the server is to convert the WeatherReport array
into a JSON packet, and send that back to the client. Let’s start by creating
the JSON packet. You’ll add the NewtonSoft JSON Serializer to the
list of dependencies:

 "dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0",
 "type": "platform"
 },
 "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
 "Newtonsoft.Json": "8.0.4-beta1",
 "Microsoft.NETCore.Portable.Compatibility": "1.0.0"
 },

Then, you can use the JsonConvert class to write the object to a string:

var json = JsonConvert.SerializeObject(forecast, Formatting.Indented);
context.Response.ContentType = "application/json; charset=utf-8";
await context.Response.WriteAsync(json);

The code above converts the forecast object (a list of WeatherForecast
objects) into a JSON packet. After you’ve constructed the response packet,
you set the content type to ‘application/json’, and write the string.

The application now runs and returns random forecasts.

Load into Docker

The Dockerfile created by the asp.net template will serve
for our purposes. Let’s go over its contents.

The first line specifies the source image:

FROM microsoft/dotnet:onbuild

Docker allows you to configure a machine image based on a
source template. That means you don’t have to supply all
the machine parameters when you start, you only need to
supply any changes. The changes here will be to include
our application.

In this first sample, we’ll use the onbuild version of
the RC2 image. This is the easiest way to create a working Docker
environment. However, the image it creates is larger than necessary.
This image include the dotnet core runtime, and the dotnet SDK.

The next two lines load SQLite onto the machine:

RUN printf "deb http://ftp.us.debian.org/debian jessie main\n" >> /etc/apt/sources.list
RUN apt-get -qq update && apt-get install -qqy sqlite3 libsqlite3-dev && rm -rf /var/lib/apt/lists/*

We’re not using SQLite, but leave it in place for reference if you need it later.

The next three lines setup your application:

COPY . /app
WORKDIR /app
RUN ["dotnet", "restore"]

This will copy the contents of the current directory to the docker VM, and restore
all the packages.

The final lines of the file set the output port (80) and run the application:

EXPOSE 80
ENTRYPOINT ["dotnet", "run"]

Notice that this Dockerfile uses the dotnet cli to build and run your docker image.
That’s why the larger image is needed.

Here are the steps to build the image and deploy it. The information below is
for the PowerShell CLI. Different shells will have slightly different syntax
that will be highlighted below.

First, you have to create a new docker machine called ‘weather-service’:

docker-machine create --driver virtualbox weather-service

This command creates a new virtual machine in your Docker installation. You can see
the machine by typing the following command:

docker-machine ls

To connect to the machine, you need to retrieve its environment. That’s done with
the env command in docker-machine:

docker-machine env --shell powershell weather-service

Substitute your shell of choice for ‘powershell’ in the command above. This command
echoes back a command to configure your shell to communicate with the docker container.
In PowerShell it is as follows:

 & "C:\Program Files\Docker Toolbox\docker-machine.exe" env --shell powershell weather-service | Invoke-Expression

If you are using a different shell, the output from the docker-machine command
above will show you what command to use in its place. Execute the command that was generated
for you.

Note: The docker-machine command will include the shell’s comment character,
in the case of powershell in the output for the command to run. Make sure
you remove this character when you execute the command.

Finally, build the docker image from your application:

docker build -t weather-service .

Note: You may need to restart the Docker machine for the docker build command
to work. You do that by executing the docker restart command:

docker restart weather-service

The build command builds the image using your source, and the configuration
settings in your
Dockerfile.

And finally run the application in the docker container:

docker run -t -d -p 80:5000 weather-service

You can see if the image is running by checking the command:

docker ps

If your container is running, you’ll see a line that lists
it in the running processes. (It may be the only one).

To navigate to your service, find the IP address for the machine:

docker-machine ip weather-service

Open a browser on the docker host and navigate to that site, and you should see your
weather service running.

Conclusion

In this tutorial, you built an asp.net core microservice, and added a few
features.

You built a docker machine, created an image of your new application and
ran that application in the docker vm.
Along the way, you saw several features of the C# language in action.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/app-types.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core App Types
description: .NET Core App Types
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 93488a0b-c94c-4ed6-97ea-571bb23a862e

.NET Core App Types

Introduction

There are several ways to think about the “types” of applications you can build. Usually, the types describe
a certain execution model or are based on what the application can “do”; examples of these are “console application”,
“web application”, etc. All of these types of applications (and more) can be created with .NET Core, since it is
a general purpose development platform.

However, given its unique and cross-platform nature, .NET Core also has another angle through which to observe the type of the application
and that is the application’s portability. Portability essentially means where you can run your application and what
prerequisites you need to satisfy in order for your application to run on a given machine.
This document deals with this angle, portability, and outlines the two main types of portability that .NET Core enables.

There are two main types that we can observe:

		Portable application
		As a subcategory of this, we have the portable application with native dependencies

		Self-contained application

Portable applications

Portable applications are the default type in .NET Core. They require .NET Core to be installed on the targeted machine
in order for them to run. To you as a developer, this means that your application is portable between installations of
.NET Core.

This type of application will only carry its own code and dependencies that are outside of .NET Core libraries.
As an example, let’s say you are making a console application that has the ability to invoke a certain REST API
and deserialize the returned JSON into a type and then display it. You have everything you need for this small
application except for a good JSON parser; for this, you add a dependency to your project.json to include
Json.NET [https://www.nuget.org/packages/Newtonsoft.Json/]. Once you publish your application using dotnet publish,
you will see that only your application’s code and JSON.net have been published in the output.
The .NET Core libraries remain outside of your application’s dependency closure.

In order to create a portable application, all you need to do is to target the .NET Core libraries in your project.json
and have your frameworks aligned as the below sample shows.

"dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0",
 "type": "platform"
 }
},
"frameworks": {
 "netcoreapp1.0": {}
}

The Microsoft.NETCore.App is a “metapackage” that states that you are targeting the .NET Core libraries. The type: platform
property on that dependency means that at publish time, the tooling will skip publishing the assemblies for that dependency
to the published output. You don’t need these since they will be installed with .NET Core on the targeted machine.

Portable application with native dependencies

A subgroup of the above, this type is a portable application that has native dependencies specified
somewhere in its dependency chain. This application is as portable as all of its native dependencies
are portable. You will be able to run the application on any platform that your native dependencies can
run on. Prime example of this is Kestrel, the ASP.NET Core cross-platform web server. It is built on top of
libuv [https://github.com/libuv/libuv] which is its native dependency.

When you publish a portable application that has a native dependency, the published output will contain
all the same things as the portable application described in the previous section. For native dependencies,
the published output will contain a folder for each Runtime Identifier (RID) that the native dependency supports
(and that exists in its NuGet package).

The below project.json sample is showing an example of a portable application with a native dependency.

"dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0",
 "type": "platform"
 },
 "Microsoft.AspNetCore.Server.Kestrel": "1.0.0-*"
},
"frameworks": {
 "netcoreapp1.0": {}
}

Self-contained application

Unlike the portable application, a self-contained application does not rely on any shared component to
be present on the machine where you want to deploy the application. As its name implies, it means that
the entire dependency closure, including the runtime is packaged with the application. This makes
it larger, but also makes it capable of running on any .NET Core supported platforms with the correct
native dependencies, whether it has .NET Core installed or not. This makes it that much
easier to deploy to the target machine, since you only deploy your application.

Since the application carries the runtime within itself, you need to make an explicit choice which platforms your application
needs to run on. For instance, if you publish a self-contained application for Windows 10, that same application will
not work on macOS or Linux and vice versa. Of course, you can add or remove platforms during development at any given time.

There are several steps to get to a self-contained application. The first is to remove any "type": "platform" properties
off of any dependencies you have. Second is to leave the dependency on Microsoft.NETCore.App as it will pull in
all of the rest of things that are needed.

Finally, you need to add a runtimes node in your project.json that will list out the
RIDs you wish to use. When restoring a project that has the runtimes node in it, NuGet
will restore the needed runtime for all the RIDs specifies. Then, when you want to publish your application for a given platform,
you publish it using the --runtime <RID> argument to dotnet publish. The RID specified in the
command invocation has to be an RID that is specified in your project.json; otherwise, an error is thrown.

If you want to publish for the RID that represents the operating system you are using the .NET Core SDK
on, you don’t have to specify anything to dotnet publish. However, you still have to specify that RID in your
project.json in order to get a standalone application.

An important thing to note is that in the .NET Core Tools Preview 2 timeframe, the self-contained application is being published
from the NuGet cache on your machine. This means that all dependencies, including the actual .NET Core runtime and
libraries, is not ready-to-run optimized, which means that it will have lower overall performance than portable
applications. This is due to the fact that portable applications run against the installed .NET Core runtime and
libraries which are ready-to-run.

The following project.json sample illustrates a simple self-contained application.

"dependencies": {
 "Microsoft.NETCore.App": "1.0.0"
},
"frameworks": {
 "netcoreapp1.0": {}
},
"runtimes": {
 "win10-x64": {},
 "osx.10.11-x64": {}
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/sdk.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core SDK Overview
description: .NET Core SDK Overview
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 26bc9822-e42b-48ec-b0d6-499dc604add7

.NET Core SDK Overview

Introduction

.NET Core Software Development Kit (SDK) is a set of libraries and tools that allow developers to create .NET Core applications
and libraries. This is the package that developers will most likely acquire.

It contains the following components:

		The .NET Core Command Line Tools that are used to build applications

		.NET Core (libraries and runtime) that allow applications to both be built and run

		The dotnet driver for running the CLI commands as well as running applications

Acquiring the .NET Core SDK

As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can either
use the native installers to install the SDK or use the installation shell script.

The native installers are primarily meant for developer’s machines. The SDK is distributed using each supported platform’s
native install mechanism, for instance DEB packages on Ubuntu or MSI bundles on Windows. These installers will install
and set up the environment as needed for the user to use the SDK immediately after the install. However, they also
require administrative privileges on the machine. You can view the installation instructions on the
.NET Core getting started page [https://aka.ms/dotnetcoregs].

Install scripts, on the other hand, do not require administrative privileges. However, they will also not install any
prerequisites on the machine; you need to install all of the prerequisites manually. The scripts are meant mostly for
setting up build servers or when you wish to install the tools without admin privileges (do note the prerequisites
caveat above). You can find more information on the install script reference topic. If you are
interested in how to set up SDK on your CI build server you can take a look at the SDK with CI servers
document.

By default, the SDK will install in a “side-by-side” (SxS) manner. This means that multiple versions of the CLI tools
can coexist at any given time on a single machine. How the correct version gets used is explained in more detail in
the driver section below.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/migrating-from-dnx.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Migrating from DNX to .NET Core CLI
description: Migrating from DNX to .NET Core CLI
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c0d70120-78c8-4d26-bb3c-801f42fc2366

Migrating from DNX to .NET Core CLI

Overview

With RC1 release of .NET Core and ASP.NET Core 1.0, we introduced DNX tooling to the world. With RC2 release of .NET
Core and ASP.NET Core 1.0 we transitioned to the .NET Core CLI.

As a slight refresher, let’s recap what DNX was about. DNX was a runtime and a toolset used to build .NET Core and,
more specifically, ASP.NET Core 1.0 applications. It consisted of 3 main pieces:

		DNVM - an install script for obtaining DNX

		DNX (Dotnet Execution Runtime) - the runtime that executes your code

		DNU (Dotnet Developer Utility) - tooling for managing dependencies, building and publishing your applications

With the introduction of the CLI, all of the above are now part of a single toolset. However, since DNX was available in RC1
timeframe, you might have projects that were built using it that you would want to move off to the new CLI tooling.

This migration guide will cover the essentials on how to migrate projects off of DNX and onto .NET Core CLI. If you are just
starting a project on .NET Core from scratch, you can freely skip this document.

Main changes in the tooling

There are some general changes in the tooling that should be outlined first.

No more DNVM

DNVM, short for DotNet Version Manager was a bash/PowerShell script used to install a DNX on your machine. It helped
users get the DNX they need from the feed they specified (or default ones) as well as mark a certain DNX “active”, which
would put it on the $PATH for the given session. This would allow you to use the various tools.

DNVM was discontinued because its feature set was made redundant by changes coming in the .NET Core CLI tools.

The CLI tools come packaged in two main ways, as was explained in the overview document:

		Native installers for a given platform

		Install script for other situations (like CI servers)

Given this, the DNVM install features are not needed. But what about the runtime selection features?

You reference a runtime in your project.json by adding a package of a certain version to your dependencies. With this change,
your application will be able to use the new runtime bits. Getting these bits to your machine is the same as with the CLI:
you install the runtime via one of the native installers it supports or via its install script.

Different commands

If you were using DNX, you used some commands from one of its three parts (DNX, DNU or DNVM). With the CLI, some of these
commands change, some are not available and some are the same but have slightly different semantics.

The table below shows the mapping between the DNX/DNU commands and their CLI counterparts.

DNX command	CLI command	Description
——————————–	—————-	—————————————————————————————————————–
dnx run	dotnet run	Run code from source.
dnu build	dotnet build	Build an IL binary of your code.
dnu pack	dotnet pack	Package up a NuGet package of your code.
dnx [command] (for example, “dnx web”)	N/A*	In DNX world, run a command as defined in the project.json.
dnu install	N/A*	In the DNX world, install a package as a dependency.
dnu restore	dotnet restore	Restore dependencies specified in your project.json.
dnu publish	dotnet publish	Publish your application for deployment in one of the three forms (portable, portable with native and standalone).
dnu wrap	N/A*	In DNX world, wrap a project.json in csproj.
dnu commands	N/A*	In DNX world, manage the globally installed commands.

(*) - these features are not supported in the CLI by design.

DNX features that are not supported

As the table above shows, there are features from the DNX world that we decided not to support in the CLI, at least for
the time being. This section will go through the most important ones and outline the rationale behind not supporting
them as well as workarounds if you do need them.

Global commands

DNU came with a concept called “global commands”. These were, essentially, console applications packaged up as NuGet
packages with a shell script that would invoke the DNX you specified to run the application.

The CLI does not support this concept. It does, however, support the concept of adding per-project commands that can be
invoked using the familiar dotnet <command> syntax. More about this can be found in the
extensibility overview.

Installing dependencies

As of v1, the .NET Core CLI tools don’t have an install command for installing dependencies. In order to install a
package from NuGet, you would need to add it as a dependency to your project.json file and then run dotnet restore.

Running your code

There are two main ways to run your code. One is from source, with dotnet run. Unlike dnx run, this will not do any
in-memory compilation. It will actually invoke dotnet build to build your code and then run the built binary.

Another way is using the dotnet itself to run your code. This is done by providing a path to your assembly:
dotnet path/to/an/assembly.dll.

Migrating your DNX project to .NET Core CLI

In addition to using new commands when working with your code, there are three major things left in migrating from DNX:

		Migrate the global.json file if you have it to be able to use CLI.

		Migrating the project file (project.json) itself to the CLI tooling.

		Migrating off of any DNX APIs to their BCL counterparts.

Changing the global.json file

The global.json file acts like a solution file for both the RC1 and RC2 (or later) projects. In order for the CLI tools (as well
as Visual Studio) to differentiate between RC1 and later versions, they use the "sdk": { "version" } property to make the distinction
which project is RC1 or later. If global.json doesn’t have this node at all, it is assumed to be the latest.

In order to update the global.json file, either remove the property or set it to the exact version of the
tools that you wish to use, in this case 1.0.0-preview2-003121:

{
 "sdk": {
 "version": "1.0.0-preview2-003121"
 }
}

Migrating the project file

The CLI and DNX both use the same basic project system based on project.json file. The syntax and the semantics of the
project file are pretty much the same, with small differences based on the scenarios. There are also some changes to
the schema which you can see in the schema file [http://json.schemastore.org/project] or in a more friendly
project.json reference.

If you are building a console application, you need to add the following snippet to your project file:

"buildOptions": {
 "emitEntryPoint": true
}

This instructs dotnet build to emit an entry point for your application, effectively making your code runnable. If
you are building a class library, simply omit the above section. Of course, once you add the above snippet to your
project.json file, you need to add a static entry point. With the move off DNX, the DI services it provided are no
longer available and thus this needs to be a basic .NET entry point: static void Main().

If you have a “commands” section in your project.json, you can remove it. Some of the commands that used to exist as
DNU commands, such as Entity Framework CLI commands, are being ported to be
per-project extensions to the CLI. If you built your own commands that you are using in your projects, you need to
replace them with CLI extensions. In this case, the commands node in project.json needs to be replaced by the
tools node and it needs to list the tools dependencies as explained in the
CLI extensibility section.

After these things are done, you need to decide which type of portability you wish for you app. With .NET Core, we have
invested into providing a spectrum of portability options that you can choose from. For instance, you may want to have
a fully portable application or you may want to have a self-contained application. The portable application option is more
like .NET Framework applications work: it needs a shared component to execute it on the target machine
(.NET Core). The self-contained application doesn’t require .NET Core to be installed on the target, but you have to
produce one application for each OS you wish to support. These portability types and more are discussed in the
application portability type document.

Once you make a call on what type of portability you want, you need to change your targeted framework(s). If you were
writing applications for .NET Core, you were most likely using dnxcore50 as your targeted framework. With the CLI
and the changes that the new .NET Standard Library [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md]
brought, the framework needs to be one of the following:

		netcoreapp1.0 - if you are writing applications on .NET Core (including ASP.NET Core applications)

		netstandard1.5 - if you are writing class libraries for .NET Core

If you are using other dnx targets, like dnx451 you will need to change those as well. dnx451 should be changed to net451.
Please refer to the .NET Standard Library document [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md]
for more information.

Your project.json is now mostly ready. You need to go through your dependencies list and update the dependencies to
their newer versions, especially if you are using ASP.NET Core dependencies. If you were using separate packages for BCL APIs,
you can use the runtime package as explained in the application portability type document.

Once you are ready, you can try restoring with dotnet restore. Depending on the version of your dependencies, you
may encounter errors if NuGet cannot resolve the dependencies for one of the
targeted frameworks above. This is a “point-in-time” problem; as time progresses, more and more packages will include
support for these frameworks. For now, if you run into this, you can use the imports statement within the framework
node to specify to NuGet that it can restore the packages targeting the framework within the “imports” statement.
The restoring errors you get in this case should provide enough information to tell you which frameworks you need to
import. If you are slightly lost or new to this, in general, specifying dnxcore50 and portable-net45+win8 in the
imports statement should do the trick. The JSON snippet below shows how this looks like:

 "frameworks": {
 "netcoreapp1.0": {
 "imports": ["dnxcore50", "portable-net45+win8"]
 }
 }

Running dotnet build will show any eventual build errors, though there shouldn’t be too many of them. After your code is
building and running properly, you can test it out with the runner. Execute dotnet <path-to-your-assembly> and see it run.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/tutorials/console-teleprompter.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Console Application
description: Console Application
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 883cd93d-50ce-4144-b7c9-2df28d9c11a0

Console Application

Introduction

This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:

		The basics of the .NET Core Command Line Interface (CLI).

		The structure of a C# Console Application.

		Console I/O.

		The basics of File I/O APIS in .NET Core

		The basics of the Task Asynchronous Programming Model in .NET Core.

You’ll build an application that reads a text file, and echoes the
contents of that text file to the console. The output to the console will
be paced to match reading it aloud. You can speed up or slow down the pace
by pressing the ‘<’ or ‘>’ keys.

There are a lot of features in this tutorial. Let’s build them one by one.

Prerequisites

You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor.

Create the Application

The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.

Before you start making modifications, let’s go through the steps to run
the simple Hello World application. After creating the application, type
“dotnet restore” at the command prompt. This command runs the NuGet
package restore process. NuGet is a .NET package manager. This command
downloads any of the missing dependencies for your project. As this is a
new project, none of the dependencies are in place, so the first run will
download the .NET Core framework. After this initial step, you will only
need to run dotnet restore when you add new dependent packages, or update
the versions of any of your dependencies. This process also creates the
project lock file (project.lock.json) in your project directory. This file
helps to manage the project dependencies. It contains the local location
of all the project dependencies. You do not need to put the file in source
control; it will be generated when you run “dotnet restore”.

After restoring packages, you run “dotnet build”. This executes the build
engine and creates your application executable. Finally, you execute “dotnet run” to
run your application.

The simple Hello World application code is all in Program.cs. Open that
file with your favorite text editor. We’re about to make our first changes.
At the top of the file, see a using statement:

using System;

This statement tells the compiler that any types from the System namespace
are in scope. Like other Object Oriented languages you may have used, C#
uses namespaces to organize types. This hello world program is no
different. You can see that the program is enclosed in the
ConsoleApplication namespace. That’s not a very descriptive name, so
change it to TeleprompterConsole.

namespace TeleprompterConsole

Reading and Echoing the File

The first feature to add is to read a text file, and display all that text
to the console. First, let’s add a text file. Copy the
sampleQuotes.txt [https://github.com/dotnet/core-docs/blob/master/samples/csharp-language/console-teleprompter/sampleQuotes.txt]
file from the GitHub repository for this sample [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/console-teleprompter] into your project directory.
This will serve as the script for your
application.

Next, add the following method in your Program class (right below the Main
method):

static IEnumerable<string> ReadFrom(string file)
{
 string line;
 using (var reader = File.OpenText(file))
 {
 while ((line = reader.ReadLine()) != null)
 {
 yield return line;
 }
 }
}

This method uses types from two new namespaces. For this to compile you’ll
need to add the following two lines to the top of the file:

using System.Collections.Generic;
using System.IO;

The IEnumerable<T> interface is defined in the
System.Collections.Generic namespace. The File class is defined in the
System.IO namespace.

This method is a special type of C# method called an Enumerator method.
Enumerator methods return sequences that are evaluated lazily. That means
each item in the sequence is generated as it is requested by the code
consuming the sequence. Enumerator methods are methods that contain one or
more yield return statements. The object returned by the ReadFrom()
method contains the code to generate each item in the sequence. In this
example, that involves reading the next line of text from the source file,
and returning that string. Each time the calling code requests the next
item from the sequence, the code reads the next line of text from the file
and returns it. When the file has been completely read, the sequence
indicates that there are no more items.

There are two other C# syntax elements that may be new to you. The using
statement in this method manages resource cleanup. The variable that is
initialized in the using statement (reader, in this example) must
implement the IDisposable interface. The IDisposable interface
defines a single method, Dispose(), that should be called when the
resource should be released. The compiler generates that call when
execution reaches the closing brace of the using statement. The
compiler-generated code ensures that the resource is released even if an
exception is thrown from the code in the block defined by the using
statement.

The reader variable is defined using the var keyword. var defines an
implicitly typed local variable. That means the type of the variable is
determined by the compile time type of the object assigned to the
variable. Here, that is the return value from File.OpenText(), which is
a StreamReader object.

Now, let’s fill in the code to read the file in the Main method:

var lines = ReadFrom("SampleQuotes.txt");
foreach (var line in lines)
{
 Console.WriteLine(line);
}

Run the program (using “dotnet run” and you can see every line printed out
to the console.

Adding Delays and Formatting output

What you have is being displayed far too fast to read aloud. Now you need
to add the delays in the output. As you start, you’ll be building some of
the core code that enables asynchronous processing. However, these first
steps will follow a few anti-patterns. The anti-patterns are pointed out
in comments as you add the code, and the code will be updated in later
steps.

There are two steps to this section. First, you’ll update the iterator
method to return single words instead of entire lines. That’s done with
these modifications. Replace the yield return line; statement with the
following code:

var words = line.Split(' ');
foreach (var word in words)
{
 yield return word + " ";
}
yield return Environment.NewLine;

Next, you need to modify how you consume the lines of the file, and add a
delay after writing each word. Replace the Console.WriteLine() statement
in the Main method with the following block:

{
 Console.Write(line);
 if (!string.IsNullOrWhiteSpace(line))
 {
 var pause = Task.Delay(200);
 // Synchronously waiting on a task is an
 // anti-pattern. This will get fixed in later
 // steps.
 pause.Wait();
 }
}

The Task class is in the System.Threading.Tasks namespace, so you need
to add that using statement at the top of file:

using System.Threading.Tasks;

Note: In RC2, you need to run the application using a different
command to see the correct output. This is due to an issue
in the CLI that has been filed [https://github.com/dotnet/cli/issues/2976].
To run the application, instead of dotnet run use
dotnet .\bin\Debug\netcoreapp1.0\console-teleprompter.dll
substituting the correct path to your output DLL.

Run the sample, and check the output. Now, each single word is printed,
followed by a 200 ms delay. However, the displayed output shows some
issues because the source text file has several lines that have more than
80 characters without a line break. That can be hard to read while it’s
scrolling by. That’s easy to fix. You’ll just keep track of the length of
each line, and generate a new line whenever the line length reaches a
certain threshold. Declare a local variable after the declaration of
words that holds the line length:

var lineLength = 0;

Then, add the following code after the yield return word; statement
(before the closing brace):

lineLength += word.Length + 1;
if (lineLength > 70)
{
 yield return Environment.NewLine;
 lineLength = 0;
}

Run the sample, and you’ll be able to read aloud at its pre-configured
pace.

Async Tasks

In this final step, you’ll add the code to write the output asynchronously
in one task, while also running another task to read input from the user
if they want to speed up or slow down the text display. This has a few
steps in it and by the end, you’ll have all the updates that you need.
The first step is to create an asynchronous Task returning method that
represents the code you’ve created so far to read and display the file.

Add this method to your Program class: (It’s taken from the body of your
Main method:

private static async Task ShowTeleprompter()
{
 var words = ReadFrom("SampleQuotes.txt");
 foreach (var line in words)
 {
 Console.Write(line);
 if (!string.IsNullOrWhiteSpace(line))
 {
 await Task.Delay(200);
 }
 }
}

You’ll notice two changes. First, in the body of the method, instead of
calling Wait() to synchronously wait for a task to finish, this version
uses the await keyword. In order to do that, you need to add the async
modifier to the method signature. This method returns a Task. Notice that
there are no return statements that return a Task object. Instead, that
Task object is created by code the compiler generates when you use the
await operator. You can imagine that this method returns when it reaches
an await. The returned Task indicates that the work has not completed.
The method resumes when the awaited task completes. When it has executed
to completion, the returned Task indicates that it is complete.
Calling code can
monitor that returned task to determine when it has completed.

You can call this new method in your Main program:

ShowTeleprompter().Wait();

Here, in Main(), the code does synchronously wait. You should use the
await operator instead of synchronously waiting whenever possible. But,
in a console application’s Main method, you cannot use the await
operator. That would result in the application exiting before all tasks
have completed.

Next, you need to write the second asynchronous method to read from the
Console and watch for the ‘<’ and ‘>’ keys. Here’s the method you add for
that task:

private static async Task GetInput()
{
 var delay = 200;
 Action work = () =>
 {
 do {
 var key = Console.ReadKey(true);
 if (key.KeyChar == '>')
 {
 delay -= 10;
 }
 else if (key.KeyChar == '<')
 {
 delay += 10;
 }
 } while (true);
 };
 await Task.Run(work);
}

This creates a lambda expression to represent an Action that reads a key
from the Console and modifies a local variable representing the delay when
the user presses the ‘<’ or ‘>’ keys. This method uses Console.ReadKey()
to block and wait for the user to press a key.

To finish this feature, you need to create a new async task returning
method that starts both of these tasks (GetInput() and
ShowTeleprompter(), and also manage the shared data between these two
tasks.

It’s time to create a class that can handle the shared data between these
two tasks. This class contains two public properties: the delay, and a
flag to indicate that the file has been completely read:

namespace TeleprompterConsole
{
 internal class TelePrompterConfig
 {
 private object lockHandle = new object();
 public int DelayInMilliseconds { get; private set; } = 200;

 public void UpdateDelay(int increment) // negative to speed up
 {
 var newDelay = Min(DelayInMilliseconds + increment, 1000);
 newDelay = Max(newDelay, 20);
 lock (lockHandle)
 {
 DelayInMilliseconds = newDelay;
 }
 }
 }
}

Put that class in a new file, and enclose that class in the
TeleprompterConsole namespace as shown above. You’ll also need to add a static using
statement so that you can reference the Min and Max method without the
enclosing class or namespace names. A static using statement imports the
methods from one class. This is in contrast with the using statements used
up to this point that have imported all classes from a namespace.

using static System.Math;

The other language feature that’s new is the lock statement. This
statement ensures that only a single thread can be in that code at any
given time. If one thread is in the locked section, other threads must
wait for the first thread to exit that section. The lock statement uses an
object that guards the lock section. This class follows a standard idiom
to lock a private object in the class.

Next, you need to update the ShowTeleprompter and GetInput methods to
use the new config object. Write one final Task returning async method to
start both tasks and exit when the first task finishes:

private static async Task RunTeleprompter()
{
 var config = new TelePrompterConfig();
 var displayTask = ShowTeleprompter(config);

 var speedTask = GetInput(config);
 await Task.WhenAny(displayTask, speedTask);
}

The one new method here is the Task.WhenAny() call. That creates a Task
that finishes as soon as any of the tasks in its argument list completes.

Next, you need to update both the ShowTeleprompter and GetInput methods to
use the config object for the delay:

private static async Task ShowTeleprompter(TelePrompterConfig config)
{
 var words = ReadFrom("SampleQuotes.txt");
 foreach (var line in words)
 {
 Console.Write(line);
 if (!string.IsNullOrWhiteSpace(line))
 {
 await Task.Delay(config.DelayInMilliseconds);
 }
 }
 config.SetDone();
}

private static async Task GetInput(TelePrompterConfig config)
{

 Action work = () =>
 {
 do {
 var key = Console.ReadKey(true);
 if (key.KeyChar == '>')
 config.UpdateDelay(-10);
 else if (key.KeyChar == '<')
 config.UpdateDelay(10);
 } while (!config.Done);
 };
 await Task.Run(work);
}

This new version of ShowTeleprompter calls a new method in the
TeleprompterConfig class. Now, you need to update Main to call
RunTeleprompter instead of ShowTeleprompter:

RunTeleprompter().Wait();

To finish, you’ll need to add the
SetDone method, and the Done property to the TelePrompterConfig class:

public bool Done => done;

private bool done;

public void SetDone()
{
 done = true;
}

Conclusion

This tutorial showed you a number of the features around the C# language
and the .NET Core libraries related to working in Console applications.
You can build on this knowledge to explore more about the language, and
the classes introduced here. You’ve seen the basics of File and Console
I/O, blocking and non-blocking use of the Task based Asynchronous
programming model, a tour of the C# language and how C# programs are
organized and the .NET Core Command Line Interface and tools.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/deploying/creating-nuget-packages.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Creating a NuGet Package with Cross Platform Tools
description: Creating a NuGet Package with Cross Platform Tools
keywords: .NET, .NET Core, NuGet
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2f0415c1-110b-433d-87c1-ae3d543a8844

How to Create a NuGet Package with Cross Platform Tools

Note: The following shows command-line samples using unix. The dotnet pack command as shown here works the same way on Windows.

For .NET Core 1.0, libraries are expected to be distributed as NuGet packages. This is in fact how all of the .NET Standard libraries are distributed and consumed. This is most easily done with the dotnet pack command.

Imagine that you just wrote an awesome new library that you would like to distribute over NuGet. You can create a NuGet package with cross platform tools to do exactly that! The following example assumes a library called SuperAwesomeLibrary which targets netstandard1.0.

If you have transitive dependencies; that is, a project which depends on another project, you’ll need to make sure to restore packages for your entire solution with the dotnet restore command before creating a NuGet package. Failing to do so will result in the dotnet pack command to not work properly.

After ensuring packages are restored, you can navigate to the directory where a library lives:

$ cd src/SuperAwesomeLibrary

Then it’s just a single command from the command line:

$ dotnet pack

Your /bin/Debug folder will now look like this:

$ ls bin/Debug

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

Note that this will produce a package which is capable of being debugged. If you want to build a NuGet package with release binaries, all you need to do is add the -c/--configuration switch and use release as the argument.

$ dotnet pack --configuration release

Your /bin folder will now have a release folder containing your NuGet package with release binaries:

$ ls bin/release

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg

And now you have the necessary files to publish a NuGet package!

Don’t confuse dotnet pack with dotnet publish

It is important to note that at no point is the dotnet publish command involved. The dotnet publish command is for deploying applications with all of their dependencies in the same bundle - not for generating a NuGet package to be distributed and consumed via NuGet.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/deploying/reducing-dependencies.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Reducing Package Dependencies with project.json
description: Reducing Package Dependencies with project.json
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 916251e3-87f9-4eee-81ec-94076215e6fa

Reducing Package Dependencies with project.json

This article covers what you need to know about reducing your package dependencies when authoring project.json libraries. By the end of this article, you will learn how to compose your library such that it only uses the dependencies it needs.

Why it’s Important

.NET Core is a product made up of NuGet packages. An essential package is the .NET Standard Library metapackage [https://www.nuget.org/packages/NETStandard.Library], which is a NuGet package composed of other packages. It provides you with the set of packages that are guaranteed to work on multiple .NET implementations, such as .NET Framework, .NET Core and Xamarin/Mono.

However, there’s a good chance that your library won’t use every single package it contains. When authoring a library and distributing it over NuGet, it’s a best practice to “trim” your dependencies down to only the packages you actually use. This results in a smaller overall footprint for NuGet packages.

How to do it

Currently, there is no official dotnet command which trims package references. Instead, you’ll have to do it manually. The general process looks like the following:

		Reference NETStandard.Library version 1.6.0 in a dependencies section of your project.json.

		Restore packages with dotnet restore from the command line.

		Inspect the project.lock.json file and find the NETSTandard.Library section. It’s near the beginning of the file.

		Copy all of the listed packages under dependencies.

		Remove the .NETStandard.Library reference and replace it with the copied packages.

		Remove references to packages you don’t need.

You can find out which packages you don’t need by one of the following ways:

		Trial and error. This involves removing a package, restoring, seeing if your library still compiles, and repeating this process.

		Using a tool such as ILSpy [http://ilspy.net] or .NET Reflector [http://www.red-gate.com/products/dotnet-development/reflector] to peek at references to see what your code is actually using. You can then remove packages which don’t correspond to types you’re using.

Example

Imagine that you wrote a library which provided additional functionality to generic collection types. Such a library would need to depend on packages such as System.Collections, but may not at all depend on packages such as System.Net.Http. As such, it would be good to trim package dependencies down to only what this library required!

To trim this library, you start with the project.json file and add a reference to NETStandard.Library version 1.6.0.

{
 "version":"1.0.0",
 "dependencies":{
 "NETStandard.Library":"1.6.0"
 },
 "frameworks": {
 "netstandard1.0": {}
 }
}

Next, you restore packages with dotnet restore, inspect the project.lock.json file, and find all the packages restored for NETSTandard.Library.

Here’s what the relevant section in the project.lock.json file looks like when targeting netstandard1.0:

"NETStandard.Library/1.6.0":{
 "type": "package",
 "dependencies": {
 "Microsoft.NETCore.Platforms": "1.0.1",
 "Microsoft.NETCore.Runtime": "1.0.2",
 "System.Collections": "4.0.11",
 "System.Diagnostics.Debug": "4.0.11",
 "System.Diagnostics.Tools": "4.0.1",
 "System.Globalization": "4.0.11",
 "System.IO": "4.1.0",
 "System.Linq": "4.1.0",
 "System.Net.Primitives": "4.0.11",
 "System.ObjectModel": "4.0.12",
 "System.Reflection": "4.1.0",
 "System.Reflection.Extensions": "4.0.1",
 "System.Reflection.Primitives": "4.0.1",
 "System.Resources.ResourceManager": "4.0.1",
 "System.Runtime": "4.1.0",
 "System.Runtime.Extensions": "4.1.0",
 "System.Text.Encoding": "4.0.11",
 "System.Text.Encoding.Extensions": "4.0.11",
 "System.Text.RegularExpressions": "4.1.0",
 "System.Threading": "4.0.11",
 "System.Threading.Tasks": "4.0.11",
 "System.Xml.ReaderWriter": "4.0.11",
 "System.Xml.XDocument": "4.0.11"
 }
}

Next, copy over the package references into the dependencies section of the library’s project.json file, replacing the NETStandard.Library reference:

{
 "version":"1.0.0",
 "dependencies":{
 "Microsoft.NETCore.Platforms": "1.0.1",
 "Microsoft.NETCore.Runtime": "1.0.2",
 "System.Collections": "4.0.11",
 "System.Diagnostics.Debug": "4.0.11",
 "System.Diagnostics.Tools": "4.0.1",
 "System.Globalization": "4.0.11",
 "System.IO": "4.1.0",
 "System.Linq": "4.1.0",
 "System.Net.Primitives": "4.0.11",
 "System.ObjectModel": "4.0.12",
 "System.Reflection": "4.1.0",
 "System.Reflection.Extensions": "4.0.1",
 "System.Reflection.Primitives": "4.0.1",
 "System.Resources.ResourceManager": "4.0.1",
 "System.Runtime": "4.1.0",
 "System.Runtime.Extensions": "4.1.0",
 "System.Text.Encoding": "4.0.11",
 "System.Text.Encoding.Extensions": "4.0.11",
 "System.Text.RegularExpressions": "4.1.0",
 "System.Threading": "4.0.11",
 "System.Threading.Tasks": "4.0.11",
 "System.Xml.ReaderWriter": "4.0.11",
 "System.Xml.XDocument": "4.0.11"
 },
 "frameworks":{
 "netstandard1.0": {}
 }
}

That’s quite a lot of packages, many of which which certainly aren’t necessary for extending collection types. You can either remove packages manually or use a tool such as ILSpy [http://ilspy.net] or .NET Reflector [http://www.red-gate.com/products/dotnet-development/reflector] to identify which packages your code actually uses.

Here’s what a trimmed package could look like:

{
 "dependencies":{
 "Microsoft.NETCore.Platforms": "1.0.1",
 "Microsoft.NETCore.Runtime": "1.0.2",
 "System.Collections": "4.0.11",
 "System.Linq": "4.1.0",
 "System.Runtime": "4.1.0",
 "System.Runtime.Extensions": "4.1.0",
 "System.Runtime.Handles": "4.0.1",
 "System.Runtime.InteropServices": "4.1.0",
 "System.Runtime.InteropServices.RuntimeInformation": "4.0.0",
 "System.Threading.Tasks": "4.0.11"
 },
 "frameworks":{
 "netstandard1.0": {}
 }
}

Now, it has a smaller footprint than if it had depended on the NETStandard.Library metapackage.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/deploying/applications.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Deploying .NET Core applications
description: Deploying .NET Core applications
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1db00fb1-d947-480d-8d7d-7152e67b0585

🔧 Deploying .NET Core applications

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach.

Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/deploying/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Application Deployment
description: .NET Core Application Deployment
keywords: .NET, .NET Core, .NET Core deployment
author: rpetrusha
manager: wpickett
ms.date: 07/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: da7a31a0-8072-4f23-82aa-8a19184cb701

.NET Core Application Deployment

You can deploy your .NET Core app in either of two ways:

		As a portable app. A portable app relies on a shared system-wide version of .NET Core to be present on the target system. Because .NET Core is already present, your app is portable between installations of .NET Core. Your app contains only its own code and any third-party dependencies that are outside of the .NET Core libraries. Portable applications are .dll files that can be launched by using the dotnet utility from the command line. For example, dotnet app.dll runs a portable application named app.

		As a self-contained application. Unlike a portable app, a self-contained app does not rely on any shared components to be present on the target system. All components, including both .NET Core libraries and the .NET Core runtime, are included with the application and are isolated from other .NET Core applications. Self-contained applications include an executable (such as app.exe on Windows platforms for a self-contained application named app), which is a renamed version of the platform-specific .NET Core host, and a .dll file (such as app.dll), which is the actual application.

For more information on .NET Core application types, see .NET Core App Types.

Portable applications

For a portable app, you deploy only your app and any third-party dependencies. You do not have to deploy .NET Core, since your app will use the version of .NET Core that’s present on the target system. This is the default deployment model for .NET Core apps.

Why deploy a portable app?

Deploying a portable app has a number of advantages:

		You do not have to define the target operating systems that your .NET Core app will run on in advance. Because .NET Core uses a common PE file format for executables and libraries regardless of operating system, .NET Core can execute your app regardless of the underlying operating system. For more information on the PE file format, see .NET Assembly File Format.

		The size of your deployment package is small. You only have to deploy your app and its dependencies, not .NET Core itself.

		Multiple apps use the same .NET Core installation, which reduces both disk space and memory usage on host systems.

There are also a few disadvantages:

		Your app can run only if the version of .NET Core that you target, or a later version, is already installed on the host system.

		It is possible for the .NET Core runtime and libraries to change without your knowledge in future releases. In rare cases, this may change the behavior of your app.

Deploying a simple portable app

Deploying a portable app with no third-party dependencies simply involves building, testing, and publishing the app. A simple example written in C# illustrates the process. The example uses the dotnet utility from the command line; however, you can also use a development environment, such as Visual Studio or Visual Studio Code, to compile, test, and publish the example.

		Create a directory for your project, and from the command line, type dotnet new to create a new C# console project.

		Open the Program.cs file in an editor, and replace the auto-generated code with the following code. It prompts the user to enter text, and then displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 Console.WriteLine("\nNo words were identified in your input.");
 else
 {
 Console.WriteLine("\nThere are {0} words in your string:", matches.Count);
 for (int ctr = 0; ctr < matches.Count; ctr++)
 Console.WriteLine(" #{0,2}: '{1}' at position {2}", ctr,
 matches[ctr].Value, matches[ctr].Index);
 }
 }
 }
}

		Run the dotnet restore command to restore the dependencies specified in your project.

		Create a debug build of your app by using the dotnet build command.

		After you’ve debugged and tested the program, you can create the files to be deployed with your app by using the dotnet publish -f netcoreapp1.0 -c release command. This creates a release (rather than a debug) version of your app.

The resulting files are placed in a directory named publish that is in a subdirectory of your project’s .\bin\release\netcoreapp1.0 subdirectory.

		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.

The complete set of application files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice.

Before deploying your app, you can also use crossgen to convert it to native code. However, its performance impact is smaller than for self-contained apps. For more information, see the Native Image Generation section.

In addition to the application binaries, the installer should also either bundle the shared framework installer or check for it as a prerequisite as part of the application installation. Installation of the shared framework requires Administrator/root access since it is machine-wide.

Deploying a portable app with third-party dependencies

Deploying a portable app with one or more third-party dependencies involves three additional steps before you can run the dotnet restore command:

		Add references to any third-party libraries to the dependencies section of your project.json file. The following dependencies section uses Json.NET as a third-party library.

"dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "Newtonsoft.Json": "9.0.1"
},

		If you haven’t already, download the NuGet package containing the third-party dependency. To download the package, execute the dotnet restore command after adding the dependency. Because the dependency is resolved out of the local NuGet cache at publish time, it must be available on your system.

Note that a portable app with third-party dependencies will only be as portable as its third-party dependencies. For example, if a third-party library only supports macOS, the app will not be portable to Windows systems.

When you deploy your application, any third-party dependencies used in your app are resolved from the local NuGet cache of the system on which your app is running. In other words, the third-party library must be present on the target machine for your app to run successfully.

Self-contained applications

For a self-contained app, you deploy not only your app and any third-party dependencies, but the version of .NET Core that you build your app with.

Why deploy a self-contained app?

Deploying a self-contained app has two major advantages:

		You have sole control of the version of .NET Core that is deployed with your app. .NET Core can be serviced only by you.

		You can be assured that the target system can run your .NET Core app, since you’re providing the version of .NET Core that it will run on.

It also has a number of disadvantages:

		Because .NET Core is included in your deployment package, you must select the target platforms for which you build deployment packages in advance.

		The size of your deployment package is relatively large, since you have to include .NET Core as well as your app and its third-party dependencies.

		Deploying numerous self-contained .NET Core apps to a system can consume significant amounts of disk space, since each app duplicates .NET Core files.

[bookmark: simpleSelf] Deploying a simple self-contained app

Deploying a self-contained app with no third-party dependencies involves creating the project, modifying the project.json file, building, testing, and publishing the app. A simple example written in C# illustrates the process. The example uses the dotnet utility from the command line; however, you can also use a development environment, such as Visual Studio or Visual Studio Code, to compile, test, and publish the example.

		Create a directory for your project, and from the command line, type dotnet new to create a new C# console project.

		Open the Program.cs file in an editor, and replace the auto-generated code with the following code. It prompts the user to enter text, and then displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.

using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
 public class ConsoleParser
 {
 public static void Main()
 {
 Console.WriteLine("Enter any text, followed by <Enter>:\n");
 String s = Console.ReadLine();
 ShowWords(s);
 Console.Write("\nPress any key to continue... ");
 Console.ReadKey();
 }

 private static void ShowWords(String s)
 {
 String pattern = @"\w+";
 var matches = Regex.Matches(s, pattern);
 if (matches.Count == 0)
 Console.WriteLine("\nNo words were identified in your input.");
 else {
 Console.WriteLine("\nThere are {0} words in your string:", matches.Count);
 for (int ctr = 0; ctr < matches.Count; ctr++)
 Console.WriteLine(" #{0,2}: '{1}' at position {2}", ctr,
 matches[ctr].Value, matches[ctr].Index);
 }
 }
 }
}

		Open the project.json file and in the frameworks section, remove the following line:

"type": "platform",

The Framework section should appear as follows after you’ve modified it:


```json
"frameworks": {
  "netcoreapp1.0": {
    "dependencies": {
      "Microsoft.NETCore.App": {
         "version": "1.0.0"
      }
    }
  }
}
```


Removing the "type": "platform" attribute indicates that the framework is provided as a set of components local to our app, rather than as a system-wide platform package.

		Create a runtimes section in your project.json file that defines the platforms your app targets, and specify the runtime identifier of each platform that you target. See Runtime IDentifier catalog for a list of runtime identifiers. For example, the following runtimes section indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X Version 10.10 operating system.

 "runtimes": {
 "win10-x64": {},
 "osx.10.10-x64": {}
 }

Note that you also need to add a comma to separate the runtimes section from the previous section.
A complete sample project.json file appears later in this section.

		Run the dotnet restore command to restore the dependencies specified in your project.

		Create debug builds of your app on each of the target platforms by using the dotnet build command. Unless you specify the runtime identifier you’d like to build, the dotnet build command creates a build only for the current system’s runtime ID. You can build your app for both target platforms with the commands:

dotnet build -r win10-x64
dotnet build -r osx.10.10-x64

The debug builds of your app for each platform will be found in the project’s .\bin\Debug\netcoreapp1.0\<runtime_identifier> subdirectory.

		After you’ve debugged and tested the program, you can create the files to be deployed with your app for each platform that it targets by using the dotnet publish command for both target platforms as follows:

dotnet publish -c release -r win10-x64
dotnet publish -c release -r osx.10.10-x64

This creates a release (rather than a debug) version of your app for each target platform. The resulting files are placed in a subdirectory named publish that is in a subdirectory of your project’s .\bin\release\netcoreapp1.0\<runtime_identifier> subdirectory. Note that each subdirectory contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.

		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.

The published files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice. Before packaging and deploying your app, you can also use crossgen to convert it to native code. For more information, see the Native Image Generation section.

The following is the complete project.json file for this project.

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true
 },
 "dependencies": {},
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0"
 }
 }
 }
 },
 "runtimes": {
 "win10-x64": {},
 "osx.10.10-x64": {}
 }
}

Deploying a self-contained app with third-party dependencies

Deploying a self-contained app with one or more third-party dependencies involves three additional steps before you can run the dotnet restore command:

		Add references to any third-party libraries to the dependencies section of your project.json file. The following dependencies section uses Json.NET as a third-party library.

"dependencies": {
 "Microsoft.NETCore.App": "1.0.0",
 "Newtonsoft.Json": "8.0.3"
},

		Modify the frameworks section as follows to ensure that the dotnet utility will not consider .NET Core and Json.NET to be incompatible:

"frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
},

		If you haven’t already, download the NuGet package containing the third-party dependency to your system. To make the dependency available to your app, execute the dotnet restore command after adding the dependency. Because the dependency is resolved out of the local NuGet cache at publish time, it must be available on your system.

The following is the complete project.json file for this project:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.0",
 "Newtonsoft.Json": "8.0.3"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
 },
 "runtimes": {
 "win10-x64": {},
 "osx.10.10-x64": {}
 }
}

When you deploy your application, any third-party dependencies used in your app are also contained with your application files. Third-party libraries do not already have to be present on the system on which the app is running.

Note that you can only deploy a self-contained app with a third-party library to platforms supported by that library.

Deploying a self-contained app with a smaller footprint

If the availability of adequate storage space on target systems is likely to be an issue, you can reduce the overall footprint of your app by excluding some system components. To do this, you explicitly define the .NET Core components that your app includes in your project.json file.

To create a self-contained app with a smaller footprint, start by following the first two steps for creating a self-contained app. Once you’ve run the dotnet new command and added the C# source code to your app, do the following:

		Open the project.json file and replace the frameworks section with the following:

"frameworks": {
 "netstandard1.6": { }
}

This does two things:

* It indicates that, instead of using the entire `netcoreapp1.0` framework, which includes .NET Core CLR, the .NET Core Library, and a number of other system components, our app uses only the .NET Standard Library.

* By removing the `"type": "platform"` attribute, it indicates that the framework is provided as a set of components local to our app, rather than as a system-wide platform package.

		Replace the dependencies section with the following:

"dependencies": {
 "NETStandard.Library": "1.6.0",
 "Microsoft.NETCore.Runtime.CoreCLR": "1.0.2",
 "Microsoft.NETCore.DotNetHostPolicy": "1.0.1"
},

This defines the system components used by our app. The system components packaged with our app include the .NET Standard Library, the .NET Core runtime, and the .NET Core host. This produces a self-contained app with a smaller footprint.

		As you did in the Deploying a Simple Self-Contained App example, create a runtimes section in your project.json file that defines the platforms your app targets and specify the runtime identifier of each platform that you target. See Runtime IDentifier catalog for a list of runtime identifiers. For example, the following runtimes section indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X Version 10.10 operating system.

 "runtimes": {
 "win10-x64": {},
 "osx.10.10-x64": {}
 }

Note that you also need to add a comma to separate the runtimes section from the previous section.
A complete sample project.json file appears later in this section.

		Run the dotnet restore command to restore the dependencies specified in your project.

		Create debug builds of your app on each of the target platforms by using the dotnet build command. Unless you specify the runtime identifier you’d like to build, the dotnet build command creates a build only for the current system’s runtime ID. You can build your app for both target platforms with the commands:

dotnet build -r win10-x64
dotnet build -r osx.10.10-x64

		After you’ve debugged and tested the program, you can create the files to be deployed with your app for each platform that it targets by using the dotnet publish command for both target platforms as follows:

dotnet publish -c release -r win10-x64
dotnet publish -c release -r osx.10.10-x64

This creates a release (rather than a debug) version of your app for each target platform. The resulting files are placed in a subdirectory named publish that is in a subdirectory of your project’s .\bin\release\netstandard1.6\<runtime_identifier> subdirectory. Note that each subdirectory contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.

		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.

The published files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice. Before packaging and deploying your app, you can also use crossgen to convert it to native code. For more information, see the Native Image Generation section.

The following is the complete project.json file for this project.

 {
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true
 },
 "dependencies": {
 "NETStandard.Library": "1.6.0",
 "Microsoft.NETCore.Runtime.CoreCLR": "1.0.2",
 "Microsoft.NETCore.DotNetHostPolicy": "1.0.1"
 },
 "frameworks": {
 "netstandard1.6": { }
 },
 "runtimes": {
 "win10-x64": {},
 "osx.10.10-x64": {}
 }
 }

[bookmark: crossgen] Native image Generation

NET Core uses a just in time (JIT) compiler that stores application code in an intermediate format and compiles it to native code at runtime. To increase startup performance, the shared framework is pre-compiled using a tool called crossgen. To improve performance of your application, you can use the same tool on your application’s binaries. Its performance impact is more noticeable when deploying a self-contained application, since the entire framework is part of the application. Crossgen must be run on a machine of the same platform type that you are targeting, but need not be done on the same machine, unlike ngen for the desktop framework. If you are producing a platform-specific installer for your application, we recomend that you crossgen as part of the installer build process.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/versions/servicing.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Servicing
description: .NET Core Servicing
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 48682290-4fd7-40dc-8a7b-bac528eba361

🔧 .NET Core Servicing

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can
track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/469] at GitHub.

If you would like to review early drafts and outlines of this
topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/versions/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Versioning
description: .NET Core Versioning
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f6f684b1-1d2c-4105-8376-7c1959e23803

.NET Core Versioning

.NET Core is a platform of NuGet packages, of frameworks and distributed as a unit. Each of these platform layers can be versioned separately for product agility and to accurately describe product changes. While there is significant versioning flexibility, there is a desire to version the platform as a unit to make the product easier to understand.

The product is in some respects unique, being described and delivered via a package manager (NuGet) as packages. While you typically acquire .NET Core as a standalone SDK, the SDK is largely a convenience experience over NuGet packages and therefore not distinct from packages. As a result, versioning is first and foremost in terms of packages and other versioning experiences follow from there.

Semantic Versioning

.NET Core uses Semantic Versioning (SemVer) [http://semver.org/], adopting the use of major.minor.patch versioning, using the various parts of the version number to describe the degree and kind of change.

The following versioning template is generally applied to .NET Core. There are cases where it has been adapted to fit with existing versioning. These cases are described later in this document. For example, frameworks are only intended to represent platform and API capabilities, which aligns with major/minor versioning.

Versioning Form

MAJOR.MINOR.PATCH[-PRERELEASE-BUILDNUMBER]

Decision Tree

MAJOR when:

		drop support for a platform

		adopt a newer MAJOR version of an existing dependency

		disable a compatibility quirk off by default

MINOR when:

		add public API surface area

		add new behavior

		adopt a newer MINOR version of an existing dependency

		introduce a new dependency

PATCH when:

		make bug fixes

		add support for a newer platform

		adopt a newer PATCH version of an existing dependency

		any other change (not otherwise captured)

When determining what to increment when there are multiple changes, choose the highest kind of change.

Versioning Scheme

.NET Core can be defined as and will version in the following way:

		A runtime and framework implementation, distributed as packages. Each package is versioned independently, particularly for patch versioning.

		A set of metapackages that reference fine-grained packages as a versioned unit. Metapackages are versioned separately from packages.

		A set of frameworks (for example, netstandard) that represent a progressively larger API set, described in a set of versioned snapshots.

Packages

Library packages evolve and version independently. Packages that overlap with .NET Framework System.* assemblies typically use 4.x versions, aligning with the .NET Framework 4.x versioning (a historical choice). Packages that do not overlap with the .NET Framework libraries (for example, System.Reflection.Metadata [https://www.nuget.org/packages/System.Reflection.Metadata]) typically start at 1.0 and increment from there.

The packages described by NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] are treated specially due to being at the base of the platform.

		NETStandard.Library packages will typically version as a set, since they have implementation-level dependencies between them.

		APIs will only be added to NETStandard.Library packages as part of major or minor .NET Core releases, since doing so would require adding a new netstandard version. This is in addition to SemVer requirements.

Metapackages

Versioning for .NET Core metapackages is based on the framework that they map to. The metapackages adopt the highest version number of the framework (for example, netstandard1.5) it maps to in its package closure.

The patch version for the metapackage is used to represent updates to the metapackage to reference updated packages. Patch versions will never include an updated framework version. As a result, the metapackages are not strictly SemVer compliant because their versioning scheme doesn’t represent the degree of change in the underlying packages, but primarily the API level.

There are two primary metapackages for .NET Core.

NETStandard.Library

		v1.6 as of .NET Core 1.0 (these versions won’t typically or intentionally match).

		Maps to the netstandard framework.

		Describes the packages that are considered required for modern app development and that .NET platforms must implement to be considered a .NET Standard platform.

Microsoft.NETCore.App

		v1.0 as of .NET Core 1.0 (these versions will match).

		Maps to the netcoreapp framework.

		Describes the packages in the .NET Core distribution.

Note: Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] is another .NET Core metapackage. It doesn’t map to a particular framework, so versions like a package.

Frameworks

Framework versions are updated when new APIs are added. They have no concept of patch version, since they represent API shape and not implementation concerns. Major and minor versioning will follow the SemVer rules specified earlier.

The netcoreapp framework is tied to the .NET Core distribution. It will follow the version numbers used by .NET Core. For example, when .NET Core 2.0 is released, it will target netcoreapp2.0. The netstandard framework will not match the versioning scheme of any .NET runtime, given that it is equally applicable to all of them.

Versioning in Practice

There are commits and PRs on .NET Core repos on GitHub on a daily basis, resulting in new builds of many libraries. It is not practical to create new public versions of .NET Core for every change. Instead, changes will be aggregated over some loosely-defined period of time (for example, weeks or months) before making a new public stable .NET Core version.

A new version of .NET Core could mean several things:

		New versions of packages and metapackages.

		New versions of various frameworks, assuming the addition of new APIs.

		New version of the .NET Core distribution.

Shipping a patch release

After shipping a .NET Core v1.0.0 stable version, patch-level changes (no new APIs) are made to .NET Core libraries to fix bugs and improve performance and reliability. The various metapackages are updated to reference the updated .NET Core library packages. The metapackages are versioned as patch updates (x.y.z). Frameworks are not updated. A new .NET Core distribution is released with a matching version number to the Microsoft.NETCore.App metapackage.

You can see patch updates demonstrated in the project.json examples below.

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.1"
 },
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

Shipping a minor release

After shipping a .NET Core v1.0.0 stable version, new APIs are added to .NET Core libraries to enable new scenarios. The various metapackages are updated to reference the updated .NET Core library packages. The metapackages are versioned as patch updates (x.y) to match the higher framework version. The various frameworks are updated to describe the new APIs. A new .NET Core distribution is released with a matching version number to the Microsoft.NETCore.App metapackage.

You can see minor updates demonstrated in the project.json examples below.

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.1.0"
 },
 "frameworks": {
 "netcoreapp1.1": {}
 }
}

Shipping a major release

Given a .NET Core v1.y.z stable version, new APIs are added to .NET Core libraries to enable major new scenarios. Perhaps, support is dropped for a platform. The various metapackages are updated to reference the updated .NET Core library packages. The Microsoft.NETCore.App metapackage and the netcore framework are versioned as a major update (x.). The NETStandard.Library metapackage is likely versioned as a minor update (x.y) since it applies to multiple .NET implementations. A new .NET Core distribution would be released with a matching version number to the Microsoft.NETCore.App metapackage.

You can see major updates demonstrated in the project.json metapackage reference in the example below.

{
 "dependencies": {
 "Microsoft.NETCore.App": "2.0.0"
 },
 "frameworks": {
 "netcoreapp2.0": {}
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/testing/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Unit Testing in .NET Core
description: Unit Testing in .NET Core
keywords: .NET, .NET Core
author: ardalis
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 815ac74c-4bd9-4a94-a87c-78288b27c0e2

Unit Testing in .NET Core

By Steve Smith [http://ardalis.com] and Bill Wagner [https://github.com/BillWagner]

.NET Core has been designed with testability in mind, so that creating
unit tests for your applications is easier than ever before. This article
briefly introduces unit tests (and how they differ from other kinds of tests).
Linked resources demonstrates how to add a test project to your solution and
then run unit tests using either the command line or Visual Studio.

Getting Started with Testing

Having a suite of automated tests is one of the best ways to ensure a
software application does what its authors intended it to do. There are
many different kinds of tests for software applications, including integration
tests, web tests, load tests, and many others. At the lowest level are
unit tests, which test individual software components or methods. Unit
tests should only test code within the developer’s control, and should
not test infrastructure concerns, like databases, file systems, or
network resources. Unit tests may be written using
Test Driven Development (TDD) [http://deviq.com/test-driven-development/],
or they can be added to existing code to confirm its correctness. In
either case, they should be small, well-named, and fast, since ideally
you will want to be able to run hundreds of them before pushing your
changes into the project’s shared code repository.

[!NOTE]
Developers often struggle with coming up with good names for their
test classes and methods. As a starting point, the ASP.NET product
team follows
these conventions [https://github.com/aspnet/Home/wiki/Engineering-guidelines#unit-tests-and-functional-tests].

When writing unit tests, be careful you don’t accidentally introduce
dependencies on infrastructure. These tend to make tests slower and
more brittle, and thus should be reserved for integration tests. You
can avoid these hidden dependencies in your application code by following
the Explicit Dependencies Principle [http://deviq.com/explicit-dependencies-principle/]
and using Dependency Injection [https://docs.asp.net/en/latest/fundamentals/dependency-injection.html]
to request your dependencies from the framework. You can also keep your
unit tests in a separate project from your integration tests, and ensure
your unit test project doesn’t have references to or dependencies on
infrastructure packages.

Learn more about unit testing in .NET Core projects:

Try this walkthrough creating unit tests with xunit and the .NET CLI.

The XUnit team has written a tutorial that shows
how to use xunit with .NET Core and Visual Studio [http://xunit.github.io/docs/getting-started-dotnet-core.html].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/testing/unit-testing-with-dotnet-test.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Unit Testing in .NET Core using dotnet test
description: Unit Testing in .NET Core using dotnet test
keywords: .NET, .NET Core
author: ardalis
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bdcdb812-6f13-4f20-9e90-0c0977937142

Unit Testing in .NET Core using dotnet test

By Steve Smith [http://ardalis.com] and Bill Wagner [https://github.com/BillWagner]

View or download sample code [https://github.com/dotnet/core-docs/tree/master/samples/unit-testing/using-dotnet-test]

Creating the Projects

Writing Libraries with Cross Platform Tools
has information on organizing multi-project solutions for both the
source and the tests. This article follows those conventions. The
final project structure will be something like this:

/unit-testing-using-dotnet-test
|__global.json
|__/src
 |__/PrimeService
 |__Source Files
 |__project.json
/test
 |__/PrimeService.Tests
 |__Test Files
 |__project.json

In the root directory, you’ll need to create a global.json that
contains the names of your src and test directories:

{
 "projects": [
 "src",
 "test"
]
}

Creating the source project

Then, in the src directory, create the PrimeService directory.
CD into that directory, and run dotnet new to create the source
project.

The dotnet new command creates a console application project, so you’ll want to
make a modification to project.json so that you build a class library
project.

		note: You can track this issue [https://github.com/dotnet/cli/issues/2052]
for other project types coming for the .NET Core SDK, including class libraries.
Once this issue is addressed, you won’t need to make these changes.

Simply remove the buildOptions node that instructs the compiler
to emit the program entry point:

"buildOptions" : {
 "emitEntryPoint": true
}

You’ll also want to remove program.cs and replace it with the class for the
PrimeService. To use TDD, you’ll create a failing implementation of the
PrimeService class:

using System;

namespace Prime.Services
{
 public class PrimeService
 {
 public bool IsPrime(int candidate)
 {
 throw new NotImplementedException("Please create a test first");
 }
 }
}

Creating the test project

Next, cd into the ‘test’ directory, and create the PrimeServices.Tests directory.
CD into the PrimeServices.Tests directory and create a new project using
dotnet new -t xunittest. dotnet new -t xunittest creates a test project
that uses xunit as the test library.

The generated template configured the test runner
at the root of project.json:

{
 "version": "1.0.0-*",
 "testRunner": "xunit",
 // ...
}

The template also sets the framework node to use
netcoreapp1.0, and include the required imports to
get xUnit.net to work with .NET Core RTM:

 "frameworks": {
 "netcoreapp1.0": {
 "imports": [
 "dotnet54",
 "portable-net45+win8"
]
 }
 }

The test project requires other packages to create and run unit tests.
dotnet new added xunit, and the xunit runner. You need to add the PrimeService
package as another dependency to the project:

"dependencies": {
 "Microsoft.NETCore.App": {
 "type":"platform",
 "version": "1.0.0"
 },
 "xunit":"2.1.0",
 "dotnet-test-xunit": "1.0.0-rc2-192208-24",
 "PrimeService": {
 "target": "project"
 }
}

Notice that the PrimeService project does not include
any directory path information. Because you created the
project structure to match the expected organization of
src and test, and the global.json file indicates
that, the build system will find the correct location
for the project. You add the "target": "project" element
to inform NuGet that it should look in project directories,
not in the NuGet feed. Without this key, you might download
a package with the same name as your internal library.

You can see the entire file in the samples repository [https://github.com/dotnet/core-docs/blob/master/samples/unit-testing/using-dotnet-test/test/PrimeService.Tests/project.json]
on GitHub.

After this initial structure is in place, you can write your first test.
Once you verify that first unit test, everything is configured and should run smoothly
as you add features and tests.

Creating the first test

The TDD approach calls for writing one failing test, then making it pass,
then repeating the process. So, let’s write that one failing test. Remove
program.cs from the PrimeService.Tests directory, and create a new
C# file with the following content:

namespace Prime.UnitTests.Services
{
 public class PrimeService_IsPrimeShould
 {
 private readonly PrimeService _primeService;
 public PrimeService_IsPrimeShould()
 {
 _primeService = new PrimeService();
 }

 [Fact]
 public void ReturnFalseGivenValueOf1()
 {
 var result = _primeService.IsPrime(1);

 Assert.False(result, $"1 should not be prime");
 }
 }
}

The [Fact] attribute denotes a method as a single test.

Save this file, then run dotnet build to build the test project.
If you have not already built the PrimeService project, the
build system will detect that and build it because it is a
dependency of the test project.

Now, execute dotnet test to run the tests from the console.
The xunit test runner has the program entry point to run your
tests from the Console. dotnet test starts the
test runner, and provides a command line argument to the
testrunner indicating the assembly that contains your tests.

Your test fails. You haven’t created the implementation yet.
Write the simplest code to make this one test pass:

public bool IsPrime(int candidate)
{
 if(candidate == 1)
 {
 return false;
 }
 throw new NotImplementedException("Please create a test first");
}

Adding More Features

Now, that you’ve made one test pass, it’s time to write more.
There are a few other simple cases for prime numbers: 0, -1. You
could add those as new tests, with the [Fact] attribute, but that
quickly becomes tedious. There are other xunit attributes that enable
you to write a suite of similar tests. A Theory represents a suite
of tests that execute the same code, but have different input arguments.
You can use the [InlineData] attribute to specify values for those
inputs.

Instead of creating new tests, leverage these two attributes
to create a single theory that tests some values less than 2,
which is the lowest prime number:

[Theory]
[InlineData(-1)]
[InlineData(0)]
[InlineData(1)]
public void ReturnFalseGivenValuesLessThan2(int value)
{
 var result = _primeService.IsPrime(value);

 Assert.False(result, $"{value} should not be prime");
}

Run dotnet test and you’ll see that two of these tests fail.
You can make them pass by changing the service. You need to change
the if clause at the beginning of the method:

if(candidate < 2)

Now, these tests all pass.

You continue to iterate by adding more tests, more theories,
and more code in the main library. You’ll quickly end up
with the
finished version of the tests [https://github.com/dotnet/core-docs/blob/master/samples/unit-testing/using-dotnet-test/test/PrimeService.Tests/PrimeServie_IsPrimeShould.cs]
and the
complete implementation of the library [https://github.com/dotnet/core-docs/blob/master/samples/unit-testing/using-dotnet-test/src/PrimeService/PrimeService.cs].

You’ve built a small library and a set of unit tests for that library.
You’ve structured this solution so that adding new packages and tests
will be seamless, and you can concentrate on the problem at hand. The
tools will run automatically.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/porting/libraries.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Porting to .NET Core - Libraries
description: Porting to .NET Core - Libraries
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a0fd860d-d6b6-4659-b325-8a6e6f5fa4a1

Porting to .NET Core - Libraries

With the release of .NET Core 1.0, there is an opportunity to port existing library code so that it can run cross-platform. This article discusses the .NET Standard Library, unavailable technologies, how to account for the smaller number of APIs available on .NET Core 1.0, how to use the tooling that ships with .NET Core SDK Preview 2, and recommended approaches to porting your code.

Porting is a task that may take time, especially if you have a large codebase. You should also be prepared to adapt the guidance here as needed to best fit your code. Every codebase is different, so this article attempts to frame things in a flexible way, but you may find yourself needing to diverge from the prescribed guidance.

Prerequisites

This article assumes you are using Visual Studio 2015 or later on Windows. The bits required for building .NET Core code are not available on previous versions of Visual Studio.

This article also assumes that you understand the recommended porting process and that you have resolved any issues with third-party dependencies.

Targeting the .NET Standard Library

The best way to build a cross-platform library for .NET Core is to target the .NET Standard Library. The .NET Standard Library is the formal specification of .NET APIs that are intended to be available on all .NET runtimes. It is supported by the .NET Core runtime.

What this means is that you’ll have to make a tradeoff between APIs you can use and platforms you can support, and pick the version of the .NET Platform Standard that best suits the tradeoff you wish to make.

As of right now, there are 7 different versions to consider: .NET Standard 1.0 through 1.6. If you pick a higher version, you get access to more APIs at the cost of running on fewer targets. If you pick a lower version, your code can run on more targets but at the cost of fewer APIs available to you.

For your convenience, here is a matrix of each .NET Standard version and each specific area it runs on:

Platform Name	Alias							
:———-	:———	:———	:———	:———	:———	:———	:———	:———
.NET Standard	netstandard	1.0	1.1	1.2	1.3	1.4	1.5	1.6
.NET Core	netcoreapp							

→

|→

|→

|→

|→

|→

|1.0|
|.NET Framework|net|→

|4.5|4.5.1|4.6|4.6.1|4.6.2|4.6.3|
|Mono/Xamarin Platforms||→

|→

|→

|→

|→

|→

|*|
|Universal Windows Platform|uap|→

|→

|→

|→

|10.0|||
|Windows|win|→

|8.0|8.1|||||
|Windows Phone|wpa|→

|→

|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||

A key thing to understand is that a project targeting a lower version cannot reference a project targeting a higher version. For example, a project targeting the .NET Platform Standard version 1.2 cannot reference projects that target .NET Platform Standard version 1.3 or higher. Projects can reference lower versions, though, so a project targeting .NET Platform Standard 1.3 can reference a project targeting .NET Platform Standard 1.2 or lower.

It’s recommended that you pick the lowest possible .NET Standard version and use that throughout your project.

Read more in .NET Platform Standard Library.

Key Technologies Not Yet Available on the .NET Standard or .NET Core

You may be using some technologies available for the .NET Framework that are not currently available for .NET Core. Each of the following sub-sections corresponds to one of those technologies. Alternative options are listed if it is feasible for you to adopt them.

App Domains

AppDomains can be used for different purposes on the .NET Framework. For code isolation, we recommend separate processes and/or containers as an alternative. For dynamic loading of assemblies, we recommend the new @System.Runtime.Loader.AssemblyLoadContext class.

Remoting

For communication across processes, inter-process communication (IPC) mechanisms can be used as an alternative to Remoting, such as Pipes [https://docs.microsoft.com/dotnet/core/api/system.io.pipes] or Memory Mapped Files [https://docs.microsoft.com/dotnet/core/api/system.io.memorymappedfiles.memorymappedfile].

Across machines, you can use a network based solution as an alternative, preferably a low-overhead plain text protocol such as HTTP. KestrelHttpServer [https://github.com/aspnet/KestrelHttpServer], the web server used by ASP.NET Core, is an option here. Remote proxy generation via Castle.Core [https://github.com/castleproject/Core] is also an option to consider.

Binary Serialization

As an alternative to Binary Serialization, there are multiple different serialization technologies to choose. You should choose one that fits your goals for formatting and footprint. Popular choices include:

		JSON.NET [http://www.newtonsoft.com/json] for JSON

		@System.Runtime.Serialization.DataContractSerializer for both XML and JSON

		@System.Xml.Serialization.XmlSerializer for XML

		protobuf-net [https://github.com/mgravell/protobuf-net] for Protocol Buffers

Refer to the linked resources to learn about their benefits and choose the ones for your needs. There are many other serialization formats and technologies out there, many of which are open source.

Sandboxes

As an alternative to Sandboxing, you can use operating system provided security boundaries, such as user accounts for running processes with the least set of privileges.

Overview of project.json

The project.json project model is a project model that ships with .NET Core SDK 1.0 Preview 2. It offers some benefits you may wish to take advantage of today:

		Simple multitargeting where target-specific assemblies can be generated from a single build.

		The ability to easily generate a NuGet package with a build of the project.

		No need to list files in your project file.

		Unification of NuGet package dependencies and project-to-project dependencies.

While project.json is eventually going to be deprecated, it can be used to build libraries on the .NET Standard today.

The Project File: project.json

.NET Core projects are defined by a directory containing a project.json file. This file is where aspects of the project are declared, such as package dependencies, compiler configuration, runtime configuration, and more.

The dotnet restore command reads this project file, restores all dependencies of the project, and generates a project.lock.json file. This file contains all the necessary information the build system needs to build the project.

To learn more about the project.json file, read the project.json reference.

The Solution File: global.json

The global.json file is an optional file to include in a solution which contains multiple projects. It typically resides in the root directory of a set of projects. It can be used to inform the build system of different subdirectories which can contain projects. This is for larger systems composed of several projects.

For example, you can organize your code into top-level /src and /test folder as such:

{
 "projects":["src", "test"]
}

You can then have multiple project.json files under their own sub-folders inside /src and /test.

How to Multitarget with project.json

Many libraries multitarget to have as wide of a reach as possible. With .NET Core, multitargeting is a “first class citizen”, meaning that you can easily generate platform-specific assemblies with a single build.

Multitargeting is as simple as adding the correct Target Framework Moniker (TFM) to your project.json file, using the correct dependencies for each target (dependencies for .NET Core and frameworkAssemblies for .NET Framework), and potentially using #if directives to conditionally compile the source code for platform-specific API usage.

For example, imagine you are building a library where you wanted to perform some network operations, and you wanted that library to run on all .NET Framework versions, a Portable Class Library (PCL) Profile, and .NET Core. For .NET Core and .NET Framework 4.5+ targets, you may use System.Net.Http library and async/await. However, for earlier versions of .NET Framework, those APIs aren’t available.

Here’s a sample frameworks section for a project.json that targets the .NET Framework versions 2.0, 3.5, 4.0, 4.5, and .NET Standard 1.6:

{
 "frameworks":{
 "net20":{
 "frameworkAssemblies":{
 "System.Net":""
 }
 },
 "net35":{
 "frameworkAssemblies":{
 "System.Net":""
 }
 },
 "net40":{
 "frameworkAssemblies":{
 "System.Net":""
 }
 },
 "net45":{
 "frameworkAssemblies":{
 "System.Net.Http":"",
 "System.Threading.Tasks":""
 }
 },
 ".NETPortable,Version=v4.5,Profile=Profile259": {
 "buildOptions": {
 "define": ["PORTABLE"]
 },
 "frameworkAssemblies":{
 "mscorlib":"",
 "System":"",
 "System.Core":"",
 "System.Net.Http":""
 }
 },
 "netstandard16":{
 "dependencies":{
 "NETStandard.Library":"1.6.0",
 "System.Net.Http":"4.0.1",
 "System.Threading.Tasks":"4.0.11"
 }
 },
 }
}

Note that PCL targets are special: they require you to specify a build definition for the compiler to recognize, and they require you to specify all of the assemblies you use, including mscorlib.

Your source code could then use the dependencies like this:

#if (NET20 || NET35 || NET40 || PORTABLE)
using System.Net;
#else
using System.Net.Http;
using System.Threading.Tasks;
#endif

Note that all of the .NET Framework and .NET Standard targets have names recognized by the compiler:

.NET Framework 2.0 --> NET20
.NET Framework 3.5 --> NET35
.NET Framework 4.0 --> NET40
.NET Framework 4.5 --> NET45
.NET Framework 4.5.1 --> NET451
.NET Framework 4.5.2 --> NET452
.NET Framework 4.6 --> NET46
.NET Framework 4.6.1 --> NET461
.NET Framework 4.6.2 --> NET462
.NET Standard 1.0 --> NETSTANDARD1_0
.NET Standard 1.1 --> NETSTANDARD1_1
.NET Standard 1.2 --> NETSTANDARD1_2
.NET Standard 1.3 --> NETSTANDARD1_3
.NET Standard 1.4 --> NETSTANDARD1_4
.NET Standard 1.5 --> NETSTANDARD1_5
.NET Standard 1.6 --> NETSTANDARD1_6

As mentioned above, if you are targeting a PCL, then you will have to specify a build definition for the compiler to understand. There is no default definition that the compiler can use.

Using project.json in Visual Studio

You have two options for using project.json in Visual Studio:

		A new xproj project type.

		A retargeted PCL project which supports .NET Standard.

There are different benefits and drawbacks for each.

When to Pick an Xproj Project

The new Xproj project system in Visual Studio utilizes the capabilities of the project.json-based project model to offer two major features over existing project types: seamless multitargeting by building multiple assemblies and the ability to directly generate a NuGet package on build.

However, it comes at the cost of lacking certain features you may use, such as:

		Support for F# or Visual Basic

		Generating satellite assemblies with localized resource strings

		Directly referencing a .dll file on the filesystem

		The ability to reference a csproj-based project in the Reference Manager (depending on the .dll file directly is supported, though)

If your project needs are relatively minimal and you can take advantage of the new features of xproj, you should pick it as your project system. This can be done in Visual Studio as such:

		Ensure you are using Visual Studio 2015 or later.

		Select File | New Project.

		Select ”.NET Core” under Visual C#.

		Select the “Class Library (.NET Core)” template.

When to Pick a PCL project

You can target .NET Core with the traditional project system in Visual Studio, by creating a Portable Class Library (PCL) and selecting ”.NET Core” in the project configuration dialog. Then you’ll need to retarget the project to be based on the .NET Standard:

		Right-click on the project file in Visual Studio and select Properties.

		Under Build, select “Convert to .NET Standard”.

If you have more advanced project system needs, this should be your choice. Note that if you wish to multitarget by generating platform-specific assemblies like with the xproj project system, you’ll need to create a “Bait and Switch” PCL, as described in How to Make Portable Class Libraries Work for You [https://blogs.msdn.microsoft.com/dsplaisted/2012/08/27/how-to-make-portable-class-libraries-work-for-you/].

Retargeting your .NET Framework Code to .NET Framework 4.6.1

If your code is not targeting .NET Framework 4.6.1, it’s recommended that you retarget. This ensures that you can use the latest API alternatives for cases where the .NET Standard can’t support existing APIs.

For each of your projects in Visual Studio you wish to port, do the following:

		Right-click on the project and select Properties

		In the “Target Framework” dropdown, select ”.NET Framework 4.6.2”.

		Recompile your projects.

And that’s it! Because your projects now target .NET Framework 4.6.2, you can use that version of .NET Framework as your base for porting code.

Determining the Portability of Your Code

The next step is to run the API Portability Analyzer (ApiPort) to generate a portability report that you can begin to analyze.

You’ll need to make sure you understand the API Portability tool (ApiPort) [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] and can generate portability reports for targeting .NET Core. How you do this will likely vary based on your needs and personal tastes. What follows are a few different approaches - you may find yourself mixing each approach depending on how your code is structured.

Dealing Primarily with the Compiler

This approach may be the best for small projects or projects which don’t use many .NET Framework APIs. The approach is very simple:

		Optionally run ApiPort on your project.

		If ApiPort was ran, take a quick glance at the report.

		Copy all of your code over into a new .NET Core project.

		Work out compiler errors until it compiles, referring to the portability report if needed.

		Repeat as needed.

Although this approach is very unstructured, the code-focused approach can lead to resolving any issues quickly, and may be the best approach for smaller projects or libraries. A project that contains only data models may be an ideal candidate here.

Staying on the .NET Framework until Portability Issues are Resolved

This approach may be the best if you prefer to have code that compiles during the entire process. The approach is as follows:

		Run ApiPort on a project.

		Address issues by using different APIs which are portable.

		Keep note of any areas where you can’t use a direct alternative.

		Repeat steps 1-3 for all projects you’re porting until you’re confident each is ready to be copied over into a .NET Core project.

		Copy the code into a new .NET Core projects.

		Work out any issues that you’ve kept note of.

This careful approach is more structured than simply working out compiler errors, but it is still relatively code-focused and has the benefit of always having code that can compile. The way you resolve certain issues that couldn’t be addressed by just using another API can vary greatly. You may find that you need to develop a more comprehensive plan for certain projects, which is covered as the next approach.

Developing a Comprehensive Plan of Attack

This approach may be best for larger and more complex projects, where restructuring of code or rewriting certain areas may be necessary to support .NET Core. The approach is as follows:

		Run ApiPort on a project.

		Understand where in your code each non-portable type is being used and how that affects overall portability.

a. Understand the nature of those types. Are they small in number, but used frequently? Are they large in number, but used infrequently? Is their use concentrated, or is it spread throughout your code?

b. Is it easy to isolate code that isn’t portable so you can deal with it more easily?

c. Would you need to refactor your code?

d. For those types which aren’t portable, are there alternative APIs that accomplish the same task? For example, if you’re using the WebClient class, you may be able to use the HttpClient class instead.

e. Are there different portable APIs you can use to accomplish a task, even if it’s not a drop-in replacement? For example, if you’re using XmlSchema to help parse XML, but you don’t require XML schema discovery, you could use System.Linq.Xml APIs and hand-parse the data.

		If you have assemblies that are difficult to port, is it worth leaving them on .NET Framework for now? Here are some things to consider:

a. You may have some functionality in your library that’s incompatible with .NET Core because it relies too heavily on .NET Framework- or Windows-specific functionality. Is it worth leaving that functionality behind for now and releasing a .NET Core version of your library with less features for the time being?

b. Would a refactor help here?

		Is it reasonable to write your own implementation of an unavailable .NET Framework API?

You could consider instead copying, modifying, and using code from the .NET Framework Reference Source [https://github.com/Microsoft/referencesource]. It’s licensed under the MIT License [https://github.com/Microsoft/referencesource/blob/master/LICENSE.txt], so you have significant freedom in doing this. Just be sure to properly attribute Microsoft in your code!

		Repeat this process as needed for different projects.

		Once you have a plan, execute that plan.

The analysis phase could take some time depending on how large your codebase is. Spending time in this phase to thoroughly understand the scope of changes needed and to develop a plan can save you a lot of time in the long run, particularly if you have a more complex codebase.

Your plan could involve making significant changes to your codebase while still targeting .NET Framework 4.6.1, making this a more structured version of the previous approach. How you go about executing your plan will be dependent on your codebase.

Mixing Approaches

It’s likely that you’ll mix the above approaches on a per-project basis. You should do what makes the most sense to you and for your codebase.

Porting your Tests

The best way to make sure everything works when you’ve ported your code is to test your code as you port it to .NET Core. To do this, you’ll need to use a testing framework that will build and run tests for .NET Core. Currently, you have three options:

		xUnit [https://xunit.github.io/]
		Getting Started [http://xunit.github.io/docs/getting-started-dnx.html]

		Tool to convert an MSTest project to xUnit [https://github.com/dotnet/codeformatter/tree/master/src/XUnitConverter]

		NUnit [http://www.nunit.org/]
		Getting Started [https://github.com/nunit/docs/wiki/Installation]

		Blog post about migrating from MSTest to NUnit [http://www.florian-rappl.de/News/Page/275/convert-mstest-to-nunit]

		MSTest [https://msdn.microsoft.com/en-us/library/ms243147(v=vs.90).aspx]

Recommended Approach to Porting

Finally, porting the code itself! Ultimately, the actual porting effort will depend heavily on how your .NET Framework code is structured. That being said, here is a recommended approach which may work well with your codebase.

A good way to port your code is to begin with the “base” of your library. This may be data models or some other foundational classes and methods that everything else uses directly or indirectly.

		Port the test project which tests the layer of your library that you’re currently porting.

		Copy over the “base” of your library into a new .NET Core project and select the version of the .NET Standard you wish to support.

		Make any changes needed to get the code to compile. Much of this may require adding NuGet package dependencies to your project.json file.

		Run tests and make any needed adjustments.

		Pick the next layer of code to port over and repeat steps 2 and 3!

If you methodically move outward from the base of your library and test each layer as needed, porting will be a systematic process where problems are isolated to one layer of code at a time.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

core/porting/project-structure.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Organizing Your Project to Support .NET Framework and .NET Core
description: Organizing Your Project to Support .NET Framework and .NET Core
keywords: .NET, .NET Core
author: conniey
manager: wpickett
ms.date: 07/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3af62252-1dfa-4336-8d2f-5cfdb57d7724

Organizing Your Project to Support .NET Framework and .NET Core

This article is to help project owners who want to compile their solution against .NET Framework and .NET Core side-by-side. It provides several options to organize projects to help developers achieve this goal. Here are some typical scenarios to consider when you are deciding how to setup your project layout with .NET Core. They may not cover everything you want; prioritize based on your project’s needs.

		Combine existing projects and .NET Core projects into single projects

What this is good for:

		Simplifying your build process by compiling a single project rather than compiling multiple projects, each targeting a different .NET Framework version or platform.

		Simplifying source file management for multi-targeted projects because you have to manage a single project file. When adding/removing source files, the alternatives require you to manually sync these with your other projects.

		Easily generating a NuGet package for consumption.

		Allows you to write code for a specific .NET Framework version in your libraries through the use of compiler directives.

Unsupported scenarios:

		Does not allow developers without Visual Studio 2015 to open existing projects. To support older versions of Visual Studio, keeping your project files in different folders is a better option.

		Does not allow you to share your .NET Core library across different project types in the same solution file. To support this, creating a Portable Class Library is a better option.

		Does not allow for project build or load modifications that are supported by MSBuild Targets and Tasks. To support this, creating a Portable Class Library is a better option.

		[bookmark: support-vs]Keep existing projects and new .NET Core projects separate

What this is good for:

		Continuing to support development on existing projects without having to upgrade for developers/contributors who may not have Visual Studio 2015.

		Decreasing the possibility in creating new bugs in existing projects because no code churn is required in those projects.

		[bookmark: support-pcl]Keep existing projects and create Portable Class Libraries (PCLs) targeting .NET Core

What this is good for:

		Referencing your .NET Core libraries in desktop and/or web projects targeting the full .NET Framework in the same solution.

		Supporting modifications in the project build or load process. These modifications could be the inclusion of MSBuild Tasks and Targets in your *.csproj file.

Unsupported scenarios:

		Does not allow you to write code for a specific .NET Framework version because the predefined preprocessor symbols [https://github.com/dotnet/core-docs/blob/master/docs/core/tutorials/libraries.md#how-to-multitarget] are not supported.

Example

Consider the repository below:

[image: Existing project]

Source Code [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library/]

There are several different ways to add support for .NET Core for this repository depending on the constraints and complexity of existing projects which are described below.

Replace Existing Projects with a Multi-targeted .NET Core Project (xproj)

The repository can be reorganized so that any existing *.csproj files are removed and a single *.xproj file is created that targets multiple frameworks. This is a great option because a single project is able to compile for different frameworks. It also has the power to handle different compilation options, dependencies, etc. per targeted framework.

[image: Create an xproj that targets multiple frameworks]

Source Code [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library-xproj/]

Changes to note are:

		Addition of global.json

		Replacement of packages.config and *.csproj with project.json and *.xproj

		Changes in the Car’s project.json [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library-xproj/src/Car/project.json] and its test project [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library-xproj/tests/Car.Tests/project.json] to support building for the existing .NET Framework as well as others

Create a Portable Class Library (PCL) to target .NET Core

If existing projects contain complex build operations or properties in their *.csproj file, it may be easier to create a PCL.

[image:]

Source Code [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library-pcl]

Changes to note are:

		Renaming project.json to {project-name}.project.json
		This prevents potential conflict in Visual Studio when trying to restore packages for the libraries in the same directory. For more information, see the NuGet FAQ [https://docs.nuget.org/consume/nuget-faq#working-with-packages] under “I have multiple projects in the same folder, how can I use separate packages.config or project.json files for each project?”.

		Alternative: Create the PCL in another folder and reference the original source code to avoid this issue. Placing the PCL in another folder has an added benefit that users who do not have Visual Studio 2015 can still work on the older projects without loading the new solution.

		To target .NET Standard after creating the PCL, in Visual Studio, open the **Project’s Properties**. Under the Targets section, click on the link **“Target .NET Platform Standard”**. This change can be reversed by repeating the same steps.

Keep Existing Projects and Create a .NET Core Project

If there are existing projects that target older frameworks, you may want to leave these projects untouched and use a .NET Core project to target future frameworks.

[image: .NET Core project with existing PCL in different folder]

Source Code [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/migrate-library-xproj-keep-csproj/]

Changes to note are:

		The .NET Core and existing projects are kept in separate folders.
		This avoids the package restore issue that was mentioned above due to multiple project.json/package.config files being in the same folder.

		Keeping projects in separate folders avoids forcing you to have Visual Studio 2015 (due to project.json). You can create a separate solution that only opens the old projects.

See Also

Please see .NET Core porting documentation for more guidance on moving to project.json and xproj.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

about/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: About .NET
description: .NET Products
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2e38e9d9-8284-46ee-a15f-199adc4f26f4

About .NET

Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.

.NET is a general purpose development platform. It can be used for any kind of app type or workload where general purpose solutions are used. It has several key features that are attractive to many developers, including automatic memory management and modern programming languages, that make it easier to efficiently build high-quality applications. .NET enables a high-level programming environment with many convenience features, while providing low-level access to native memory and APIs.

C#, F# and Visual Basic are popular languages that target and rely on the .NET platform. The .NET languages are known for key features such as their asynchronous programming model, language-integrated query, generic types and type system reflection. The languages also provide great options for both object-oriented and functional programming paradigms.

There is great diversity across these languages, in philosophy and syntax, but also symmetry provided by a shared type system. This type system is provided by the underlying runtime environment. .NET was designed around the idea of a “common language runtime” that could support the requirements of diverse languages – for example, dynamic and statically typed languages – and enable interoperability between them. For example, it’s possible to pass a collection of People objects between languages with no loss in semantics or capability.

Multiple .NET implementations and products are available, based on open .NET Standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that specify the fundamentals of the platform. They are separately optimized for different application types (for example, desktop, mobile, gaming, cloud) and support many chips (e.g. x86/x64, ARM) and operating systems (e.g. Windows, Linux, iOS, Android, macOS). Open source is also an important part of the .NET ecosystem, with multiple .NET implementations and many libraries available under OSI-approved licenses.

		Learn about .NET

		Learn about C#

		Learn about F#

		Browse the .NET API Library

		Introduction to the Common Language Runtime [https://github.com/dotnet/coreclr/blob/master/Documentation/botr/intro-to-clr.md]

Fundamentals

Multi-Language – .NET provides a well-defined type system, file formats, runtime, framework and tools that can be used by multiple languages, both for their own execution and also to interoperate with other languages using those same components of .NET as their shared currency.

Managed Memory – .NET automatically manages memory for you via a garbage collector. It ensures that you always reference live objects, guaranteeing that you avoid nasty problems like buffer overruns and access violations. This includes array bounds checking.

Type Safety – The primary .NET model for functionality and memory representation is “types”. Types define shape and optionally behavior. The runtime ensures that calling code can only operate on types according to their definition and specified visibility of members, providing consistent, reliable and secure results.

Features

User-defined Value Types – Value types are a useful category of types since they offer the semantic of “pass by value” instead of “pass by reference”, as is the case for classes. Value types are most obviously usefully for numeric data. .NET enables value types for both primitive types, like integers, and user-defined types.

Generic types – Generic types are types with one or more type parameters that can be specified on a per-instantiation basis. This is useful for many types, which otherwise would expose contents as the Object type or require multiple type definitions. For example, a given instantiation of a collection type can be made specific to People, GPS locations or strings.

Reflection – .NET defines a metadata format that describes the types within a binary. The reflection subsystem uses this data, exposing APIs for both reading and instantiating types at runtime. This facility is very useful for dynamic scenarios where it is not convenient to know the exact implementation of a program ahead of time.

Flexible code generation – .NET does not prescribe a specific approach to transforming .NET binaries into machine code. Many approaches have been used successfully, including interpretation, just-in-time (JIT) compilation, ahead-of-time (AOT) compilation with JIT fallback and AOT compilation with no JIT fallback. Each of these strategies can be valuable and there are opportunities for using them together.

Cross-platform – .NET was intended to be cross platform from its inception. The binary format and the instruction set are operating system, CPU and pointer-size agnostic. A given .NET binary built in 2000 to run on a 32-bit Windows machine can run on the ARM64 iOS device on 2016 without modification.

Open source

The .NET Core [https://github.com/dotnet/core] and Mono [https://github.com/mono/mono] implementations of .NET are open source, using the MIT license. Documentation uses the Creative Commons CC-BY [https://creativecommons.org/licenses/by/4.0/] license. .NET Core and Mono are sponsored by Microsoft and have many contributers from the community.

These general purpose runtimes can be used as the basis of academic research or teaching/learning or commercial products. Their open nature also means that anyone can contribute back to the upstream product code given a bug or the desire for a new feature.

Projects

		CoreCLR [https://github.com/dotnet/coreclr] - .NET runtime, used by .NET Core.

		Mono [https://github.com/mono/mono] - .NET runtime, used by Xamarin and others.

		CoreFX [https://github.com/dotnet/coreclr] - .NET class libraries, used by .NET Core and to a degree by Mono via source sharing.

		Roslyn [https://github.com/dotnet/roslyn] - C# and Visual Basic compilers, used by most .NET platforms and tools. Exposes APIs for reading, writing and analyzing source code.

		F# [https://github.com/microsoft/visualfsharp] - F# compiler.

		Xamarin SDK [http://open.xamarin.com] - Tools and libraries needed to write Android, iOS and macOS in C# and F#.

Standardized

.NET is specified via open ECMA standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that outline its capabilities and that can be used to make a new implementation. There are other .NET implementations, with Mono and Unity being the most popular beyond the Microsoft ones.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/assembly-headers.png
PE Headers

CLI Header

CLI Data : metadata, IL method bodies, fix-ups

Native Image Sections

samples-and-tutorials/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Samples and Tutorials
description: Samples and Tutorials
keywords: .NET
author: BillWagner
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net
ms.technology: .net-technologies
ms.devlang: dotnet
ms.assetid: 617310e7-336b-4864-8dab-7e2021512929

Samples and Tutorials

We’ve got a rich catalog of samples and tutorials that you can use
to learn more about .NET. This area contains samples and tutorials
for .NET Core, and the C# Language.

You can find great resources to learn the F# programming language
on the F# Foundation’s site [http://fsharp.org/learn.html].

You can find great resources for learning ASP.NET Core on the
ASP.NET site [https://docs.asp.net/en/latest/tutorials/index.html]

In addition, if you are interested in exploring C# using an
online playground, try these interactive tutorials [http://go.microsoft.com/fwlink/?LinkId=817234].

General

Samples

Unit Testing in .NET Core using dotnet test

This guide shows how to create an ASP.NET Core web application and the associated unit tests. It will start by creating a simple web service application and then add tests, and continue by creating more tests to guide implementing new features. The completed code is available in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/unit-testing/using-dotnet-test].

Tutorials

Writing .NET Core console apps using the CLI tools: A step-by-step guide

This guide will show you how to use the .NET Core CLI tooling to build cross-platform console apps. It will start with the most basic console app and eventually span multiple projects, including testing. You’ll add these features step-by-step, building on what you’ve already seen and built. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps].

Writing Libraries with Cross Platform Tools

This sample covers how you can write libraries for .NET using cross-platform CLI tools. They provide an efficient and low-level experience that works across any supported OS.
The completed code is available in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/libraries/frameworks-library].

C# Language

Samples

Iterators

This sample demonstrates the syntax and features for creating and consuming C# iterators. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/iterators].

Indexers

This sample demonstrates the syntax and features for C# indexers. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/indexers].

Delegates and Events

This sample demonstrates the syntax and features for C# delegates and events. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/delegates-and-events]. A second sample, focused on events is also in the
same repository [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/events].

Expression Trees

This sample demonstrates many of the problems that can be solved by using Expression Trees. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/expression-trees].

LINQ Samples

These series of samples demonstrate many of the features of Language Integrated Query. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/linq/csharp].

Tutorials

Console Application

This tutorial demonstrates Console I/O, the structure of a Console application, and
the basics of the Task based asynchronous programming model. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/console-teleprompter].

REST Client

This tutorial demonstrates web communications, JSON serialization, and Object Oriented
features in the C# language. A finished version of the code you’ll build is located
in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/console-webapiclient].

Working with LINQ

This tutorial demonstrates many of the features of LINQ and the language elements that support it. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/console-linq].

Microservices hosted in Docker

This tutorial demonstrates building an asp.net core microservice and hosting it it Docker. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/WeatherMicroservice].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

about/products.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Products
description: .NET Products
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2e38e9d9-8284-46ee-a15f-199adc4f26f4

.NET Products

.NET is a very flexible, general purpose and inherently cross-platform specification [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] for building developer products. It is used for all of the most popular app categories: desktop, mobile, cloud, gaming and IoT.

There are two subtly different terms used in this document:

		”.NET product” - Enables you to build an app for one or more target platforms.

		”.NET implementation” - Some combination of a runtime, framework and tools that can execute ”.NET code” on which products are based.

Product Categories

.NET products are available for each of the following product categories.

Desktop

You can build desktop apps for Windows and macOS.

		Universal Windows Apps [https://developer.microsoft.com/windows] with .NET Native

		Windows Presentation Framework (WPF) [https://msdn.microsoft.com/library/ms754130.aspx] for Windows with the .NET Framework

		Windows Forms [https://msdn.microsoft.com/library/dd30h2yb.aspx] for Windows with the .NET Framework

		Cocoa for macOS with Xamarin

		Electron [http://electron.atom.io/] for cross-platform desktop with electron-edge [https://github.com/kexplo/electron-edge]

Games

You can build games for many desktop, mobile, console and virtual/agumented reality devices.

		Unity [http://docs.unity3d.com/Manual/index.html] with Mono

		MonoGame [http://www.monogame.net/documentation/?page=main] with Mono

IoT

You can build IoT apps for Windows 10 IoT Core, including Raspberry Pi 2/3.

		Windows 10 IoT Core [https://developer.microsoft.com/windows/iot] with .NET Native

Mobile

You can build Mobile apps for iOS, Android and Windows.

		iOS app with Xamarin

		Android app with Xamarin

		Universal Windows App [https://developer.microsoft.com/windows] with .NET Native

Web and Cloud

You can build Web and Cloud apps for Windows and Linux.

		ASP.NET [http://www.asp.net/] for Windows with the .NET Framework

		ASP.NET Core [http://docs.asp.net/] for Windows, macOS and Linux with .NET Core

.NET Implementations

Major commercial and open source .NET implementations are listed below, in alphabetical order.

.NET Core

.NET Core is used to build device, web, cloud and embedded/IoT apps. It is open source [https://github.com/dotnet/core] and cross-platform, supporting Windows, macOS and Linux. ASP.NET Core [http://docs.asp.net/] is the most popular workload for .NET Core. You can use it to build web apps and services, for on-premises and cloud deployment. You can also use .NET Core to build tools, utilities and cloud worker apps.

		Learn about .NET Core

		Learn about ASP.NET Core [http://docs.asp.net/]

		Download .NET Core [http://dot.net/core]

The following are the main characteristics of .NET Core:

Cross-platform - .NET Core supports three operating systems families: Linux, Windows and macOS. .NET Core apps are cross-platform by default. You can write apps and libraries that run unmodified across supported OSes.

Open Source - .NET Core [https://github.com/dotnet/core] is available on GitHub, licensed with the MIT [https://github.com/dotnet/coreclr/blob/master/LICENSE.TXT] and Apache 2 [https://github.com/dotnet/roslyn/blob/master/License.txt] licenses (licensing is per component). Documentation is CC-BY [https://github.com/dotnet/core-docs/blob/master/license.txt]. .NET Core also makes use of a significant set of open source industry dependencies, listed in the .NET Core release notes [https://github.com/dotnet/core/releases].

Natural acquisition - NET Core is distributed in several forms, aligning with specific developer needs. You can acquire .NET Core with the .NET Core SDK [https://dot.net/core] installer (or zips) or via OS-specific package managers, such as APT and Yum. Official .NET Core Docker images [https://hub.docker.com/r/microsoft/dotnet/] are available on Docker Hub. Higher-level framework libraries and the larger .NET library ecosystem are available on NuGet [http://www.nuget.org/].

Modular platform - .NET Core is built with a modular design, enabling applications to include only the .NET Core libraries and dependencies that are needed. Each application makes its own .NET Core versioning choices, avoiding conflicts with shared components. This approach aligns with the trend of developing software using container technologies like Docker.

.NET Framework

The .NET Framework is used to build apps for Windows and Windows Server. You can use it to build rich user interfaces with Windows Presentation Framework (WPF) and Windows Forms. It also supports building server apps with ASP.NET Web Forms, ASP.NET MVC and Windows Communication Framework (WCF). Visual Studio provides rich designer experiences for the .NET Framework, making it easy to build both client and server apps. It is the best choice for writing apps for Windows.

		Learn about the .NET Framework [https://msdn.microsoft.com/library/w0x726c2.aspx]

		Download .NET Framework [https://dot.net]

Windows Forms [https://msdn.microsoft.com/library/dd30h2yb.aspx] enables you to build a “forms over data” desktop UI more rapidly than any other technology. It uses a designer that enables drag-and-drop of UI and non-UI controls, reducing most development tasks into a single gesture and conceptual model.

Windows Presentation Foundation (WPF) [https://msdn.microsoft.com/library/ms754130.aspx] separates code and UI concerns by describing UI with the XAML [https://msdn.microsoft.com/library/ms752059.aspx] markup language. WPF is very flexible and is often used for UIs that require a more complex user model or a more elegant appearance.

Windows Communication Foundation (WCF) [https://msdn.microsoft.com/library/ms731082.aspx] is a set of libraries for SOAP Web Services. It allows you to create services that can communicate through various supported protocols using various data formats, and that can be hosted in any process you choose. This leads to one of the major features of WCF: your services are not tied to any particular hosting strategy or approach.

ASP.NET [http://www.asp.net/] is a web framework. It has several distinct pieces which are used to produce modern and high-performance web applications.

		ASP.NET Web Forms [http://www.asp.net/web-forms] enables you to build a “forms over data” UI more radidly than most other Web technologies, with a designer that enables drag-and-drop of web controls.

		ASP.NET MVC [http://www.asp.net/mvc] gives you greater control over the entire web pipeline, from the HTTP layer to the user interface.

		ASP.NET WebAPI [http://www.asp.net/web-api] is a convention-based framework for creating REST services.

		SignalR [http://www.asp.net/signalr] allows you to provide push-based communication to your web applications using the WebSocket [https://en.wikipedia.org/wiki/WebSocket] protocol.

.NET Native

.NET Native is a set of native build tools for .NET Core. .NET Native is an Ahead-of-Time (AOT) toolchain that produces native applications by compiling IL byte code to native machine code. This means that the resulting binary is what the OS executes; there is no JIT-ing, no runtime compilation. This leads to better startup performance, as well as some security benefits.

.NET Native is primarily used by .NET Universal Windows Platform (UWP) [https://msdn.microsoft.com/library/windows/apps/dn726767.aspx] applications.

Mono

Mono [http://www.mono-project.com/docs/about-mono/] is the original open source and cross-platform implementation of .NET, from the community Mono Project [http://mono-project.com]. It is now sponsored by Microsoft. It can be thought of as an open and cross-platform version of the .NET Framework. Its APIs follow the progress of the .NET Framework, not .NET Core.

There are several components that make up Mono:

C# Compiler - Mono’s C# compiler is feature complete for C# 6.

Mono Runtime - The runtime implements the ECMA Common Language Infrastructure (CLI). The runtime provides a Just-in-Time (JIT) compiler, an Ahead-of-Time compiler (AOT), a library loader, the garbage collector, a threading system and interoperability functionality.

Base Class Library - The Mono platform provides a comprehensive set of classes that provide a solid foundation to build applications on. These classes are compatible with Microsoft’s .Net Framework classes.

Mono Class Library - Mono also provides many classes that go above and beyond the Base Class Library provided by the .NET Framework. These provide additional functionality that are useful, especially in building Linux applications. Some examples are classes for Gtk+, Zip files, LDAP, OpenGL, Cairo, POSIX, etc.

Xamarin SDK

The Xamarin SDK [http://open.xamarin.com] is used to build native mobile and device apps, primarily for Apple and Google ecosystems. It is based on Mono and is open source using the MIT license. You can use it to build iOS and Android apps for phones, tablets and watches. Xamarin.Forms [https://www.xamarin.com/forms] is a popular way to write reusable UIs across Apple, Google and Windows apps.

		Learn about the Xamarin SDK [https://developer.xamarin.com/]

		Download Xamarin [https://www.xamarin.com/platform]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

fsharp/getting-started-netcore.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with F# on .NET Core
description: Getting started with F# on .NET Core
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 07/01/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 615db1ec-6ef3-4de2-bae6-4586affa9771

Getting started with F# on .NET Core

This article covers how you can get started with using F# on .NET Core with the ..NET Core SDK 1.0 Preview 2. It will go through building a multi-project solution with a Class Library, a Console App, and an xUnit test project.

Prerequisites

To begin, you must install the .NET Core SDK 1.0 Preview 2 [https://www.microsoft.com/net/core].

This article uses the command line and Visual Studio Code [https://code.visualstudio.com] as the text editor. You’re free to use any editor you like, though. To get awesome features like Intellisense, better syntax highlighting, and more, you can also download the Ionide Extension [https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp] and get a lightweight IDE experience in Visual Studio Code.

Building a Simple Multi-project Solution

		Open up a Command Line/Terminal.

		Create a new directory named FSNetCore. Open Visual Studio code or your preferred editor inside this directory.

		Under FSNetCore, create src and test directories.

		Under FSNetCore, create a new file called global.json. It should have this as its contents:

{
 "projects":["src", "test"]
}

Your solutions structure should now look like this:

FSNetCore/
|---src/
|---test/
|---global.json

Writing a Class library

		Create a Library folder under FSNetCore/src.

		In the command line, execute dotnet new -l F# in FSNetCore/src/Library.

		Remove the NuGet.Config file.

		Rename Program.fs to Lib.fs.

		Open the project.json file and remove the emitEntryPoint entry from buildOptions.

		Under buildOptions/compile/includeFiles, replace Program.fs with Lib.fs.

		Remove the global dependencies section.

		Under tools/dotnet-compile-fsc, remove the imports section.

		Under frameworks, change netcoreapp1.0 to netstandard1.6.

		Under frameworks/netstandard1.6, remove the imports section.

		Under frameworks/netstandard1.6/dependencies, replace the Microsoft.NETCore.App package with "NETStandard.Library":"1.6.0". Add "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629" and "Newtonsoft.Json": "9.0.1".

		Open Lib.fs and change the contents to the following code:

module Library

open Newtonsoft.Json

let getJsonNetJson value =
 sprintf "I used to be %s but now I'm %s!" value (JsonConvert.SerializeObject(value))

		Run dotnet restore and dotnet build. These should succeed.

Your project.json file should look like this:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "compilerName": "fsc",
 "compile": {
 "includeFiles": [
 "Lib.fs"
]
 }
 },
 "tools": {
 "dotnet-compile-fsc":"1.0.0-preview2-*"
 },
 "frameworks": {
 "netstandard1.6": {
 "dependencies": {
 "NETStandard.Library":"1.6.0",
 "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
 "Newtonsoft.Json": "9.0.1"
 }
 }
 }
}

And your Lib.fs file should look like this:

module Library

open Newtonsoft.Json

let getJsonNetJson value =
 sprintf "I used to be %s but now I'm %s!" value (JsonConvert.SerializeObject(value))

Writing a Console Application which Consumes the Class Library

		Create an App folder under FSNetCore/src.

		In the command line, execute dotnet new -l F# in FSNetCore/src/App.

		Remove the NuGet.Config file.

		Open the project.json file.

		Remove the global dependencies section.

		Under tools/dotnet-compile-fsc, remove the imports section.

		Under frameworks/netcoreapp1.0/, remove the imports section.

		Under frameworks/netcoreapp1.0/dependencies, add the following after Microsoft.NETCore.App:

"Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
"Library":{
 "version":"1.0.0",
 "target": "project"
}

		Change Program.fs to:

open System
open Library

[<EntryPoint>]
let main argv =
 printfn "Nice command line arguments!. Here's what JSON.NET has to say about them:"

 argv
 |> Array.map getJsonNetJson
 |> Array.iter (printfn "%s")

 0 // return an integer exit code

		Enter dotnet restore and dotnet build into the command line. These should succeed.

		Enter dotnet run Hello World into the command line. You should see results like this:

Nice command line arguments! Here's what JSON.NET has to say about them:

I used to be Hello but now I'm ""Hello""!
I used to be World but now I'm ""World""!

Your project.json file should look like this:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "emitEntryPoint": true,
 "compilerName": "fsc",
 "compile": {
 "includeFiles": [
 "Program.fs"
]
 }
 },
 "tools": {
 "dotnet-compile-fsc":"1.0.0-preview2-*"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
 "Library":{
 "version":"1.0.0",
 "target": "project"
 }
 }
 }
 }
}

And your Program.fs file should look like this:

open System
open Library

[<EntryPoint>]
let main argv =
 printfn "Nice command line arguments!. Here's what JSON.NET has to say about them:"

 argv
 |> Array.map getJsonNetJson
 |> Array.iter (printfn "%s")

 0 // return an integer exit code

Testing the Class Library with xUnit.net

		Create a TestLibrary folder under NETCoreFS/test.

		In the command line, execute dotnet new -l F# in FSNetCore/src/Tests.

		Remove the NuGet.Config.

		Rename Program.fs to Tests.fs.

		Open the project.json file.

		Remove the emitEntryPoint entry under buildOptions.

		Under buildOptions/compile/includeFiles, replace Program.fs with Tests.fs.

		Remove the global dependencies section.

		Under tools/dotnet-compile-fsc, remove the imports section.

		Under frameworks/netcoreapp1.0/, remove the imports section.

		Under frameworks/netcoreapp1.0/dependencies, add the following after Microsoft.NETCore.App:

"Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
"xunit":"2.2.0-beta2-build3300",
"dotnet-test-xunit":"2.2.0-preview2-build1029",
"Library":{
 "version": "1.0.0",
 "target": "project"
},

		After the frameworks section, add "testRunner":"xunit". Note that you can add this section anywhere in the project.json file.

		In test.fs, paste the following code:

module Test

open Xunit
open Library

[<Fact>]
let ``Library converts "Banana" correctly``() =
 let expected = """I used to be Banana but now I'm "Banana"!"""
 let actual = getJsonNetJson "Banana"
 Assert.Equal(expected, actual)

		Run dotnet restore and dotnet build.

You should now be able to run the test and verify it passes by doing dotnet test.

[!NOTE]
This will temporarily fail on macOS. There is an issue here to track this [https://github.com/xunit/xunit/issues/859].

Your project.json file should look like this:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "compilerName": "fsc",
 "compile": {
 "includeFiles": [
 "Tests.fs"
]
 }
 },
 "tools": {
 "dotnet-compile-fsc":"1.0.0-preview2-*"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 },
 "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
 "xunit":"2.2.0-beta2-build3300",
 "dotnet-test-xunit":"2.2.0-preview2-build1029",
 "Library":{
 "version": "1.0.0",
 "target": "project"
 },
 }
 }
 },
 "testRunner": "xunit"
}

And your Tests.fs file should look like this:

module Test

open Xunit
open Library

[<Fact>]
let ``Library converts "Banana" correctly``() =
 let expected = """I used to be Banana but now I'm "Banana"!"""
 let actual = getJsonNetJson "Banana"
 Assert.Equal(expected, actual)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/delegates-lambdas.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Delegates and lambdas
description: Delegates and lambdas
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fe2e4b4c-6483-4106-a4b4-a33e2e306591

Delegates and lambdas

Delegates define a type, which specify a particular method signature. A method (static or instance) that satisfies this signature can be assigned to a variable of that type, then called directly (with the appropriate arguments) or passed as an argument itself to another method and then called. The following example demonstrates delegate use.

public class Program
{

 public delegate string Reverse(string s);

 static string ReverseString(string s)
 {
 return new string(s.Reverse().ToArray());
 }

 static void Main(string[] args)
 {
 Reverse rev = ReverseString;

 Console.WriteLine(rev("a string"));
 }
}

		On line 4 we create a delegate type of a certain signature, in this case a method that takes a string parameter and then returns a string parameter.

		On line 6, we define the implementation of the delegate by providing a method that has the exact same signature.

		On line 13, the method is assigned to a type that conforms to the Reverse delegate.

		Finally, on line 15 we invoke the delegate passing a string to be reversed.

In order to streamline the development process, .NET includes a set of delegate types that programmers can reuse and not have to create new types. These are Func<>, Action<> and Predicate<>, and they can be used in various places throughout the .NET APIs without the need to define new delegate types. Of course, there are some differences between the three as you will see in their signatures which mostly have to do with the way they were meant to be used:

		Action<> is used when there is a need to perform an action using the arguments of the delegate.

		Func<> is used usually when you have a transformation on hand, that is, you need to transform the arguments of the delegate into a different result. Projections are a prime example of this.

		Predicate<> is used when you need to determine if the argument satisfies the condition of the delegate. It can also be written as a Func<T, bool>.

We can now take our example above and rewrite it using the Func<> delegate instead of a custom type. The program will continue running exactly the same.

public class Program
{

 static string ReverseString(string s)
 {
 return new string(s.Reverse().ToArray());
 }

 static void Main(string[] args)
 {
 Func<string, string> rev = ReverseString;

 Console.WriteLine(rev("a string"));
 }
}

For this simple example, having a method defined outside of the Main() method seems a bit superfluous. It is because of this that .NET Framework 2.0 introduced the concept of anonymous delegates. With their support you are able to create “inline” delegates without having to specify any additional type or method. You simply inline the definition of the delegate where you need it.

For an example, we are going to switch it up and use our anonymous delegate to filter out a list of only even numbers and then print them to the console.

public class Program
{

 public static void Main(string[] args)
 {
 List<int> list = new List<int>();

 for (int i = 1; i <= 100; i++)
 {
 list.Add(i);
 }

 List<int> result = list.FindAll(
 delegate(int no)
 {
 return (no%2 == 0);
 }
);

 foreach (var item in result)
 {
 Console.WriteLine(item);
 }
 }
}

Notice the highlighted lines. As you can see, the body of the delegate is just a set of expressions, as any other delegate. But instead of it being a separate definition, we’ve introduced it ad hoc in our call to the FindAll() method of the List<T> type.

However, even with this approach, there is still much code that we can throw away. This is where lambda expressions come into play.

Lambda expressions, or just “lambdas” for short, were introduced first in C# 3.0, as one of the core building blocks of Language Integrated Query (LINQ). They are just a more convenient syntax for using delegates. They declare a signature and a method body, but don’t have an formal identity of their own, unless they are assigned to a delegate. Unlike delegates, they can be directly assigned as the left-hand side of event registration or in various Linq clauses and methods.

Since a lambda expression is just another way of specifying a delegate, we should be able to rewrite the above sample to use a lambda expression instead of an anonymous delegate.

public class Program
{

 public static void Main(string[] args)
 {
 List<int> list = new List<int>();

 for (int i = 1; i <= 100; i++)
 {
 list.Add(i);
 }

 List<int> result = list.FindAll(i => i % 2 == 0);

 foreach (var item in result)
 {
 Console.WriteLine(item);
 }
 }
}

If you take a look at the highlighted lines, you can see how a lambda expression looks like. Again, it is just a very convenient syntax for using delegates, so what happens under the covers is similar to what happens with the anonymous delegate.

Again, lambdas are just delegates, which means that they can be used as an event handler without any problems, as the following code snippet illustrates.

public MainWindow()
{
 InitializeComponent();

 Loaded += (o, e) =>
 {
 this.Title = "Loaded";
 };
}

Further reading and resources

		Delegates [https://msdn.microsoft.com/library/ms173171.aspx]

		Anonymous Functions [https://msdn.microsoft.com/library/bb882516.aspx]

		Lambda expressions [https://msdn.microsoft.com/library/bb397687.aspx]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/async.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Async Programming in F#
description: Async Programming in F#
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f9196bfc-b8a8-4d33-8b53-0dcbd58a69d8

Async Programming in F#

Note: Some inaccuracies have been discovered in this article. It is being rewritten. See Issue #666 [https://github.com/dotnet/core-docs/issues/666] to learn about the changes.

Async programming in F# can be accomplished through a language-level programming model designed to be easy to use and natural to the language.

The core of async programming in F# is Async<'T>, a representation of work that can be triggered to run in the background, where 'T is either the type returned via the special return keyword or unit if the async workflow has no result to return.

The key concept to understand is that an async expression’s type is Async<'T>, which is merely a specification of work to be done in an asynchronous context. It is not executed until you explicitly start it with one of the starting functions (such as Async.RunSynchronously). Although this is a different way of thinking about doing work, it ends up being quite simple in practice.

For example, say you wanted to download the HTML from dotnetfoundation.org without blocking the main thread. You can accomplish it like this:

let fetchHtmlAsync url = async {
 let uri = new System.Uri(url)
 let webClient = new System.Net.WebClient()

 // Execution of fetchHtmlAsync won't continue until the result
 // of AsyncDownloadString is bound.
 let! html = webClient.AsyncDownloadString(uri)
 return html
}

let html = "http://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously
printfn "%s" html

And that’s it! Aside from the use of async, let!, and return, this is just normal F# code.

There are a few syntactical constructs which are worth noting:

		let! binds the result of an async expression (which runs on another context).

		use! works just like let!, but disposes its bound resources when it goes out of scope.

		do! will await an async workflow which doesn’t return anything.

		return simply returns a result from an async expression.

		return! executes another async workflow and returns its return value as a result.

Additionally, normal let, use, and do keywords can be used alongside the async versions just as they would in a normal function.

How to start Async Code in F#

As mentioned earlier, async code is a specification of work to be done in another context which needs to be explicitly started. Here are two primary ways to accomplish this:

		Async.RunSynchronously will start an async workflow on another thread and await its result.

let fetchHtmlAsync url = async {
 let uri = new System.Uri(url)
 let webClient = new System.Net.WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 return html
}

// Execution will pause until fetchHtmlAsync finishes
let html = "http://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously

// you actually have the result from fetchHtmlAsync now!
printfn "%s" html

		Async.Start will start an async workflow on another thread, and will not await its result.

let uploadDataAsync url data = async {
 let uri = new System.Uri(url)
 let webClient = new System.Net.WebClient()
 webClient.UploadStringAsync(uri, data)
}

let workflow = uploadDataAsync "http://url-to-upload-to.com" "hello, world!"

// Execution will continue after calling this!
Async.Run(workflow)

printfn "%s" "uploadDataAsync is running in the background..."

There are other ways to start an async workflow available for more specific scenarios. They are detailed in the Async reference [https://msdn.microsoft.com/library/ee370232.aspx].

A Note on Threads

The phrase “on another thread” is mentioned above, but it is important to know that this does not mean that async workflows are a facade for multithreading. The workflow actually “jumps” between threads, borrowing them for a small amount of time to do useful work. When an async workflow is effectively “waiting” (e.g. waiting for a network call to return something), any thread it was borrowing at the time is freed up to go do useful work on something else. This allows async workflows to utilize the system they run on as effectively as possible, and makes them especially strong for high-volume I/O scenarios.

How to Add Parallelism to Async Code

Sometimes you may need to perform multiple asynchronous jobs in parallel, collect their results, and interpret them in some way. Async.Parallel allows you to do this without needing to use the Task Parallel Library, which would involve needing to coerce Task<'T> and Async<'T> types.

The following example will use Async.Parallel to download the HTML from four popular sites in parallel, wait for those tasks to complete, and then print the HTML which was downloaded.

let urlList = [
 "http://www.microsoft.com"
 "http://www.google.com"
 "http://www.amazon.com"
 "http://www.facebook.com"]

let fetchHtmlAsync url = async {
 let uri = new System.Uri(url)
 let webClient = new System.Net.WebClient()
 let! html = webClient.AsyncDownloadString(uri)
 return html
}

let getHtmlList =
 Seq.map fetchHtmlAsync // Build an Async<'T> for each site
 >> Async.Parallel // Returns an Async<'T []>
 >> Async.RunSynchronously // Wait for the result of the parallel work

let htmlList = urlList |> getHtmlList

// We now have the downloaded HTML for each site!
for html in htmlList do
 printfn "%s" html

Important Info and Advice

		Append “Async” to the end of any functions you’ll consume

Although this is just a naming convention, it does make things like API discoverability easier. Particularly if there are synchronous and asynchronous versions of the same routine, it’s a good idea to explicitly state which is asynchronous via the name.

		Listen to the compiler!

F#’s compiler is very strict, making it nearly impossible to do something troubling like run “async” code synchronously. If you come across a warning, that’s a sign that the code won’t execute how you think it will. If you can make the compiler happy, your code will most likely execute as expected.

For the C#/VB Programmer Looking Into F#

This section assumes you’re familiar with the async model in C#/VB. If you are not, Async Programming in C# is a starting point.

There is a fundamental difference between the C#/VB async model and the F# async model.

When you call a function which returns a Task or Task<'T>, that job has already begun execution. The handle returned represents an already-running asynchronous job. In contrast, when you call an async function in F#, the Async<'a> returned represents a job which will be generated at some point. Understanding this model is powerful, because it allows for asynchronous jobs in F# to be chained together easier, performed conditionally, and be started with a finer grain of control.

There are a few other similarities and differences worth noting.

Similarities

		let!, use!, and do! are analogous to await when calling an async job from within an async{ } block.

The three keywords can only be used within an async { } block, similar to how await can only be invoked inside an async method. In short, let! is for when you want to capture and use a result, use! is the same but for something whose resources should get cleaned after it’s used, and do! is for when you want to wait for an async workflow with no return value to finish before moving on.

		F# supports data-parallelism in a similar way.

Although it operates very differently, Async.Parallel corresponds to Task.WhenAll for the scenario of wanting the results of a set of async jobs when they all complete.

Differences

		Nested let! is not allowed, unlike nested await

Unlike await, which can be nested indefinitely, let! cannot and must have its result bound before using it inside of another let!, do!, or use!.

		Cancellation support is simpler in F# than in C#/VB.

Supporting cancellation of a task midway through its execution in C#/VB requires checking the IsCancellationRequested property or calling ThrowIfCancellationRequested() on a CancellationToken object that’s passed into the async method.

In contrast, F# async workflows are more naturally cancellable. Cancellation is a simple three-step process.

		Create a new CancellationTokenSource.

		Pass it into a starting function.

		Call Cancel on the token.

Example:

let uploadDataAsync url data = async {
 let uri = new System.Uri(url)
 let webClient = new System.Net.WebClient()
 webClient.UploadStringAsync(uri, data)
}

let workflow = uploadDataAsync "http://url-to-upload-to.com" "hello, world!"

let token = new CancellationTokenSource()
Async.Start (workflow, token)

// Immediately cancel uploadDataAsync after it's been started.
token.Cancel()

And that’s it!

Further resources:

		Async Workflows on MSDN [https://msdn.microsoft.com/library/dd233250.aspx]

		Asynchronous Sequences for F# [http://fsprojects.github.io/FSharp.Control.AsyncSeq/library/AsyncSeq.html]

		F# Data HTTP Utilities [https://fsharp.github.io/FSharp.Data/library/Http.html]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: F# Guide
description: F# Guide
keywords: .NET, .NET Core
author: jackfoxy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: ea27fb37-dad1-4bd4-a3cc-4f5c70767ae9

F# Guide

		F# Learning Resources [http://fsharp.org/learn.html]

		F# Language Reference [https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/fsharp-language-reference]

		Visual F# Development Portal [https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/visual-fsharp-development-portal]

		Getting started with F# on .NET Core

		Asynchronous programming

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/managed-code.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: What is “managed code”?
description: What is “managed code”?
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 20bb7ea8-192e-4a96-8ef3-e10e1950fd3d

What is “managed code”?

When working with .NET Framework, you will often encounter the term “managed code”. This document will explain what this term means and additional information around it.

To put it very simply, managed code is just that: code whose execution is managed by a runtime. In this case, the runtime in question is called the Common Language Runtime or CLR, regardless of the implementation (Mono [http://www.mono-project.com/] or .NET Framework or .NET Core). CLR is in charge of taking the managed code, compiling it into machine code and then executing it. On top of that, runtime provides several important services such as automatic memory management, security boundaries, type safety etc.

Contrast this to the way you would run a C/C++ program, also called “unmanaged code”. In the unmanaged world, the programmer is in charge of pretty much everything. The actual program is, essentially, a binary that the operating system (OS) loads into memory and starts. Everything else, from memory management to security considerations are a burden of the programmer.

Managed code is written in one of the high-level languages that can be run on top of the .NET platform, such as C#, Visual Basic, F# and others. When you compile code written in those languages with their respective compiler, you don’t get machine code. You get Intermediate Language code which the runtime then compiles and executes. C++ is the one exception to this rule, as it can also produce native, unmanaged binaries that run on Windows.

Intermediate Language & Execution

What is “Intermediate Language” (or IL for short)? It is a product of compilation of code written in high-level .NET languages. Once you compile your code written in one of these languages, you will get a binary that is made out of IL. It is important to note that the IL is independent from any specific language that runs on top of the runtime; there is even a separate specification for it that you can read if you’re so inclined.

Once you produce IL from your high-level code, you will most likely want to run it. This is where the CLR takes over and starts the process of Just-In-Time compiling, or JIT-ing your code from IL to machine code that can actually be run on a CPU. In this way, the CLR knows exactly what your code is doing and can effectivelly manage it.

Umanaged code interoperability

Of course, the CLR allows passing the boundaries between managed and unmanaged world, and there is a lot of code that does that, even in the Base Class Libraries. This is called interoperability or just interop for short. These provisions would allow you to, for example, wrap up an unmanaged library and call into it. However, it is important to note that once you do this, when the code passes the boundaries of the runtime, the actual management of the execution is again in the hand of unmanged code, and thus falls under the same restrictions.

Similar to this, C# is one language that allows you to use unmanaged constructs such as pointers directly in code by utilizing what is known as unsafe context which designates a piece of code for which the execution is not managed by the CLR.

More resources

		.NET Framework Conceptual Overview [https://msdn.microsoft.com/library/zw4w595w.aspx]

		Unsafe Code and Pointers [https://msdn.microsoft.com/library/t2yzs44b.aspx]

		Interoperability (C# Programming guide) [https://msdn.microsoft.com/library/ms173184.aspx]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-test.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-test
description: dotnet-test
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3a0fa917-eb0a-4d7e-9217-d06e65455675

dotnet-test

NAME

dotnet-test - Runs unit tests using the configured test runner

SYNOPSIS

dotnet test [--configuration] [--output] [--build-base-path] [--framework] [--runtime] [--no-build] [--parentProcessId] [--port] [<project>]

DESCRIPTION

The dotnet test command is used to execute unit tests in a given project. Unit tests are class library
projects that have dependencies on the unit test framework (for example, NUnit or xUnit) and the
dotnet test runner for that unit testing framework.
These are packaged as NuGet packages and are restored as ordinary dependencies for the project.

Test projects also need to specify a test runner property in project.json using the “testRunner” node.
This value should contain the name of the unit test framework.

The following sample project.json shows the properties needed:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable"
 },
 "dependencies": {
 "System.Runtime.Serialization.Primitives": "4.1.1",
 "xunit": "2.1.0",
 "dotnet-test-xunit": "1.0.0-rc2-192208-24"
 },
 "testRunner": "xunit",
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 }
 },
 "imports": [
 "dotnet5.4",
 "portable-net451+win8"
]
 }
 }
}

dotnet test supports two running modes:

		Console: In console mode, dotnet test simply executes fully any command gets passed to it and outputs the results. Anytime you invoke dotnet test without passing –port, it runs in console mode, which in turn will cause the runner to run in console mode.

		Design time: used in the context of other tools, such as editors or Integrated Development Environments (IDEs). You can find out more about this mode in the dotnet-test protocol document.

OPTIONS

[project]

Specifies a path to the test project. If omitted, it defaults to current directory.

-c, --configuration [Debug|Release]

Configuration under which to build. The default value is Release.

-o, --output [DIR]

Directory in which to find binaries to run.

-b, --build-base-path [DIR]

Directory in which to place temporary outputs.

-f, --framework [FRAMEWORK]

Looks for test binaries for a specific framework.

-r, --runtime [RUNTIME_IDENTIFIER]

Look for test binaries for a for the specified runtime.

--no-build

Does not build the test project prior to running it.

–parentProcessId

Used by IDEs to specify their process ID. Test will exit if the parent process does.

--port

Used by IDEs to specify a port number to listen for a connection.

EXAMPLES

dotnet test

Runs the tests in the project in the current directory.

dotnet test /projects/test1/project.json

Runs the tests in the test1 project.

SEE ALSO

		dotnet-test communication protocol

 © Copyright 2016.
 Created using Sphinx 1.3.5.

toc.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

Welcome

About .NET

.NET Products

C# Guide

Tutorials

Console Application

REST client

Working with LINQ

Microservices hosted in Docker

🔧 Tour of C#

What’s new in C# 6

🔧 C# Concepts

🔧 C# Type system

Properties

Indexers

🔧 Generics

Iterators

🔧 Language Integrated Query (LINQ)

Delegates & events

Introduction to Delegates

System.Delegate and the delegate keyword

Strongly Typed Delegates

Common Patterns for Delegates

Introduction to Events

The .NET Event Pattern

The Updated .NET Event Pattern

Distinguishing Delegates and Events

🔧 Parallel programming

Asynchronous programming

🔧 Lambda Expressions

[Expression Trees](csharp/expression-trees.md)
[Expression Trees Explained](csharp/expression-trees-explained.md)
[Framework Types Supporting Expression Trees](csharp/expression-classes.md)
[Executing Expressions](csharp/expression-trees-execution.md)
[Interpreting Expressions](csharp/expression-trees-interpreting.md)
[Building Expressions](csharp/expression-trees-building.md)
[Translating Expressions](csharp/expression-trees-translating.md)
[Summary](csharp/expression-trees-summary.md)
[🔧 Native interoperability](csharp/interop.md)
[🔧 Reflection & code generation](csharp/reflection.md)
[🔧 Documenting your code](csharp/codedoc.md)
[🔧 Syntax Reference](csharp/syntax.md)
[F# Guide](fsharp/index.md)
[F# Learning Resources](http://fsharp.org/learn.html)
[F# Language Reference](https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/fsharp-language-reference)
[Visual F# Development Portal](https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/visual-fsharp-development-portal)
[Getting started with .NET Core](fsharp/getting-started-netcore.md)
[Asynchronous programming](fsharp/async.md)

.NET Standard

.NET Standard Library

Frameworks

What is “managed code”?

Common Language Runtime (CLR)

Framework Libraries

.NET Class libraries

Portability Analyzer

Handling and throwing exceptions

.NET Assembly File Format

Garbage Collection

Generic types

Delegates and lambdas

LINQ

Common Type System & Common Language Specification

Asynchronous programming

Asynchronous programming in depth

Native interoperability

Collections and Data Structures

Selecting a Collection Class

Commonly Used Collection Types

When to Use Generic Collections

Comparisons and Sorts Within Collections

Sorted Collection Types

Hashtable and Dictionary Collection Types

Thread-Safe Collections

BlockingCollection Overview

When to Use a Thread-Safe Collection

How to: Add and Remove Items from a ConcurrentDictionary

How to: Add and Take Items Individually from a BlockingCollection

How to: Add Bounding and Blocking Functionality to a Collection

How to: Use ForEach to Remove Items in a BlockingCollection

How to: Use Arrays of Blocking Collections in a Pipeline

How to: Create an Object Pool by Using a ConcurrentBag

Numerics in .NET Core

.NET Core Guide

Getting started

Tutorials

Getting started with .NET Core on Windows

Getting started with .NET Core on macOS

Getting started with .NET Core on Windows/Linux/macOS using the command line

Developing Libraries with Cross Platform Tools

Developing ASP.NET Core applications

How to Manage Package Dependency Versions for .NET Core 1.0

Using MSBuild to build .NET Core projects

App Types

Packages, Metapackages and Frameworks

Deploying

🔧 Deploying Applications

Creating a NuGet Package with Cross Platform Tools

Unit Testing

Unit Testing with dotnet test

Releases

Servicing

Runtime IDentifier catalog

.NET Core Tools

Telemetry

Extensibility Model

Test communication protocol

Continuous Integration

dotnet

dotnet-new

dotnet-restore

dotnet-run

dotnet-build

dotnet-test

dotnet-pack

dotnet-publish

dotnet-install-script

project.json

global.json

Porting from .NET Framework

Organizing projects for .NET Core

Analyzing third-party dependencies

Porting libraries

🔧 NuGet packages

Migrating from DNX

Samples and Tutorials

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/test-protocol.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core CLI test communication protocol
description: .NET Core CLI test communication protocol
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 88cba792-3640-41de-b55d-00f575e9d5e2

#.NET Core CLI test communication protocol

Introduction

Anytime you pass a port to dotnet test, the command will run in design time. That means that dotnet test will connect to that port
using TCP and will then exchange an established set of messages with whatever else is connected to that port. When this happens, the runner
also receives a new port that dotnet test will use to communicate with it. The reason why the runner also uses TCP to
communicate with dotnet test is because in design mode, it is not sufficient to just output results to the console. The
command needs to send the adapter structure messages containing the results of the test execution.

Communication protocol at design time.

		Because during design time, dotnet test connects to a port when it starts up, the adapter needs to be listening on
that port otherwise dotnet test will fail. We did it like this so that the adapter could reserve all the ports it needs
by binding and listening to them before dotnet test ran and tried to get ports for the runner.

		Once dotnet test starts, it sends a TestSession.Connected message to the adapter indicating that it is ready to receive messages.

		It is possible to send an optional
version check [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/ProtocolVersionMessage.cs]
message with the adapter version of the protocol in it. Dotnet test will send back the version of the protocol that it supports.

All messages have the format described here:
Message.cs [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/Message.cs].
The payload formats for each message is described in links to the classes used to serialize/deserialize the information in the description of the protocol.

Test Execution

[image: Test Execution]

		After the optional version check, the adapter sends a TestExecution.GetTestRunnerProcessStartInfo, with the
tests [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/RunTestsMessage.cs] it wants to execute inside of it. Dotnet test sends back a FileName and Arguments inside a TestStartInfo [https://github.com/dotnet/cli/blob/rel/1.0.0/src/dotnet/commands/dotnet-test/TestStartInfo.cs] payload that the adapter can use to start the runner. In the past, we would send the list of tests to run as part of that argument, but we were actually going over the command line size limit for some test projects.

		As part of the arguments, we send a port that the runner should connect to and for executing tests, a –wait-command flag, that indicates that the runner should connect to the port and wait for commands, instead of going ahead and executing the tests.

		At this point, the adapter can launch the runner (and attach to it for debugging if it chooses to).

		Once the runner starts, it sends dotnet test a TestRunner.WaitCommand message that indicates it is ready to receive commands, at which point dotnet test sends a TestRunner.Execute with the list of tests [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/RunTestsMessage.cs] to run. This bypasses the command line size limit described above.

		The runner then sends dotnet test (and it passes forward to the adapter) a TestExecution.TestStarted for each tests as they start with the test [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Test.cs] information inside of it.

		The runner also sends dotnet test (and it forwards to the adapter) a TestExecution.TestResult for each test with the individual result [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/TestResult.cs] of the test.

		After all tests finish, the runner sends a TestRunner.Completed message to dotnet test, which dotnet test sends as TestExecution.Completed to the adapter.

		Once the adapter is done, it sends dotnet test a TestSession.Terminate which will cause dotnet test to shutdown.

Test discovery

[image: Test discovery]

		After the optional version check, the adapter sends a TestDiscovery.Start message. Because in this case, the adapter does not need to attach to the process, dotnet test will start the runner itself. Also, since there is no long list of arguments to be passed to the runner, no –wait-command flag is needed to be passed to the runner. dotnet test only passes a –list argument to the runner, which means the runner should not run the tests, just list them.

		The runner then sends dotnet test (and it passes forward to the adapter) a TestDiscovery.TestFound for each test [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Test.cs] found.

		After all tests are discovered, the runner sends a TestRunner.Completed message to dotnet test, which dotnet test sends as TestDiscovery.Completed to the adapter.

		Once the adapter is done, it sends dotnet test a TestSession.Terminate which will cause dotnet test to shutdown.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/porting/nuget-packages.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Porting to .NET Core - NuGet packages
description: Porting to .NET Core - NuGet packages
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4d823e71-19ac-4419-953e-b47aa58f5538

🔧 Porting to .NET Core - NuGet packages

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach.

Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/porting/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Porting to .NET Core from .NET Framework
description: Porting to .NET Core from .NET Framework
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 00d00d38-99af-44f4-a75f-defcd9729dc5

Porting to .NET Core from .NET Framework

If you’ve got code running on the .NET Framework, you may be interested in running your code on .NET Core 1.0. This article covers an overview of the porting process and a list of the tools you may find helpful when porting to .NET Core.

Overview of the Porting Process

The recommended process for porting follows the following series of steps. Each of these parts of the process are covered in more detail in further articles.

		Identify and account for your third-party dependencies.

This will involve understanding what your third-party dependencies are, how you depend on them, how to see if they also run on .NET Core, and steps you can take if they don’t.

		Retarget all projects you wish to port to target .NET Framework 4.6.2.

This ensures that you can use API alternatives for .NET Framework-specific targets in the cases where .NET Core can’t support a particular API.

		Use the API Portability Analyzer tool [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] to analyze your assemblies and develop a plan to port based on its results.

The API Portability Analyzer tool will analyze your compiled assemblies and generate a report which shows a high-level portability summary and a breakdown of each API you’re using that isn’t available on .NET Core. You can use this report alongside an analysis of your codebase to develop a plan for how you’ll port your code over.

		Port your tests code.

Because porting to .NET Core is such a big change to your codebase, it’s highly recommended to get your tests ported so that you can run tests as you port code over. MSTest, xUnit, and NUnit all support .NET Core 1.0 today.

		Execute your plan for porting!

Tools to help

Here’s a short list of the tools you’ll find helpful:

		NuGet - Nuget Client [https://dist.nuget.org/index.html] or NuGet Package Explorer [https://github.com/NuGetPackageExplorer/NuGetPackageExplorer], the package manager for the .NET Platform.

		Api Portability Analyzer - command line tool [https://github.com/Microsoft/dotnet-apiport/releases] or Visual Studio Extension [https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b], a toolchain that can generate a report of how portable your code is between .NET Framework and .NET Core, with an assembly-by-assembly breakdown of issues. See Tooling to help you on the process [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] for more information.

		Reverse Package Search - A useful web service [https://packagesearch.azurewebsites.net] that allows you to search for a type and find packages containing that type.

Next steps

Analyzing your third-party dependencies.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-run.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-run
description: dotnet-run
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 495ff50b-cb30-4d30-8f20-beb3d5e7c31f

dotnet-run

NAME

dotnet-run – Runs source code ‘in-place’ without any explicit compile or launch commands.

SYNOPSIS

dotnet run [--framework] [--configuration] [--project] [--help] [--]

DESCRIPTION

The dotnet run command provides a convenient option to run your application from the source code with one command.
It compiles source code, generates an output program and then runs that program.
This command is useful for fast iterative development and can also be used to run a source-distributed program (for example, a website).

This command relies on dotnet build to build source inputs to a .NET assembly, before launching the program.
The requirements for this command and the handling of source inputs are all inherited from the build command.
The documentation for the build command provides more information on those requirements.

Output files are written to the child bin folder, which will be created if it doesn’t exist.
Files will be overwritten as needed.
Temporary files are written to the child obj folder.

In case of a project with multiple specified frameworks, dotnet run will first select the .NET Core frameworks. If those do not exist, it will error out. To specify other frameworks, use the --framework argument.

The dotnet run command must be used in the context of projects, not built assemblies. If you’re trying to execute a DLL instead, you should use dotnet without any command like in the following example:

dotnet myapp.dll

For more information about the dotnet driver, see the .NET Core Command Line Tools (CLI) topic.

OPTIONS

--

Delimits arguments to dotnet run from arguments for the application being run.
All arguments after this one will be passed to the application being run.

-f, --framework [FID]

Runs the application for a given framework identifier (FID).

-c, --configuration [Debug|Release]

Configuration to use when publishing. The default value is “Debug”.

-p, --project [PATH]

Specifies which project to run.
It can be a path to a project.json file or to a directory containing a project.json file. It defaults to
current directory if not specified.

EXAMPLES

dotnet run

Runs the project in the current directory.

dotnet run --project /projects/proj1/project.json

Runs the project specified.

dotnet run --configuration Release -- --help

Runs the project in the current directory. The --help argument above is passed to the application being run, since the -- argument was used.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

welcome.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Welcome to .NET
description: Getting started
keywords: .NET
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net
ms.technology: .net-technologies
ms.devlang: dotnet
ms.assetid: cb788dcf-2120-467f-9c34-c02a90e1f68f

Welcome to .NET

Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.

Welcome to .NET! You can build any kind of application you want with .NET, from cloud to IoT to games. You can start building your next application today, for Windows, Linux, Android, macOS, and iOS. There are millions of developers that use .NET to power mission critical applications, personal apps and immersive games. You can write the next one.

You can develop apps and games on Windows, macOS and Linux. There are free tools that you can use to build apps or games and deploy them on servers or desktops or publish them to app stores. It’s accessible to students and used by large businesses throughout the world.

News

There is always something new to learn or explore in the .NET community. Here’s the latest news you may want to check out.

		Announcing .NET Core 1.0 [https://blogs.msdn.microsoft.com/dotnet/announcing-net-core-1-0]

		Announcing ASP.NET Core 1.0 [https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/]

		Open Source Xamarin, Ready for you! [https://blog.xamarin.com/live-from-evolve-open-source-xamarin-ready-for-you/]

		The week in .NET [https://blogs.msdn.microsoft.com/dotnet/tag/week-in-net/]

		Thank you for watching dotnetConf 2016! [https://blogs.msdn.microsoft.com/dotnet/2016/06/09/thank-you-for-watching-dotnetconf-2016/]

Documentation

This documentation will show you how to build an app from scratch or finish one that you are already working on. Key sections you should check out:

		C# Guide

		F# Guide

		.NET Core API

		.NET Core Guide

		.NET Standard Guide

Open Source

Many parts of .NET are built by open source contributors. You can contribute to this .NET Documentation [https://github.com/dotnet/core-docs]. You can also read the source of and contribute to .NET products, including .NET Core [https://github.com/core] and Xamarin [http://open.xamarin.com]. Key projects from Microsoft have been contributed to the .NET Foundation [http://dotnetfoundation.org].

Community

Welcome to the .NET community. You can join other people who are already active in the .NET community [https://www.microsoft.com/net/community], to find out what’s new or ask for help.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/telemetry.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Tools Telemetry
description: .NET Core
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 07/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f2b312bb-f80b-4b0d-9101-93908f06a6fa

.NET Core Tools Telemetry

The .NET Core Tools include a telemetry feature [https://github.com/dotnet/cli/pull/2145] that collects usage information. It’s important that the .NET Team understands how the tools are being used so that we can improve them.

The data collected is anonymous and will be published in an aggregated form for use by both Microsoft and community engineers under the Creative Commons Attribution License [https://creativecommons.org/licenses/by/4.0/].

Scope

The dotnet command is used to launch both apps and the .NET Core Tools. The dotnet command itself does not collect telemetry. It is the .NET Core Tools that are run via the dotnet command that collect telemetry.

.NET Core commands (telemetry is not enabled):

		dotnet

		dotnet [path-to-app]

.NET Core Tools commands (telemetry is enabled), such as:

		dotnet build

		dotnet pack

		dotnet restore

		dotnet run

##Behavior

The .NET Core Tools telemetry feature is enabled by default. You can opt-out of the telemetry feature by setting an environment variable DOTNET_CLI_TELEMETRY_OPTOUT (for example, export on macOS/Linux, set on Windows) to true (for example, “true”, 1).

##Data Points

The feature collects the following pieces of data:

		The command being used (for example, “build”, “restore”)

		The ExitCode of the command

		For test projects, the test runner being used

		The timestamp of invocation

		The framework used

		Whether runtime IDs are present in the “runtimes” node

		The CLI version being used

The feature will not collect any personal data, such as usernames or emails. It will not scan your code and not extract any project-level data that can be considered sensitive, such as name, repo or author (if you set those in your project.json). We want to know how the tools are used, not what you are building with the tools. If you find sensitive data being collected, that’s a bug. Please file an issue [https://github.com/dotnet/cli/issues] and it will be fixed.

##License

The Microsoft distribution of .NET Core is licensed with the MICROSOFT .NET LIBRARY EULA [https://aka.ms/dotnet-core-eula]. This includes the “DATA” section re-printed below, to enable telemetry.

.NET NuGet packages [https://www.nuget.org/profiles/dotnetframework] use this same license but do not enable telemetry (see Scope above).

2. DATA. The software may collect information about you and your use of
the software, and send that to Microsoft. Microsoft may use this information
to improve our products and services. You can learn more about data collection
and use in the help documentation and the privacy statement at
http://go.microsoft.com/fwlink/?LinkId=528096 . Your use of the software
operates as your consent to these practices.

Disclosure

The .NET Core Tools display the following text when you first run one of the commands (for example, dotnet restore). This “first run” experience is how Microsoft notifies you about data collection. This same experience also initially populates your NuGet cache with the libraries in the .NET Core SDK, avoiding requests to NuGet.org (or other NuGet feed) for these libraries.

Welcome to .NET Core!

Learn more about .NET Core @ https://aka.ms/dotnet-docs. Use dotnet --help to
see available commands or go to https://aka.ms/dotnet-cli-docs.

Telemetry

The .NET Core tools collect usage data in order to improve your experience.
The data is anonymous and does not include commandline arguments. The data is
collected by Microsoft and shared with the community.

You can opt out of telemetry by setting a DOTNET_CLI_TELEMETRY_OPTOUT
environment variable to 1 using your favorite shell.

You can read more about .NET Core tools telemetry @ https://aka.ms/dotnet-cli-
telemetry.

Configuring...

A command is running to initially populate your local package cache, to
improve restore speed and enable offline access. This command will take up to
a minute to complete and will only happen once.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Command Line Tools (CLI)
description: .NET Core Command Line Tools (CLI)
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b70e9ac0-c8be-49f7-9332-95ab93e0e7bc

.NET Core Command Line Tools

What is the .NET Core Command Line Interface (CLI)?

The .NET Core CLI is a new foundational cross-platform toolchain for developing
.NET Core applications. It is “foundational” because it is the primary layer on which other,
higher-level tools, such as Integrated Development Environments (IDEs), editors and
build orchestrators can build on.

It is also cross-platform by default and has the same surface area on each of the supported platforms. This means that
when you learn how to use the tooling, you can use it the same way from any of the supported platforms.

Installation

As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can either
use the native installers to install the CLI or use the installation shell script.

The native installers are primarily meant for developer’s machines. The CLI is distributed using each supported platform’s
native install mechanism, for instance DEB packages on Ubuntu or MSI bundles on Windows. These installers will install
and set up the environment as needed for the user to use the CLI immediately after the install. However, they also
require administrative privileges on the machine. You can view the installation instructions on the
.NET Core getting started page [https://aka.ms/dotnetcoregs].

Install scripts, on the other hand, do not require administrative privileges. However, they will also not install any
prerequisites on the machine; you need to install all of the prerequisites manually. The scripts are meant mostly for
setting up build servers or when you wish to install the tools without administrative privileges (do note the prerequisites
caveat above). You can find more information on the install script reference topic. If you are
interested in how to set up CLI on your continuous integration (CI) build server you can take a look at the
CLI with CI servers document.

By default, the CLI will install in a side-by-side (SxS) manner. This means that multiple versions of the CLI tools
can coexist at any given time on a single machine. How the correct version gets used is explained in more detail in
the driver section below.

What commands come in the box?

The following commands are installed by default:

		new

		restore

		run

		build

		test

		publish

		pack

There is also a way to import more commands on a per-project basis as well as to add your own commands. This is
explained in greater detail in the extensibility section.

Working with the CLI

A short sample

Before we go into any more details, let’s see how working with the CLI looks like from a 10,000-foot view.
The sample below utilizes several commands from the CLI standard install to initialize a new simple console application,
restore the dependencies, build the application and then run it.

dotnet new
dotnet restore
dotnet build --output /stuff
dotnet /stuff/new.dll

How does it work?

As we saw in the short sample above, there is a pattern in the way you use the CLI tools. Within that pattern, we can
identify three main pieces of each command:

		The driver (“dotnet”)

		The command, or “verb”

		Command arguments

Let’s dig into more details on each of the above.

Driver

The driver is named dotnet. It is the first part of what you invoke. The driver has two responsibilities:

		Executing IL code

		Executing the verb

Which of the two things it does is dependent on what is specified on the command line. In the first case, you would
specify an IL assembly that dotnet would run similar to this: dotnet /path/to/your.dll.

In the second case, the driver attempts to invoke the specified command. This will start the CLI command execution
process. First, the driver will determine the version of the tooling that you want. You can specify the version in the
global.json file using the sdkVersion property. If that is not available, the driver will find the latest version
of the tools that is installed on disk and will use that version. Once the version is determined, it will execute the
command.

The “verb”

The verb is simply a command that performs an action. dotnet build will build your code. dotnet publish will publish
your code. The verb is implemented as a console application that is named per convention: dotnet-{verb}. All of the
logic is implemented in the console application that represents the verb.

The arguments

The arguments that you pass on the command line are the arguments to the actual verb/command being invoked.
For example, when you type dotnet publish --output publishedapp the --output argument is passed to the
publish command.

Types of application portability

CLI enables applications to be portable in two main ways:

		Completely portable application that can run anywhere .NET Core is installed

		Self-contained applications

You can learn more about both of these in the application types overview topic.

Migration from DNX

If you used DNX in RC1 of .NET Core, you may be wondering what happened to it and how do these new tools
relate to the DNX tools. In short, the DNX tools have been replaced with the .NET Core CLI tools.
If you have existing projects or are just wondering how the commands map, you
can use the DNX to CLI migration document to get all of the details.

Extensibility

Of course, not every tool that you could use in your workflow will be a part of the core CLI tools. However, .NET Core
CLI has an extensibility model that allows you to specify additional tools for your projects. You can find out more
in the extensibility document.

More resources

This was a short overview of the most important features of the CLI. You can find out more by using the reference and
conceptual topics on this site. There are also other resources you can use:

		GitHub repo [https://github.com/dotnet/cli/]

		Getting Started instructions [https://aka.ms/dotnetcoregs/]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/project-json.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: project.json reference
description: project.json reference
keywords: .NET, .NET Core, project.json
author: aL3891
manager: wpickett
ms.date: 07/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3aef32bd-ee2a-4e24-80f8-a2b615e0336d

project.json reference

[!NOTE]
This topic is preliminary and subject to change in the next release. You can track the status of this issue through our public GitHub issue tracker.

name

Type: String

The name of the project, used for the assembly name as well as the name of the package. The top level folder name is used if this property is not specified.

For example:

{
 "name": "MyLibrary"
}

version

Type: String

The Semver [http://semver.org/spec/v1.0.0.html] version of the project, also used for the NuGet package.

For example:

{
 "version": "1.0.0-*"
}

description

Type: String

A longer description of the project. Used in the assembly properties.

For example:

{
 "description": "This is my library and it's really great!"
}

copyright

Type: String

The copyright information for the project. Used in the assembly properties.

For example:

{
 "copyright": "Fabrikam 2016"
}

title

Type: String

The friendly name of the project, can contain spaces and special characters not allowed when using the name property. Used in the assembly properties.

For example:

{
 "title": "My Library"
}

entryPoint

Type: String

The entrypoint method for the project. Main by default.

For example:

{
 "entryPoint": "ADifferentMethod"
}

testRunner

Type: String

The name of the test runner, such as NUnit [http://nunit.org/] or xUnit [http://xunit.github.io/], to use with this project. Setting this also marks the project as a test project.

For example:

{
 "testRunner": "NUnit"
}

authors

Type: String[]

An array of strings with the names of the authors of the project.

For example:

{
 "authors": ["Anne", "Bob"]
}

language

Type: String

The (human) language of the project. Corresponds to the “neutral-language” compiler argument.

For example:

{
 "language": "en-US"
}

embedInteropTypes

Type: Boolean

true to embed COM interop types in the assembly; otherwise, false.

For example:

{
 "embedInteropTypes": true
}

preprocess

Type: String or String[] with a globbing pattern

Specifies which files are included in preprocessing.

For example:

{
 "preprocess": "compiler/preprocess/**/*.cs"
}

shared

Type: String or String[] with a globbing pattern

Specifies which files are shared, this is used for library export.

For example:

{
 "shared": "shared/**/*.cs"
}

dependencies

Type: Object

An object that defines the package dependencies of the project, each key of this object is the name of a package and each value contains versioning information.

For example:

"dependencies": {
 "System.Reflection.Metadata": "1.3.0",
 "Microsoft.Extensions.JsonParser.Sources": {
 "type": "build",
 "version": "1.0.0-rc2-20221"
 },
 "Microsoft.Extensions.HashCodeCombiner.Sources": {
 "type": "build",
 "version": "1.1.0-alpha1-21456"
 },
 "Microsoft.Extensions.DependencyModel": "1.0.0-*"
}

tools

Type: Object

An object that defines package dependencies that are used as tools for the current project, not as references. Packages defined here are available in scripts that run during the build process, but they are not accessible to the code in the project itself. Tools can for example include code generators or post-build tools that perform tasks related to packing.

For example:

{
 "tools": {
 "MyObfuscator": "1.2.4"
 }
}

scripts

Type: Object

An object that defines scripts run during the build process. Each key in this object identifies where in the build the script is run. Each value is either a string with the script to run or an array of strings containing scripts that will run in order.
The supported events are:

		precompile

		postcompile

		prepublish

		postpublish

For example:

{
 "scripts": {
 "precompile": "generateCode.cmd"
 "postcompile": ["obfuscate.cmd", "removeTempFiles.cmd"]
 }
}

buildOptions

Type: Object

An object whose properties control various aspects of compilation. The valid properties are listed below. Can also be specified per target framework as described in the frameworks section.

For example:

"buildOptions": {
 "allowUnsafe": true,
 "emitEntryPoint": true
}

define

Type: String[]

A list of defines such as “DEBUG” or “TRACE” that can be used in conditional compilation in the code.

For example:

{
 "buildOptions": {
 "define": ["TEST", "OTHERCONDITION"]
 }
}

nowarn

Type: String[]

A list of warnings to ignore.

For example:

{
 "buildOptions": {
 "nowarn": ["CS0168", "CS0219"]
 }
}

This ignores the warnings The variable 'var' is assigned but its value is never used and The variable 'var' is assigned but its value is never used

additionalArguments

Type: String[]

A list of extra arguments that will be passed to the compiler.

For example:

{
 "buildOptions": {
 "additionalArguments": ["/parallel", "/nostdlib"]
 }
}

warningsAsErrors

Type: Boolean

true to treat warnings as errors; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "warningsAsErrors": true
 }
}

allowUnsafe

Type: Boolean

true to allow unsafe code in this project; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "allowUnsafe": true
 }
}

emitEntryPoint

Type: Boolean

true to create an executable; false to produce a .dll file. The default is false.

For example:

{
 "buildOptions": {
 "emitEntryPoint": true
 }
}

optimize

Type: Boolean

true to enable the compiler to optimize the code in this project; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "optimize": true
 }
}

platform

Type: String

The name of the target platform, such as AnyCpu, x86 or x64.

For example:

{
 "buildOptions": {
 "platform": "x64"
 }
}

languageVersion

Type: String

The version of the language used by the compiler: ISO-1, ISO-2, 3, 4, 5, 6, or Default

For example:

{
 "buildOptions": {
 "languageVersion": "5"
 }
}

keyFile

Type: String

The path for the key file used for signing this assembly.

For example:

{
 "buildOptions": {
 "keyFile": "../keyfile.snk"
 }
}

delaySign

Type: Boolean

true to delay signing; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "delaySign": true
 }
}

publicSign

Type: Boolean

true to enable signing of the resulting assembly; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "publicSign": true
 }
}

debugType

Type: String

Indicates the type of symbol file (PDF file) to generate. The options are “portable” (for .NET Core projects), “full” (the traditional Windows-only PDB files) or “none”.

For example:

{
 "buildOptions": {
 "debugType": "portable"
 }
}

xmlDoc

Type: Boolean

true to generate XML documentation from triple-slash comments in the source code; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "xmlDoc": true
 }
}

preserveCompilationContext

Type: Boolean

true to preserve reference assemblies and other context data to allow for runtime compilation; otherwise, false. The default is false.

For example:

{
 "buildOptions": {
 "preserveCompilationContext": true
 }
}

outputName

Type: String

Change the name of the output file.

For example:

{
 "buildOptions": {
 "outputName": "MyApp"
 }
}

compilerName

Type: String

The name of the compiler used for this project. csc by default. Currently, csc (the C# compiler) or fsc (the F# compiler) are supported.

For example:

{
 "compilerName": "fsc"
}

compile

Type: Object

An object containing properties for compilation configuration.

include

Type: String or String[] with a globbing pattern.

Specifies which files to include in the build. The patterns are rooted at the project folder. Defaults to none.

For example:

{
 "include":["wwwroot", "Views"]
}

exclude

Type: String or String[] with a globbing pattern.

Specifies which files to exclude from the build. The exclude patterns have higher priority than the include patterns, so a file found in both will be excluded. The patterns are rooted at the project folder. Defaults to none.

For example:

{
 "exclude": ["bin/**", "obj/**"]
}

includeFiles

Type: String or String[] with a globbing pattern.

A list of file paths to include. The paths are rooted at the project folder. This list has a higher priority than the include and exclude globbing patterns, hence a file listed here and in the exclude globbing pattern will still be included. Defaults to none.

For example:

{
 "includeFiles": []
}

excludeFiles

Type: String or String[] with a globbing pattern.

A list of file paths to exclude. The paths are rooted at the project folder. This list has a higher priority than globbing patterns and the include paths, hence a file found in all will be excluded. Defaults to none.

For example:

{
 "excludeFiles":[],
}

builtIns

Type: Object

The defaults provided by the system. It can have include and exclude globbing patterns which are merged with the corresponding values of the include and exclude properties.

For example:

{
 "builtIns":{}
}

mappings

Type: Object

Keys to the object represent destination paths in the output layout.

Values are either a string or an object representing the source path of files to include. The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.

String example:

{
 "mappings": {
 "dest/path": "./src/path"
 }
}

Object example:

{
 "mappings": {
 "dest/path":{
 "include":"./src/path"
 }
 }
}

embed

Type: Object

An object containing properties for compilation configuration.

include

Type: String or String[] with a globbing pattern.

{
 "include":["wwwroot", "Views"]
}

exclude

Type: String or String[] with a globbing pattern.

Specifies which files to exclude from the build.

For example:

{
 "exclude": ["bin/**", "obj/**"]
}

includeFiles

Type: String or String[] with a globbing pattern.

{
 "includeFiles":[],
}

excludeFiles

Type: String or String[] with a globbing pattern.

{
 "excludeFiles":[],
}

builtIns

Type: Object

{
 "builtIns":{}
}

mappings

Type: Object

Keys to the object represent destination paths in the output layout.

Values are either a string or an object representing the source path of files to include. The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.

String example:

{
 "mappings": {
 "dest/path": "./src/path"
 }
}

Object example:

{
 "mappings": {
 "dest/path":{
 "include":"./src/path"
 }
 }
}

copyToOutput

Type: Object

An object containing properties for compilation configuration.

include

Type: String or String[] with a globbing pattern.

{
 "include":["wwwroot", "Views"]
}

exclude

Type: String or String[] with a globbing pattern.

Specifies which files to exclude from the build.

For example:

{
 "exclude": ["bin/**", "obj/**"]
}

includeFiles

Type: String or String[] with a globbing pattern.

{
 "includeFiles":[],
}

excludeFiles

Type: String or String[] with a globbing pattern.

{
 "excludeFiles":[],
}

builtIns

Type: Object

{
 "builtIns":{}
}

mappings

Type: Object

Keys to the object represent destination paths in the output layout.

Values are either a string or an object representing the source path of files to include. The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.

String example:

{
 "mappings": {
 "dest/path": "./src/path"
 }
}

Object example:

{
 "mappings": {
 "dest/path":{
 "include":"./src/path"
 }
 }
}

publishOptions

Type: Object

An object containing properties for compilation configuration.

include

Type: String or String[] with a globbing pattern.

{
 "include":["wwwroot", "Views"]
}

exclude

Type: String or String[] with a globbing pattern.

Specifies which files to exclude from the build.

For example:

{
 "exclude": ["bin/**", "obj/**"]
}

includeFiles

Type: String or String[] with a globbing pattern.

{
 "includeFiles":[],
}

excludeFiles

Type: String or String[] with a globbing pattern.

{
 "excludeFiles":[],
}

builtIns

Type: Object

{
 "builtIns":{}
}

mappings

Type: Object

Keys to the object represent destination paths in the output layout.

Values are either a string or an object representing the source path of files to include. The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.

String example:

{
 "mappings": {
 "dest/path": "./src/path"
 }
}

Object example:

{
 "mappings": {
 "dest/path":{
 "include":"./src/path"
 }
 }
}

runtimeOptions

Type: Object

Specifies parameters to be provided to the runtime during initialization.

configProperties

Type: Object

Contains configuration properties to configure the runtime and the framework.

System.GC.Server

Type: Boolean

true to enable server garbage collection; otherwise, false. The default is false.

For example:

{
 "runtimeOptions": {
 "configProperties": {
 "System.GC.Server": true
 }
 }
}

System.GC.Concurrent

Type: Boolean

true to enable concurrent garbage collection; otherwise, false. The default is false.

For example:

{
 "runtimeOptions": {
 "configProperties": {
 "System.GC.Concurrent": true
 }
 }
}

System.GC.RetainVM

Type: Boolean

true to put segments that should be deleted on a standby list for future use instead of releasing them back to the operating system (OS); otherwise, false.

For example:

{
 "runtimeOptions": {
 "configProperties": {
 "System.GC.RetainVM": true
 }
 }
}

System.Threading.ThreadPool.MinThreads

Type: Integer

Overrides the number of minimum threads for the ThreadPool worker pool.

{
 "runtimeOptions": {
 "configProperties": {
 "System.Threading.ThreadPool.MinThreads": 4
 }
 }
}

System.Threading.ThreadPool.MaxThreads

Type: Integer

Overrides the number of maximum threads for the ThreadPool worker pool.

{
 "runtimeOptions": {
 "configProperties": {
 "System.Threading.ThreadPool.MaxThreads": 25
 }
 }
}

framework

Type: Object

Contains shared framework properties to use when activating the application. The presence of this section indicates that the application is a portable app designed to use a shared redistributable framework.

name

Type: String

Name of the shared framework.

{
 "runtimeOptions": {
 "framework": {
 "name": "Microsoft.DotNetCore"
 }
 }
}

version

Type: String

Version of the shared framework.

{
 "runtimeOptions": {
 "framework": {
 "version": "1.0.1"
 }
 }
}

applyPatches

Type: Boolean

true to use the framework from either the same or a higher version that differs only in the SemVer patch field. false for the host to use only the exact framework version. The default is true.

{
 "runtimeOptions": {
 "applyPatches": false
 }
}

packOptions

Type: Object

Defines options pertaining to the packaging of the project output into a NuGet package.

summary

Type: String

A short description of the project.

For example:

{
 "packOptions": {
 "summary": "This is my library."
 }
}

tags

Type: String[]

An array of strings with tags for the project, used for searching in NuGet.

For example:

{
 "packOptions": {
 "tags": ["hyperscale", "cats"]
 }
}

owners

Type: String[]

An array of strings with the names of the owners of the project.

For example:

{
 "packOptions": {
 "owners": ["Fabrikam", "Microsoft"]
 }
}

releaseNotes

Type: String

Release notes for the project.

For example:

{
 "packOptions": {
 "releaseNotes": "Initial version, implemented flimflams."
 }
}

iconUrl

Type: String

The URL for an icon that will be used in various places such as the package explorer.

For example:

{
 "packOptions": {
 "iconUrl": "http://www.mylibrary.gov/favicon.ico"
 }
}

projectUrl

Type: String

The URL for the homepage of the project.

For example:

{
 "packOptions": {
 "projectUrl": "http://www.mylibrary.gov"
 }
}

licenseUrl

Type: String

The URL for the license the project uses.

For example:

{
 "packOptions": {
 "licenseUrl": "http://www.mylibrary.gov/licence"
 }
}

requireLicenseAcceptance

Type: Boolean

true to cause a prompt to accept the package license when installing the package to be shown; otherwise, false. Only used for NuGet packages, ignored in other uses. The default is false.

For example:

{
 "packOptions": {
 "requireLicenseAcceptance": true
 }
}

repository

Type: Object

Contains information about the repository where the project is stored.

type

Type: String

Type of the repository. The default value is “git”.

For example:

{
 "packOptions": {
 "repository": {
 "type": "git"
 }
 }
}

url

Type: String

URL of the repository where the project is stored.

For example:

{
 "packOptions": {
 "repository": {
 "url": "http://github.com/dotnet/corefx"
 }
 }
}

files

include

Type: String or String[] with a globbing pattern.

{
 "include":["wwwroot", "Views"]
}

exclude

Type: String or String[] with a globbing pattern.

Specifies which files to exclude from the build.

For example:

{
 "exclude": ["bin/**", "obj/**"]
}

includeFiles

Type: String or String[] with a globbing pattern.

{
 "includeFiles":[]
}

excludeFiles

Type: String or String[] with a globbing pattern.

{
 "excludeFiles":[]
}

builtIns

Type: Object

{
 "builtIns":{}
}

mappings

Type: Object

Keys to the object represent destination paths in the output layout.

Values are either a string or an object representing the source path of files to include. The object representation can have its own include, exclude, includeFiles and excludeFiles sections.

String example:

{
 "mappings": {
 "dest/path": "./src/path"
 }
}

Object example:

{
 "mappings": {
 "dest/path":{
 "include":"./src/path"
 }
 }
}

analyzerOptions

Type: Object

An object with properties used by code analysers.

For example:

{
 "analyzerOptions": { }
}

languageId

Type: String

The id of the language to analyze. “cs” represents C#, “vb” represents Visual Basic and “fs” represents F#.

For example:

"analyzerOptions": {
 "languageId": "vb"
 }
}

configurations

Type: Object

An object whose properties define different configurations for this project, such as Debug and Release. Each value is an object that can contain a buildOptions object with options specific for this configuration.

For example:

"configurations": {
 "Release": {
 "buildOptions": {
 "allowUnsafe": false
 }
 }
}

frameworks

Type: Object

Specifies which frameworks this project supports, such as the .NET Framework or Universal Windows Platform (UWP). Must be a valid Target Framework Moniker (TFM). Each value is an object that can contain information specific to this framework such as buildOptions, analyzerOptions, dependencies as well as the properties in the following sections.

For example:

"frameworks": {
 "netcoreapp1.0": {
 "buildOptions": {
 "define": ["FOO", "BIZ"]
 }
 }
}

dependencies

Type: Object

Dependencies that are specific for this framework. This is useful in scenarios where you cannot simply specify a package-level dependency across all targets. Reasons for this can include one target lacking built-in support that other targets have, or requiring a different version of a dependency than other targets.

For example:

"frameworks": {
 "netstandard1.5": {
 "dependencies": {
 "Microsoft.Extensions.JsonParser.Sources": "1.0.0-rc2-20221"
 }
 }
}

frameworkAssemblies

Type: Object

Similar to dependencies but contains reference to assemblies in the GAC that are not NuGet packages. Can also specify the version to use as well as the dependency type. This is used when targeting .NET Framework and Portable Class Library (PCL) targets. You can only build a project with this specified on Windows.

For example:

"frameworks": {
 "net451": {
 "frameworkAssemblies": {
 "System.Runtime": {
 "type": "build",
 "version": "4.0.0"
 }
 }
 }

wrappedProject

Type: String

Specifies the location of the dependency project.

For example:

"frameworks": {
 "net451": {
 "wrappedProject": "MyProject.csproj"
 }
 }

bin

Type: Object

An object with a single property, assembly, whose value is the assembly path.

For example:

"frameworks": {
 "netcoreapp1.0": {
 "bin": {
 "assembly" :"c:/otherProject/otherdll.dll"
 }
 }
}

imports

Type: String

Specifies other framework profiles that this project is compatible with.

For example:

"frameworks": {
 "netcoreapp1.0": {
 "imports": "portable-net45+win8"
 }
}

Will cause other packages targeting portable-net45+win8 to be usable when targeting netcoreapp1.0 with the current project.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet command
description: dotnet command
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 93015521-2127-4fe9-8fce-ca79bcc4ff49

dotnet command

NAME

dotnet – General driver for running the command-line commands

SYNOPSIS

dotnet [--version] [--help] [--verbose] [--info] <command> [<args>]

DESCRIPTION

dotnet is a generic driver for the Command Line Interface (CLI) toolchain. Invoked on its own, it will give out brief usage instructions.

Each specific feature is implemented as a command. In order to use the feature, the command is specified after dotnet, such as dotnet build. All of the arguments following the command are its own arguments.

The only time dotnet is used as a command on its own is to run portable apps. Just specify a portable application DLL after the dotnet verb to execute the application.

OPTIONS

-v, --verbose

Enables verbose output.

--version

Prints out the version of the CLI tooling.

--info

Prints out more detailed information about the CLI tooling, such as the current operating system, commit SHA for the version, etc.

-h, --help

Prints out a short help and a list of current commands.

DOTNET COMMANDS

The following commands exist for dotnet:

		dotnet-new
		Initializes a C# or F# console application project.

		dotnet-restore
		Restores the dependencies for a given application.

		dotnet-build
		Builds a .NET Core application.

		dotnet-publish
		Publishes a .NET portable or self-contained application.

		dotnet-run
		Runs the application from source.

		dotnet-test
		Runs tests using a test runner specified in the project.json.

		dotnet-pack
		Creates a NuGet package of your code.

EXAMPLES

dotnet new

Initializes a sample .NET Core console application that can be compiled and run.

dotnet restore

Restores dependencies for a given application.

dotnet compile

Compiles the application in a given directory.

dotnet myapp.dll

Runs a portable app named myapp.dll.

ENVIRONMENT

DOTNET_PACKAGES

The primary package cache. If not set, it defaults to $HOME/.nuget/packages on Unix or %HOME%\NuGet\Packages on Windows.

DOTNET_SERVICING

Specifies the location of the servicing index to use by the shared host when loading the runtime.

DOTNET_CLI_TELEMETRY_OPTOUT

Specifies whether data about the .NET Core tools usage is collected and sent to Microsoft. true to opt-out of the telemetry feature (values true, 1 or yes accepted); otherwise, false (values false, 0 or no accepted). If not set, it defaults to false, that is, the telemetry feature is on.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/pcl-targets-dialog-net46-aspnetcore10.png
Add Portable Class Library.

Targets:

[J.NET Framework 4.6

O Windows Universal 10.0

O Windows Phone Silverlight 8.1
[ASP.NET Core 1.0
Osilverlight 5

O Windows Phone 8.1

Install additional targets,

& The selection makes this project incompatible with
Visual Studio 2013 and lower.

_images/project.xproj.png
=) globaljson Each *xproi

wouldtarget
Car.xproj existing full
£3—l— proiectison Framework,
iy NET Core and
src. Car any other
atforms
Car.Tests.xproj

R R Rt

tests CanTests - WheelTestes

_images/project.pcl.png
Car.csproj

packages.config Each * Core csproj
“Wheel.cs references existing

source code Inthe
ST carcorecsproj same directory
e Car Car.Core.project.json

Car.Tests.csproj
packages.config

- WheelTest.cs
1—‘\1—' Car.Tests.Core.csproj

tests CarTests CarTests.Core.project.json

_images/vscodedebugger.png
Desuc K| NETCoolanc | £ B1 Program.cs

4 VARIABLES 1 using static System.Cc

2 using Library;
o :
Start Program, 1 nanespace Consoleappl:
= 5
® 6 public class Prog:
7 1
8 public static
® s ¢
e 10 WriteLine(
+ watch b 5 b
Open Debugger; ,;
Open Debugger;

core/porting/third-party-deps.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Porting to .NET Core - Analyzing your Third-Party Party Dependencies
description: Porting to .NET Core - Analyzing your Third-Party Dependencies
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b446e9e0-72f6-48f6-92c6-70ad0ce3f86a

Porting to .NET Core - Analyzing your Third-Party Party Dependencies

The first step in the porting process is to understand your third party dependencies. You need to figure out which of them, if any, don’t yet run on .NET Core, and develop a contingency plan for those which don’t run on .NET Core.

Prerequisites

This article will assume you are using Windows and Visual Studio, and that you have code which runs on the .NET Framework today.

Analyzing NuGet Packages

Analyzing NuGet packages for portability is very easy. Because a NuGet package is itself a set of folders which contain platform-specific assemblies, all you have to do is check to see if there is a folder which contains a .NET Core assembly.

Inspecting NuGet Package folders is easiest with the NuGet Package Explorer [https://github.com/NuGetPackageExplorer/NuGetPackageExplorer] tool. Here’s how to do it.

		Download and open the NuGet Package Explorer.

		Click “Open package from online feed”.

		Search for the name of the package.

		Expand the “lib” folder on the right-hand side and look at folder names.

You can also see what a package supports on nuget.org [https://www.nuget.org/] under the Dependencies section of the page for that package.

In either case, you’ll need to look for a folder or entry on nuget.org [https://www.nuget.org/] with any of the following names:

netstandard1.0
netstandard1.1
netstandard1.2
netstandard1.3
netstandard1.4
netstandard1.5
netstandard1.6
netcoreapp1.0
portable-net45-win8
portable-win8-wpa8
portable-net451-win81
portable-net45-win8-wpa8-wpa81

These are the Target Framework Monikers (TFM) which map to versions of The .NET Standard Library and traditional Portable Class Library (PCL) profiles which are compatible with .NET Core. Note that netcoreapp1.0, while compatible, is for applications and not libraries. Although there’s nothing wrong with using a library which is netcoreapp1.0-based, that library may not be intended for anything other than consumption by other netcoreapp1.0 applications.

There are also some legacy TFMs used in pre-release versions of .NET Core that may also be compatible:

dnxcore50
dotnet5.0
dotnet5.1
dotnet5.2
dotnet5.3
dotnet5.4
dotnet5.5

While these will likely work with your code, there is no guarantee of compatibility. Packages with these TFMs were built with pre-release .NET Core packages. Take note of when (or if) packages like this are updated to be netstandard-based.

[!NOTE]
To use a package targeting a traditional PCL or pre-release .NET Core target, you must use the imports directive in your project.json file.

What to do when your NuGet package dependency doesn’t run on .NET Core

There are a few things you can do if a NuGet package you depend on won’t run on .NET Core.

		If the project is open source and hosted somewhere like GitHub, you can engage the developer(s) directly.

		You can contact the author directly on nuget.org [https://www.nuget.org/] by searching for the package and clicking “Contact Owners” on the left hand side of the package’s page.

		You can look for another package that runs on .NET Core which accomplishes the same task as the package you were using.

		You can attempt to write the code the package was doing yourself.

		You could eliminate the dependency on the package by changing the functionality of your app, at least until a compatible version of the package becomes available.

Please remember that open source project maintainers and NuGet package publishers are often volunteers who contribute because they care about a given domain, do it for free, and often have a different daytime job. If you do reach out, you might start with a positive statement about the library before asking about .NET Core support.

If you’re unable to resolve your issue with any of the above, you may have to port to .NET Core at a later date.

The .NET Team would like to know which libraries are the most important to support next with .NET Core. You can also send us mail at dotnet@microsoft.com about the libraries you’d like to use.

Analyzing Dependencies which aren’t NuGet Packages

You may have a dependency that isn’t a NuGet package, such as a DLL in the filesystem. The only way to determine the portability of that dependency is to run the ApiPort tool [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md].

Next steps

If you’re porting a library, check out Porting your Libraries.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/using-ci-with-cli.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Using .NET Core SDK and tools in Continuous Integration (CI)
description: Using .NET Core SDK and tools in Continuous Integration (CI)
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 5fb15297-a276-417f-8c4f-267281357769

Using .NET Core SDK and tools in Continuous Integration (CI)

Overview

This document outlines the usage of .NET Core SDK and its tools on the build server. In general, on a CI build server,
you want to automate the installation in some way. The automation, ideally, should not require administrative
privileges if at all possible.

For SaaS CI solutions, there are several options. This document will cover two very popular ones, TravisCI [https://travis-ci.org/] and
AppVeyor [https://www.appveyor.com/]. There are, of course, many other services out there, but the installation and
usage mechanisms should be similar.

Installation options for CI build servers

Using the native installers

If using installers that require administrative privileges is not something that presents a problem, native installers for
each platform can be used to set up the build server. This approach, especially in the case of Linux build servers, has
one advantage which is automatic installing of dependencies needed for the SDK to run. The native installers will also
install a system-wide version of the SDK, which may be desired; if it’s not, you should look into the
installer script usage outlined below.

Using this approach is simple. For Linux, there is a choice of using a feed-based package manager, such as apt-get for
Ubuntu or yum for CentOS, or using the packages themselves (that is, DEB or RPM). The former would require setting up the
feed that contains the packages.

For Windows platforms, you can use the MSI.

All of the binaries can be found on the .NET Core getting started page [https://aka.ms/dotnetcoregs] which points to the
latest stable releases. If you wish to use newer (and potentially unstable) releases or the latest, you can use the
links from the CLI repo [https://github.com/dotnet/cli].

Using the installer script

Using the installer script allows for non-administrative installation on your build server. It also allows a very easy
automation. The script itself will download the ZIP/tarball files needed and will unpack them; it will also add the
install location on the local machine to the PATH so that the tools become available for invocation immediately
post-install.

The installer script can easily be automated at the start of the build to fetch and install the needed version of the SDK.
The “needed version” is whatever version application being built requires. You can choose the installation path so you
can install the SDK locally and then clean up after the build completes. This brings additional encapsulation and
atomicity to the build process.

The installation script reference can be found in the dotnet-install document.

Dealing with the dependencies

Using the installer script means that the native dependencies are not installed automatically and that you have to
install them if the operating system you are installing on already doesn’t have them. You can see the list of prerequisites
in the CLI repo [https://github.com/dotnet/core/blob/master/Documentation/prereqs.md].

CI services setup examples

The below sections show examples of configurations using the mentioned CI SaaS offerings.

TravisCI

TODO

AppVeyor

The appveyor.com ci [https://www.appveyor.com/] has .NET Core SDK preview1 already installed
in the build worker image Visual Studio 2015

Just use:

os: Visual Studio 2015

It’s possible to install a specific version of .NET Core SDK, see example appveyor.yml [https://github.com/dotnet/core-docs/blob/master/appveyor.yml]
for more info.

In the example, the .NET Core SDK binaries are downloaded, unzipped in a subdirectory and added to PATH env var.

A build matrix can be added to run integration tests with multiple version of
the .NET Core SDK.

environment:
 matrix:
 - CLI_VERSION: 1.0.0-preview2-003121
 - CLI_VERSION: Latest

install:
 # .NET Core SDK binaries
 - ps: $url = "https://dotnetcli.blob.core.windows.net/dotnet/preview/Binaries/$($env:CLI_VERSION)/dotnet-dev-win-x64.$($env:CLI_VERSION.ToLower()).zip"
 # follow normal installation from binaries

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-build.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-build
description: dotnet-build
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 70285a83-4103-4617-be8b-d0e1e9a4a91d

dotnet-build

NAME

dotnet-build – Builds a project and all of its dependencies

SYNOPSIS

dotnet build [--output] [--build-base-path] [--framework] [--configuration] [--runtime] [--version-suffix] [--build-profile] [--no-incremental] [--no-dependencies] [<project>]

DESCRIPTION

The dotnet build command builds multiple source file from a source project and its dependencies into a binary.
The binary will be in Intermediate Language (IL) by default and will have a DLL extension.
dotnet build will also drop a *.deps file which outlines what the host needs to run the application.

Building requires the existence of a lock file, which means that you have to run dotnet restore prior to building your code.

Before any compilation begins, the build verb analyzes the project and its dependencies for incremental safety checks.
If all checks pass, then build proceeds with incremental compilation of the project and its dependencies;
otherwise, it falls back to non-incremental compilation. Via a profile flag, users can choose to receive additional
information on how they can improve their build times.

All projects in the dependency graph that need compilation must pass the following safety checks in order for the
compilation process to be incremental:

		not use pre/post compile scripts

		not load compilation tools from PATH (for example, resgen, compilers)

		use only known compilers (csc, vbc, fsc)

In order to build an executable application, you need a special configuration section in your project.json file:

{
 "compilerOptions": {
 "emitEntryPoint": true
 }
}

OPTIONS

-o, --output [DIR]

Directory in which to place the built binaries.

-b, --build-base-path [DIR]

Directory in which to place temporary outputs.

-f, --framework [FRAMEWORK]

Compiles for a specific framework. The framework needs to be defined in the project.json file.

-c, --configuration [Debug|Release]

Defines a configuration under which to build. If omitted, it defaults to Debug.

-r, --runtime [RUNTIME_IDENTIFIER]

Target runtime to build for.

--version-suffix [VERSION_SUFFIX]

Defines what * should be replaced with in the version field in the project.json file. The format follows NuGet’s version guidelines.

--build-profile

Prints out the incremental safety checks that users need to address in order for incremental compilation to be automatically turned on.

--no-incremental

Marks the build as unsafe for incremental build. This turns off incremental compilation and forces a clean rebuild of the project dependency graph.

--no-dependencies

Ignores project-to-project references and only builds the root project specified to build.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-pack.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-pack
description: dotnet-pack
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8b4b8cef-f56c-4a10-aa01-fde8bfaae53e

dotnet-pack

NAME

dotnet-pack - Packs the code into a NuGet package

SYNOPSIS

dotnet pack [--output] [--no-build] [--build-base-path] [--configuration] [--version-suffix] [<project>]

DESCRIPTION

The dotnet pack command builds the project and creates NuGet packages. The result of this operation is two packages with the nupkg extension. One package contains the code and the other contains the debug symbols.

NuGet dependencies of the project being packed are added to the nuspec file, so they are able to be resolved when the package is installed.
Project-to-project references are not packaged inside the project by default. If you wish to do this, you need to reference the required project in your dependencies node with a type set to “build” like in the following example:

{
 "version": "1.0.0-*",
 "dependencies": {
 "ProjectA": {
 "target": "project",
 "type": "build"
 }
 }
}

dotnet pack by default first builds the project. If you wish to avoid this, pass the --no-build option. This can be useful in Continuous Integration (CI) build scenarios in which you know the code was just previously built, for example.

OPTIONS

[project]

The project to pack. It can be either a path to a project.json file or to a directory. If omitted, it will
default to the current directory.

-o, --output [DIR]

Places the built packages in the directory specified.

--no-build

Skips the building phase of the packing process.

--build-base-path

Places the temporary build artifacts in the specified directory. By default, they go to the obj directory in the current directory.

-c, --configuration [Debug|Release]

Configuration to use when building the project. If not specified, will default to “Debug”.

EXAMPLES

dotnet pack

Packs the current project.

dotnet pack ~/projects/app1/project.json

Packs the app1 project.

dotnet pack --output nupkgs

Packs the current application and place the resulting packages into the specified folder.

dotnet pack --no-build --output nupkgs

Packs the current project into the specified folder and skips the build step.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-install-script.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-install scripts reference
description: dotnet-install scripts reference
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 59b9c456-2bfd-4adc-8202-a1c6a0a6c787

dotnet-install scripts reference

NAME

dotnet-install.ps1 | dotnet-install.sh - script used to install the Command Line Interface (CLI) tools and shared runtime

SYNOPSIS

Windows:

dotnet-install.ps1 [-Channel] [-Version] [-InstallDir] [-Debug] [-NoPath] [-SharedRuntime]

OS X/Linux:

dotnet-install.sh [--channel] [--version] [--install-dir] [--debug] [--no-path] [--shared-runtime]

DESCRIPTION

The dotnet-install scripts are used to perform a non-admin install of the CLI toolchain and the shared runtime. You can download the scripts from our CLI GitHub repo [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/scripts/obtain].

Their main use case is to help with automation scenarios and non-admin installations. There are two scripts, one for PowerShell that works on Windows and a bash script that works on Linux/OS X. They both have the same behavior. Bash script also “understands” PowerShell switches so you can use them across the board.

Installation scripts will download the ZIP/tarball file from the CLI build drops and will proceed to install it in either the default location or in a location specified by --install-dir. By default, the installation script
will download the SDK and install it; if you want to get just the shared runtime, you can specify the --shared-runtime argument.

By default, the script will add the install location to the $PATH for the current session. This can be overridden if the --no-path argument is used.

Before running the script, please install all the required dependencies [https://github.com/dotnet/core/blob/master/Documentation/prereqs.md].

You can install a specific version using the --version argument. The version needs to be specified as 3-part version (for example 1.0.0-13232). If omitted, it will default to the first global.json file found in the hierarchy above the folder where the script was invoked in that contains the sdkVersion property. If that is not present, it will use Latest.

You can also use this script to get the SDK or shared runtime debug binaries with debug symbols by using the --debug argument. If you do not do this on first install and realize you do need debug symbols later on, you can re-run the script with this argument and the version of the bits you installed.

Options

Options are different between script implementations.

PowerShell (Windows)

-Channel [CHANNEL]

Which channel (for example, “future”, “preview”, “production”) to install from. The default value is “Production”.

-Version [VERSION]

Which version of CLI to install; you need to specify the version as 3-part version (i.e. 1.0.0-13232). If omitted, it will default to the first global.json that contains the sdkVersion property; if that is not present, it will use Latest.

-InstallDir [DIR]

Path to install to. The directory is created if it doesn’t exist. The default value is %LocalAppData%\.dotnet.

-Debug

true to indicate that larger packages containing debugging symbols should be used; otherwise, false. The default value is false.

-NoPath

true to indicate that the prefix/installdir are not exported to the path for the current session; otherwise, false.
The default value is false, that is, the PATH is modified.
This makes the CLI tools available immediately after install.

-SharedRuntime

true to install just the shared runtime bits; false to install the entire SDK. The default value is false.

Bash (OS X/Linux)

--channel [CHANNEL]

Which channel (for example “future”, “preview”, “production”) to install from. The default value is “Production”.

--version [VERSION]

Which version of CLI to install; you need to specify the version as 3-part version (i.e. 1.0.0-13232). If omitted, it will default to the first global.json that contains the sdkVersion property; if that is not present, it will use Latest.

--install-dir [DIR]

Path to where to install. The directory is created if it doesn’t exist. The default value is $HOME/.dotnet.

--debug

true to indicate that larger packages containing debugging symbols should be used; otherwise, false. The default value is false.

--no-path

true to indicate that the prefix/installdir are not exported to the path for the current session; otherwise, false.
The default value is false, that is, the PATH is modified.
This makes the CLI tools available immediately after install.

--shared-runtime

true to install just the shared runtime bits; false to install the entire SDK. The default value is false.

EXAMPLES

Windows:

./dotnet-install.ps1 -Channel Future

OS X/Linux:

./dotnet-install.sh --channel Future

Installs the dev latest version to the default location.

Windows:

./dotnet-install.ps1 -Channel preview -InstallDir C:\cli

OS X/Linux:

./dotnet-install.sh --channel preview --install-dir ~/cli

Installs the latest preview to the specified location.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-publish.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-publish
description: dotnet-publish
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8a7e1c52-5c57-4bf5-abad-727450ebeefd

dotnet-publish

NAME

dotnet-publish - Packs the application and all of its dependencies into a folder getting it ready for publishing

SYNOPSIS

dotnet publish [--framework] [--runtime] [--build-base-path] [--output] [--version-suffix] [--configuration] [<project>]

DESCRIPTION

dotnet publish compiles the application, reads through its dependencies specified in the project.json file and publishes the resulting set of files to a directory.

Depending on the type of portable app, the resulting directory will contain the following:

		Portable application - application’s intermediate language (IL) code and all of application’s managed dependencies.
		Portable application with native dependencies - same as above with a sub-directory for the supported platform of each native
dependency.

		Self-contained application - same as above plus the entire runtime for the targeted platform.

The above types are covered in more details in the types of portable applications topic.

OPTIONS

[project]

dotnet publish needs access to the project.json file to work. If it is not specified on invocation via [project], project.json in the current directory will be the default.If no project.json can be found, dotnet publish will throw an error.

-f, --framework [FID]

Publishes the application for a given framework identifier (FID). If not specified, FID is read from project.json. In no valid framework is found, the command will throw an error. If multiple valid frameworks are found, the command will publish for all valid frameworks.

-r, --runtime [RID]

Publishes the application for a given runtime.

-b, --build-base-path [DIR]

Directory in which to place temporary outputs.

-o, --output

Specify the path where to place the directory. If not specified, it will default to ./bin/[configuration]/[framework]/
for portable applications or ./bin/[configuration]/[framework]/[runtime] for self-contained applications.

–version-suffix [VERSION_SUFFIX]

Defines what * should be replaced with in the version field in the project.json file.

-c, --configuration [Debug|Release]

Configuration to use when publishing. The default value is Debug.

EXAMPLES

dotnet publish

Publishes an application using the framework found in project.json. If project.json contains runtimes node, publish for the RID of the current platform.

dotnet publish ~/projects/app1/project.json

Publishes the application using the specified project.json.

dotnet publish --framework netcoreapp1.0

Publishes the current application using the netcoreapp1.0 framework.

dotnet publish --framework netcoreapp1.0 --runtime osx.10.11-x64

Publishes the current application using the netcoreapp1.0 framework and runtime for OS X 10.10. This RID has to
exist in the project.json runtimes node.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/libraries.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Developing Libraries with Cross Platform Tools
description: Developing Libraries with Cross Platform Tools
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9f6e8679-bd7e-4317-b3f9-7255a260d9cf

Developing Libraries with Cross Platform Tools

Some details are subject to change as the toolchain evolves.

This article covers how to write libraries for .NET using cross-platform CLI tools. The CLI provides an efficient and low-level experience that works across any supported OS. You can still build libraries with Visual Studio, and if that is your preferred experience refer to the Visual Studio guide.

Prerequisites

You need the .NET Core SDK and CLI [https://www.microsoft.com/net/core] installed on your machine.

For the sections of this document dealing with .NET Framework versions or Portable Class Libraries (PCL), you need the .NET Framework [http://getdotnet.azurewebsites.net/] installed on a Windows machine.

Additionally, if you wish to support older .NET Framework targets, you need to install targeting/developer packs for older framework versions from the .NET target platforms page [http://getdotnet.azurewebsites.net/target-dotnet-platforms.html]. Refer to this table:

.NET Framework Version	What to download
———————-	—————–
4.6.1	.NET Framework 4.6.1 Targeting Pack
4.6	.NET Framework 4.6 Targeting Pack
4.5.2	.NET Framework 4.5.2 Developer Pack
4.5.1	.NET Framework 4.5.1 Developer Pack
4.5	Windows Software Development Kit for Windows 8
4.0	Windows SDK for Windows 7 and .NET Framework 4
2.0, 3.0, and 3.5	.NET Framework 3.5 SP1 Runtime (or Windows 8+ version)

How to target the .NET Standard

If you’re not quite familiar with the .NET Standard, refer to the .NET Standard Library to learn more.

In that article, there is a table which maps .NET Standard versions to various implementations:

Platform Name	Alias							
:———-	:———	:———	:———	:———	:———	:———	:———	:———
.NET Standard	netstandard	1.0	1.1	1.2	1.3	1.4	1.5	1.6
.NET Core	netcoreapp							

→

|→

|→

|→

|→

|→

|1.0|
|.NET Framework|net|→

|4.5|4.5.1|4.6|4.6.1|4.6.2|4.6.3|
|Mono/Xamarin Platforms||→

|→

|→

|→

|→

|→

|*|
|Universal Windows Platform|uap|→

|→

|→

|→

|10.0|||
|Windows|win|→

|8.0|8.1|||||
|Windows Phone|wpa|→

|→

|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||

Here’s what this table means for the purposes of creating a library:

The version of the .NET Platform Standard you pick will be a tradeoff between access to the newest APIs and ability to target more .NET platforms and Framework versions. You control the range of targetable platforms and versions by picking a version of netstandardX.X (Where X.X is a version number) and adding it to your project.json file.

Additionally, the corresponding NuGet package to depend on [https://www.nuget.org/packages/NETStandard.Library/] is NETStandard.Library version 1.6.0. Although there’s nothing preventing you from depending on Microsoft.NETCore.App like with console apps, it’s generally not recommended. If you need APIs from a package not specified in NETStandard.Library, you can always specify that package in addition to NETStandard.Library in the dependencies section of your project.json file.

You have three primary options when targeting the .NET Standard, depending on your needs.

		You can use the latest version of the .NET Standard - netstandard1.6 - which is for when you want access to the most APIs and don’t mind if you have less reach across implementations.

		You can use a lower version of the .NET Standard to target earlier .NET implementations. The cost here is not having access to some of the latest APIs.

For example, if you wanted to have guaranteed compatibility with .NET Framework 4.6 and higher, you would pick netstandard1.3:

{
 "dependencies":{
 "NETStandard.Library":"1.6.0"
 },
 "frameworks":{
 "netstandard1.3":{}
 }
}

.NET Standard versions are backward compatible. That means that netstandard1.0 libraries run on netstandard1.1 platforms and higher. However, there is no forward compatibility - lower .NET Standard platforms cannot reference higher ones. This means that netstandard1.0 libraries cannot reference libraries targeting netstandard1.1 or higher. Select the Standard version that has the right mix of APIs and platform support for your needs.

		If you want to target the .NET Framework versions 4.0 or below, or you wish to use an API available in the .NET Framework but not in the .NET Standard (for example, System.Drawing), read the following sections and learn how to multitarget.

How to target the .NET Framework

NOTE: These instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites to get dependencies installed.

Keep in mind that some of the .NET Framework versions used here are no longer in support. Refer to the .NET Framework Support Lifecycle Policy FAQ [https://support.microsoft.com/gp/framework_faq/en-us] about unsupported versions.

If you want to reach the maximum number of developers and projects, use the .NET Framework 4 as your baseline target. To target the .NET Framework, you will need to begin by using the correct Target Framework Moniker (TFM) that corresponds to the .NET Framework version you wish to support.

.NET Framework 2.0 --> net20
.NET Framework 3.0 --> net30
.NET Framework 3.5 --> net35
.NET Framework 4.0 --> net40
.NET Framework 4.5 --> net45
.NET Framework 4.5.1 --> net451
.NET Framework 4.5.2 --> net452
.NET Framework 4.6 --> net46
.NET Framework 4.6.1 --> net461
.NET Framework 4.6.2 --> net462
.NET Framework 4.6.3 --> net463

For example, here’s how you would write a library which targets the .NET Framework 4:

{
 "frameworks":{
 "net40":{}
 }
}

And that’s it! Although this compiled only for the .NET Framework 4, you can use the library on newer versions of the .NET Framework.

How to target a Portable Class Library (PCL)

NOTE: These instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites to get dependencies installed.

Targeting a PCL profile is a bit trickier than targeting .NET Standard or the .NET Framework. For starters, reference this list of PCL profiles [http://embed.plnkr.co/03ck2dCtnJogBKHJ9EjY/preview] to find the NuGet target which corresponds to the PCL profile you are targeting.

Then, you need to do the following:

		Create a new entry under frameworks in your project.json, named .NETPortable,Version=v{version},Profile=Profile{profile}, where {version} and {profile} correspond to a PCL version number and Profile number, respectively.

		In this new entry, list every single assembly used for that target under a frameworkAssemblies entry. This includes mscorlib, System, and System.Core.

		If you are multitargeting (see the next section), you must explicitly list dependencies for each target under their target entries. You won’t be able to use a global dependencies entry anymore.

The following is an example targeting PCL Profile 328. Profile 328 supports: .NET Standard 1.4, .NET Framework 4, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8.1, and Silverlight 5.

{
 "frameworks":{
 ".NETPortable,Version=v4.0,Profile=Profile328":{
 "frameworkAssemblies":{
 "mscorlib":"",
 "System":"",
 "System.Core":""
 }
 }
 }
}

When you build a project that includes PCL Profile 328 as a framework in the project.json file, it will have this subfolder in the /bin/debug folder:

portable-net40+sl50+netcore45+wpa81+wp8/

This folder contains the .dll files necessary to run your library.

How to Multitarget

NOTE: These following instructions assume you have the .NET Framework installed on your machine. Refer to the Prerequisites section to learn which dependencies you need to install and where to download them from.

You may need to target older versions of the .NET Framework when your project supports both the .NET Framework and .NET Core. In this scenario, if you want to use newer APIs and language constructs for the newer targets, use #if directives in your code. You also might need to add different packages and dependencies in your project.json file for each platform you’re targeting to include the different APIs needed for each case.

For example, let’s say you have a library that performs networking operations over HTTP. For .NET Standard and the .NET Framework versions 4.5 or higher, you can use the HttpClient class from the System.Net.Http namespace. However, earlier versions of the .NET Framework don’t have the HttpClient class, so you could use the WebClient class from the System.Net namespace for those instead.

So, the project.json file could look like this:

{
 "frameworks":{
 "net40":{
 "frameworkAssemblies": {
 "System.Net":"",
 "System.Text.RegularExpressions":""
 }
 },
 "net452":{
 "frameworkAssemblies":{
 "System.Net":"",
 "System.Net.Http":"",
 "System.Text.RegularExpressions":"",
 "System.Threading.Tasks":""
 }
 },
 "netstandard1.6":{
 "dependencies": {
 "NETStandard.Library":"1.6.0",
 }
 }
 }
}

Note that the .NET Framework assemblies need to be referenced explicitly in the net40 and net452 target, and NuGet references are also explicitly listed in the netstandard1.6 target. This is required in multitargeting scenarios.

Next, the using statements in your source file can be adjusted like this:

#if NET40
// This only compiles for the .NET Framework 4 targets
using System.Net;
#else
// This compiles for all other targets
using System.Net.Http;
using System.Threading.Tasks;
#endif

The build system is aware of the following preprocessor symbols used in #if directives:

.NET Framework 2.0 --> NET20
.NET Framework 3.5 --> NET35
.NET Framework 4.0 --> NET40
.NET Framework 4.5 --> NET45
.NET Framework 4.5.1 --> NET451
.NET Framework 4.5.2 --> NET452
.NET Framework 4.6 --> NET46
.NET Framework 4.6.1 --> NET461
.NET Framework 4.6.2 --> NET462
.NET Standard 1.0 --> NETSTANDARD1_0
.NET Standard 1.1 --> NETSTANDARD1_1
.NET Standard 1.2 --> NETSTANDARD1_2
.NET Standard 1.3 --> NETSTANDARD1_3
.NET Standard 1.4 --> NETSTANDARD1_4
.NET Standard 1.5 --> NETSTANDARD1_5
.NET Standard 1.6 --> NETSTANDARD1_6

And in the middle of the source, you can use #if directives to use those libraries conditionally. For example:

 public class Library
 {
#if NET40
 private readonly WebClient _client = new WebClient();
 private readonly object _locker = new object();
#else
 private readonly HttpClient _client = new HttpClient();
#endif

#if NET40
 // .NET Framework 4.0 does not have async/await
 public string GetDotNetCount()
 {
 string url = "http://www.dotnetfoundation.org/";

 var uri = new Uri(url);

 string result = "";

 // Lock here to provide thread-safety.
 lock(_locker)
 {
 result = _client.DownloadString(uri);
 }

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"Dotnet Foundation mentions .NET {dotNetCount} times!";
 }
#else
 // .NET 4.5+ can use async/await!
 public async Task<string> GetDotNetCountAsync()
 {
 string url = "http://www.dotnetfoundation.org/";

 // HttpClient is thread-safe, so no need to explicitly lock here
 var result = await _client.GetStringAsync(url);

 int dotNetCount = Regex.Matches(result, ".NET").Count;

 return $"dotnetfoundation.orgmentions .NET {dotNetCount} times in its HTML!";
 }
#endif
 }

When you build a project that includes net40, net45, and netstandard1.6 as frameworks in the project.json file, it will have these subfolders in the /bin/debug folder:

net40/
net45/
netstandard1.6/

But What about Multitargeting with Portable Class Libraries?

If you want to cross-compile with a PCL target, you must add a build definition in your project.json file under buildOptions in your PCL target. You can then use #if directives in the source which use the build definition as a preprocessor symbol.

For example, if you want to target PCL profile 328 [http://embed.plnkr.co/03ck2dCtnJogBKHJ9EjY/preview] (The .NET Framework 4, Windows 8, Windows Phone Silverlight 8, Windows Phone 8.1, Silverlight 5), you could to refer to it to as “PORTABLE328” when cross-compiling. Simply add it to the project.json file as a buildOptions attribute:

{
 "frameworks":{
 "netstandard1.6":{
 "dependencies":{
 "NETStandard.Library":"1.6.0",
 }
 },
 ".NETPortable,Version=v4.0,Profile=Profile328":{
 "buildOptions": {
 "define": ["PORTABLE328"]
 },
 "frameworkAssemblies":{
 "mscorlib":"",
 "System":"",
 "System.Core":"",
 "System.Net"
 }
 }
 }
}

Now you can conditionally compile against that target:

#if !PORTABLE328
using System.Net.Http;
using System.Threading.Tasks;
// Potentially other namespaces which aren't compatible with Profile 328
#endif

Because PORTABLE328 is now recognized by the compiler, the PCL Profile 328 library generated by a compiler will not include System.Net.Http or System.Threading.Tasks.

When you build a project that includes PCL Profile 328 and netstandard1.6 as frameworks in the project.json file, it will have these subfolders in the /bin/debug folder:

portable-net40+sl50+netcore45+wpa81+wp8/
netstandard1.6/

How to use native dependencies

You may wish to write a library which depends on a native .dll file. If you’re writing such a library, you have have two options:

		Reference the native .dll directly in your project.json.

		Package that .dll into its own NuGet package and depend on that package.

For the first option, you’ll need to include the following in your project.json file:

		Setting allowUnsafe to true in a buildOptions section.

		Specifying the path to the native .dll(s) with a Runtime Identifier (RID) under files in the packOptions section.

If you’re distributing your library as a package, it’s recommended that you place the .dll file at the root level of your project. Here’s an example project.json for a native .dll file that runs on Windows x64:

{
 "buildOptions":{
 "allowUnsafe":true
 },
 "packOptions":{
 "files":{
 "runtimes/win7-x64/native/":"native-lib.dll"
 }
 }
}

For the second option, you’ll need to build a NuGet package out of your .dll file(s), host on a NuGet or MyGet feed, and depend on it directly. You’ll still need to set allowUnsafe to true in the buildOptions section of your project.json. Here’s an example (assuming MyNativeLib is a Nuget package at version 1.2.0):

{
 "buildOptions":{
 "allowUnsafe":true
 },
 "dependencies":{
 "MyNativeLib":"1.2.0"
 }
}

To see an example of packaging up cross-platform native binaries, check out the ASP.NET Libuv Package [https://github.com/aspnet/libuv-package] and the corresponding reference in KestrelHttpServer [https://github.com/aspnet/KestrelHttpServer/blob/dev/src/Microsoft.AspNetCore.Server.Kestrel/project.json#L18].

How to test libraries on .NET Core

It’s important to be able to test across platforms. It’s easiest to use xUnit [http://xunit.github.io/], which is also the testing tool used by .NET Core projects. How you set up your solution with test projects will depend on the structure of your solution. The following example assumes that all source projects are under a top-level /src folder and all test projects are under a top-level /test folder.

		Ensure you have a global.json file at the solution level which understands where the test projects are:

{
 "projects":["src", "test"]
}

Your solution folder structure should then look like this:

/SolutionWithSrcAndTest
|__global.json
|__/src
|__/test

		Create a new test project by creating a project folder under your /test folder, and a project.json file in the new project folder. To create the project.json file you can run the dotnet new command and modify the project.json file afterwards. The file should have the following:

		netcoreapp1.0 listed as the only entry under frameworks.

		A reference to Microsoft.NETCore.App version 1.0.0.

		A reference to xUnit version 2.2.0-beta2-build3300.

		A reference to dotnet-test-xunit version 1.0.0-preview2-build1029

		A project reference to the library being tested.

		The entry "testRunner":"xunit".

Here’s an example (LibraryUnderTest version 1.0.0 is the library being tested):

{
 "testRunner":"xunit",
 "dependencies":{
 "LibraryUnderTest":{
 "version":"1.0.0",
 "target":"project"
 },
 "Microsoft.NETCore.App":{
 "version":"1.0.0",
 "type":"platform"
 },
 "xunit":"2.2.0-beta2-build3300",
 "dotnet-test-xunit":".0.0-preview2-build1029",
 },
 "frameworks":{
 "netcoreapp1.0":{}
 }
}

		Restore packages by running dotnet restore. You should do this at the solution level if you haven’t restored packages yet.

		Navigate to your test project and run tests with dotnet test:

$ cd path-to-your-test-project
$ dotnet test

And that’s it! You can now test your library across all platforms using command line tools. To continue testing now that you have everything set up, testing your library is very simple:

		Make changes to your library.

		Run tests from the command line, in your test directory, with dotnet test command.

Your code will be automatically rebuilt when you invoke dotnet test command.

Just remember to run dotnet restore from the command line any time you add a new dependency and you’ll be good to go!

How to use multiple projects

A common need for larger libraries is to place functionality in different projects.

Imagine you wished to build a library which could be consumed in idiomatic C# and F#. That would mean that consumers of your library consume them in ways which are natural to C# or F#. For example, in C# you might consume the library like this:

var convertResult = await AwesomeLibrary.ConvertAsync(data);
var result = AwesomeLibrary.Process(convertResult);

In F#, it might look like this:

let result =
 data
 |> AwesomeLibrary.convertAsync
 |> Async.RunSynchronously
 |> AwesomeLibrary.process

Consumption scenarios like this mean that the APIs being accessed have to have a different structure for C# and F#. A common approach to accomplishing this is to factor all of the logic of a library into a core project, with C# and F# projects defining the API layers that call into that core project. The rest of the section will use the following names:

		AwesomeLibrary.Core - A core project which contains all logic for the library

		AwesomeLibrary.CSharp - A project with public APIs intended for consumption in C#

		AwesomeLibrary.FSharp - A project with public APIs intended for consumption in F#

Project-to-project referencing

To reference a project, you need to do two things:

		Understand the name and version number of the project you wish to reference.

		List that project as a dependency using the name and version number from (1).

In the above case, you may wish to set up the project.json for AwesomeLibrary.Core as follows:

{
 "name":"AwesomeLibrary.Core",
 "version":"1.0.0"
}

You can use these entries in the project.json to control the name and version of the project. If you don’t specify these, the default configuration is to use the name of the containing folder as the name and 1.0.0 as the version number.

The project.json files for both AwesomeLibrary.CSharp and AwesomeLibrary.FSharp now need to reference AwesomeLibrary.Core as a project target. If you aren’t multitargeting, you can use the global dependencies entry:

{
 "dependencies":{
 "AwesomeLibrary.Core":{
 "version":"1.0.0",
 "target":"project"
 }
 }
}

Note: Failure to list the reference as a project target may result in NuGet resolving the dependency with an existing NuGet package which happens to have the same name. Always specify "target":"project" when referencing a project in the same solution.

If you are multitargeting, you may not be able to use a global dependencies entry and may have to reference AwesomeLibrary.Core in a target-level dependencies entry. For example, if you were targeting netstandard1.6, you could do so like this:

{
 "frameworks":{
 "netstandard1.6":{
 "dependencies":{
 "AwesomeLibrary.Core":{
 "version":"1.0.0",
 "target":"project"
 }
 }
 }
 }
}

Structuring a Solution

Another important aspect of multi-project solutions is establishing a good overall project structure. To structure a multi-project library, you must use top-level /src and /test folders:

/AwesomeLibrary
|__global.json
|__/src
 |__/AwesomeLibrary.Core
 |__Source Files
 |__project.json
 |__/AwesomeLibrary.CSharp
 |__Source Files
 |__project.json
 |__/AwesomeLibrary.FSharp
 |__Source Files
 |__project.json
/test
 |__/AwesomeLibrary.Core.Tests
 |__Test Files
 |__project.json
 |__/AwesomeLibrary.CSharp.Tests
 |__Test Files
 |__project.json
 |__/AwesomeLibrary.FSharp.Tests
 |__Test Files
 |__project.json

The global.json file for this solution would look like this:

{
 "projects":["src", "test"]
}

This approach follows the same pattern established by project templates in the dotnet new command establish, where all projects are placed under a /src directory and all tests are placed under a /test directory.

Here’s how you could restore packages, build, and test your entire project:

$ dotnet restore
$ cd src/AwesomeLibrary.FSharp
$ dotnet build
$ cd ../AwesomeLibrary.CSharp
$ dotnet build
$ cd ../../test/AwesomeLibrary.Core.Tests
$ dotnet test
$ cd ../AwesomeLibrary.CSharp.Tests
$ dotnet test
$ cd ../AwesomeLibrary.FSharp.Tests
$ dotnet test

And that’s it!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/global-json.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Global.json reference
description: Global.json reference
keywords: .NET, .NET Core
author: aL3891
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e1ac9659-425f-4486-a376-c12ca942ead8

Global.json reference

		projects/sources

		packages

[bookmark: projects]

projects

Type: String[]

Specifies what folders the build system should search for projects when resolving dependencies. The build system will only search top level child folders.

[bookmark: packages]

packages

Type: String[]

The folder to store packages.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/extensibility.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core CLI extensibility model
description: .NET Core CLI extensibility model
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1bebd25a-120f-48d3-8c25-c89965afcbcd

.NET Core CLI extensibility model

Overview

This document will cover the main ways how to extend the CLI tools and explain the scenarios that drive each of them.
It will the outline how to consume the tools as well as provide short notes on how to build both types of tools.

How to extend CLI tools

The CLI tools can be extended in two main ways:

		Via NuGet packages on a per-project basis

		Via the system’s PATH

The two extensibility mechanisms outlined above are not exclusive; you can use both or just one. Which one to pick
depends largely on what is the goal you are trying to achieve with your extension.

Per-project based extensibility

Per-project tools are portable console applications that are distributed as NuGet packages. Tools are
only available in the context of the project that references them and for which they are restored; invocation outside
of the context of the project (for example, outside of the directory that contains the project) will fail as the command will
not be able to be found.

These tools are perfect for build servers as well, since nothing outside of project.json is needed. The build process
runs restore for the project it builds and tools will be available. Language projects, such as F#, are also in this
category; after all, each project can only be written in one specific language.

Finally, this extensibility model provides support for creation of tools that need access to the built output of the
project. For instance, various Razor view tools in ASP.NET [https://www.asp.net/] MVC applications fall into this
category.

Consuming per-project tools

Consuming these tools requires you to add a tools node to your project.json. Inside the tools node, you reference
the package in which the tool resides. After running dotnet restore, the tool and its dependencies are restored.

For tools that need to load the build output of the project for execution, there is usually another dependency which is
listed under the regular dependencies in the project file. This means that tools that load project’s code have two
components:

		The “tools” main invoker

		Any number of other tools that contain the logic to work with

Why two things? Tools that need to load the build output of a project need to have unified dependency graph with the
project they are working. By adding the dependency bit, we enable NuGet to resolve these dependencies as a unified
graph. The invoker is there because it needs to reason about the location as well as the frameworks of the dependency
tool. The invoker can accept all of the redirection arguments (-c, -o, -b) that the user specifies and finds the
dependency tool; it can also implement any policies for cases where multiple dependency tools exist for multiple
frameworks (that is, does it run all of them, just one, etc.) In general, logic can be shared between these two tools any way
that is needed.

Let’s review an example of adding a simple tools-only tool to a simple project. Given an example command called
dotnet-api-search that allows you to search through the NuGet packages for the specified
API, here is a console application’s project.json file that uses that tool:

{
 "version": "1.0.0",
 "compilationOptions": {
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 }
 },
 "tools": {
 "dotnet-api-search": {
 "version": "1.0.0",
 "imports": ["dnxcore50"]
 }
 },
 "frameworks": {
 "netcoreapp1.0": {}
 }
}

The tools node is structured in a similar way as the dependencies node. It needs the package ID of the package
containing the tool and its version at the very least. In the example above, we can see that there is another statement,
the imports one. This influences the tool’s restore process and specifies that the tool is also compatible, in
addition to any targeted frameworks the tools has, with dnxcore50 target. For more information you can
consult the project.json reference.

Building tools

As mentioned, tools are just portable console applications. You would build one as you would build any console application.
After you build it, you would use dotnet pack command to create a NuGet package (nupkg) that contains
your code, information about its dependencies and so on. The package name can be whatever the author wants, but the
application inside, the actual tool binary, has to conform to the convention of dotnet-<command> in order for dotnet
to be able to invoke it.

Since tools are portable applications, the user consuming the tool has to have the version of the .NET Core libraries
that the tool was built against in order to run the tool. Any other dependency that the tool uses and that is not
contained within the .NET Core libraries is restored and placed in the NuGet cache. The entire tool is, therefore, run
using the assemblies from the .NET Core libraries as well as assemblies from the NuGet cache.

These kind of tools have a dependency graph that is completely separate from the dependency graph of the project that
uses them. The restore process will first restore the project’s dependencies, and will then restore each of the tools and
their dependencies.

You can find richer examples and different combinations of this in the .NET Core CLI repo [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestProjects].
You can also see the implementation of tools used [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages] in the same repo.

Building tools that load project’s build outputs for execution is slightly different. As stated, for these kinds of
tools there are two components:

		A dispatcher tool that the user invokes

		A framework-specific dependency that contains the logic on how to find the build outputs and what to do with it

A prime example of this are Entity Framework (EF) [https://github.com/aspnet/EntityFramework] commands as well as the dotnet test command. In both
cases, there is a tool that is referenced in the tools node of the project.json and that is the main dispatcher. The
user invokes this tool on the command line. The second piece of the puzzle is the dependency that is given in the
project’s main dependencies (either root ones or framework-specific ones). This package contains the actual logic of
the tool. The package is a normal dependency, thus it will be restored as part of the restore process for the project.

Unlike the previous kind of tools, these tool are actually part of the graph of the project that consumes them. This is
because they need access to the project’s code and potentially all of its dependencies. For instance, the EF tools need
this because they need to scan the assemblies to find the code they need, such as migrations.

Another reason why this two-pronged solution exists is to allow a cleaner invocation model. Most CLI commands that
drop certain artifacts on disk (for example, dotnet build, dotnet publish) allow users to redirect the outputs to a different
path using the --output argument or --build-base-path argument or --configuration argument. For EF tools, for
example, to be able to find the build output of your project, you would have to provide the same arguments with the same
values to both dotnet driver as well as the ef command. With the invocation model, the users pass any arguments to
the dispatcher tool which can then use that to find the needed binary that contains the logic in the output directories.

A good example of this approach can be found in the .NET Core CLI repo [https://github.com/dotnet/cli]:

		Sample project.json file [https://github.com/dotnet/cli/blob/rel/1.0.0-preview2/TestAssets/DesktopTestProjects/AppWithDirectDependencyDesktopAndPortable/project.json]

		Implementation of the dispatcher [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages/dotnet-dependency-tool-invoker]

		Implementation of the framework-specific dependency [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages/dotnet-desktop-and-portable]

PATH-based extensibility

PATH-based extensibility is usually used for development machines where you need a tool that conceptually covers more
than a single project. The main drawback of this extensions mechanism is that it is tied to the machine where the
tool exists. If you need it on another machine, you would have to deploy it.

This pattern of CLI toolset extensibility is very simple. As covered in the .NET Core CLI overview, dotnet driver
can run any command that is named after the dotnet <command> convention. The default resolution logic will first
probe several locations and will finally fall to the system PATH. If the requested command exists in the system PATH
and is a binary that can be invoked, dotnet driver will invoke it.

The binary can be pretty much anything that the operating system can execute. On Unix systems, this means anything that
has the execute bit set via chmod +x. On Windows it means anything that Windows knows how to run.

As an example, let’s take a look at a very simple implementation of a dotnet clean command. We will use bash to
implement this command. The command will simply delete the bin/ and obj/ directories in the current directory. If
the --lock argument is passed to it, it will also delete project.lock.json file. The entirety of the command is
given below.

#!/bin/bash

Delete the bin and obj dirs
rm -rf bin/ obj/

LOCK_FILE=$1
if [["$LOCK_FILE" = "--lock"]]; then
 rm project.lock.json
fi

echo "Cleaning complete..."

On macOS, we can save this script as dotnet-clean and set its executable bit with chmod +x dotnet-clean. We can then
create a symbolic link to it in /usr/local/bin using the command ln -s dotnet-clean /usr/local/bin/. This will make
it possible to invoke the clean command using the dotnet clean syntax. You can test this by creating an app, running
dotnet build on it and then running dotnet clean.

Conclusion

The .NET Core CLI tools allow two main extensibility points. The per-project tools are contained within the project’s
context, but they allow easy installation through restoration. PATH-based tools are good for general, cross-project
tools that are usable on a single machine.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-translating.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Translating Expression Trees
description: Translating Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b453c591-acc6-4e08-8175-97e5bc65958e

Translating Expression Trees

Previous – Building Expressions

In this final section, you’ll learn how to visit each node
in an expression tree, while building a modified copy of that
expression tree. These are the techniques that you will use in two
important scenarios. The first is to understand the algorithms
expressed by an expression tree so that it can be translated
into another environment. The second is when you want to change
the algorithm that has been created. This might be to add logging,
intercept method calls and track them, or other purposes.

Translating is Visiting

The code you build to translate an expression tree is an extension
of what you’ve already seen to visit all the nodes in a tree. When
you translate an expression tree, you visit all the nodes, and while
visiting them, build the new tree. The new tree may contain references
to the original nodes, or new nodes that you have placed in the tree.

Let’s see this in action by visiting an expression tree, and
creating a new tree with some replacement nodes. In this example,
let’s replace any constant with a constant that is ten times larger.
Otherwise, we’ll leave the expression tree intact. Rather than
reading the value of the constant, and replacing it with a new
constant, we’ll make this replacement by replacing the constant
node with a new node that performs the multiplication.

Here, once you find a constant node, you create a new multiplication
node whose children are the original constant, and the constant
10:

private static Expression ReplaceNodes(Expression original)
{
 if (original.NodeType == ExpressionType.Constant)
 {
 return Expression.Multiply(original, Expression.Constant(10));
 }
 else if (original.NodeType == ExpressionType.Add)
 {
 var binaryExpression = (BinaryExpression)original;
 return Expression.Add(
 ReplaceNodes(binaryExpression.Left),
 ReplaceNodes(binaryExpression.Right));
 }
 return original;
}

By replacing the original node with the substitute, a new tree
is formed that contains our modifications. We can verify that by
compiling and executing the replaced tree.

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);
var sum = ReplaceNodes(addition);
var executableFunc = Expression.Lambda(sum);

var func = (Func<int>)executableFunc.Compile();
var answer = func();
Console.WriteLine(answer);

Building a new tree is a combination of visiting the nodes in
the existing tree, and creating new nodes and inserting them
into the tree.

This example shows the importance of expression trees being
immutable. Notice that the new tree created above contains a
mixture of newly created nodes, and nodes from the existing
tree. That’s safe, because the nodes in the existing tree cannot be
modified. This can result in significant memory efficiencies.
The same nodes can be used throughout a tree, or in multiple
expression trees. Since nodes can’t be modified, the
same node can be reused whenever its needed.

Traversing and Executing an Addition

Let’s verify this by building a second visitor that walks the tree
of addition nodes and computes the result. You can do this by
making a couple modifications to the vistor that you’ve seen so
far. In this new version, the visitor will return the partial sum
of the addition operation up to this point. For a constant expression,
that is simply the value of the constant expression. For an addition
expression, the result is the sum of the left and right operands, once
those trees have been traversed.

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var three= Expression.Constant(3, typeof(int));
var four = Expression.Constant(4, typeof(int));
var addition = Expression.Add(one, two);
var add2 = Expression.Add(three, four);
var sum = Expression.Add(addition, add2);

// Declare the delegate, so we can call it
// from itself recursively:
Func<Expression, int> aggregate = null;
// Aggregate, return constants, or the sum of the left and right operand.
// Major simplification: Assume every binary expression is an addition.
aggregate = (exp) =>
 exp.NodeType == ExpressionType.Constant ?
 (int)((ConstantExpression)exp).Value :
 aggregate(((BinaryExpression)exp).Left) + aggregate(((BinaryExpression)exp).Right);

var theSum = aggregate(sum);
Console.WriteLine(theSum);

There’s quite a bit of code here, but the concepts are very approachable.
This code visits children in a depth first search. When it encounters a
constant node, the visitor returns the value of the constant. After the
visitor has visited both children, those children will have computed the sum
computed for that sub-tree. The addition node can now compute its sum.
Once all the nodes in the expression tree have been visited, the sum
will have been computed. You can trace the execution by running the sample
in the debugger and tracing the execution.

Let’s make it easier to trace how the nodes are analyzed and how the sum
is computed by travsersing the tree. Here’s an updated version of the
Aggregate method that includes quite a bit of tracing information:

private static int Aggregate(Expression exp)
{
 if (exp.NodeType == ExpressionType.Constant)
 {
 var constantExp = (ConstantExpression)exp;
 Console.Error.WriteLine($"Found Constant: {constantExp.Value}");
 return (int)constantExp.Value;
 }
 else if (exp.NodeType == ExpressionType.Add)
 {
 var addExp = (BinaryExpression)exp;
 Console.Error.WriteLine("Found Addition Expression");
 Console.Error.WriteLine("Computing Left node");
 var leftOperand = Aggregate(addExp.Left);
 Console.Error.WriteLine($"Left is: {leftOperand}");
 Console.Error.WriteLine("Computing Right node");
 var rightOperand = Aggregate(addExp.Right);
 Console.Error.WriteLine($"Right is: {rightOperand}");
 var sum = leftOperand + rightOperand;
 Console.Error.WriteLine($"Computed sum: {sum}");
 return sum;
 }
 else throw new NotSupportedException("Haven't written this yet");
}

Running it on the same expression yields the following output:

10
Found Addition Expression
Computing Left node
Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Constant: 2
Right is: 2
Computed sum: 3
Left is: 3
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 10
10

Trace the output and follow along in the code above. You should be able
to work out how the code visits each node and computes the sum as it goes
through the tree and finds the sum.

Now, let’s look at a different run, with the expression given by sum1:

Expression<Func<int> sum1 = () => 1 + (2 + (3 + 4));

Here’s the output from examining this expression:

Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 2
Left is: 2
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 9
Right is: 9
Computed sum: 10
10

While the final answer is the same, the tree traversal is completely
different. The nodes are traveled in a different order, because the
tree was constructed with different operations occurring first.

Learning More

This sample shows a small subset of the code you would build to traverse
and interpret the algorithms represented by an expression tree. For a complete
discussion of all the work necessary to build a general purpose library that
translates expression trees into another language, please read
this series [http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx]
by Matt Warren. It goes into great detail on how to translate any of the code
you might find in an expression tree.

I hope you’ve now seen the true power of expression trees.
You can examine a set of code, make any changes you’d like to
that code, and execute the changed version. Because the
expression trees are immutable, you can create new trees by
using the components of existing trees. This minimizes the
amount of memory needed to create modified expression trees.

Next – Summing up

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/delegates-strongly-typed.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Strongly Typed Delegates
description: Strongly Typed Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 564a683d-352b-4e57-8bac-b466529daf6b

Strongly Typed Delegates

Previous

In the previous article, you saw that you create specific delegate
types using the delegate keyword.

The abstract Delegate class provide the infrastructure for loose coupling
and invocation. Concrete Delegate types become much more useful by embracing
and enforcing type safety for the methods that are added to the invocation
list for a delegate object. When you use the delegate keyword and define
a concrete delegate type, the compiler generates those methods.

In practice, this would lead to creating new delegate types
whenever you need a different method signature. This work could get tedious
after a time. Every new feature requires new delegate types.

Thankfully, this isn’t necessary. The .NET Core framework contains several
types that you can reuse whenever you need delegate types. These are
generic definitions so you can declare customizations
when you need new method declarations.

The first of these types is the @System.Action type, and several variations:

public delegate void Action();
public delegate void Action<in T>(T arg);
public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);
// Other variations removed for brevity.

The in modifier on the generic type argument is covered in the article
on covariance.

There are variations of the Action delegate that contain up to
16 arguments such as @System.Action%6016 .
It’s important that these definitions use different generic arguments for each of the
delegate arguments: That gives you maximum flexibility. The method arguments need not be, but may be, the same type.

Use one of the Action types for any delegate type that has a void return type.

The framework also includes several generic delegate types that you can use for
delegate types that return values:

public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);
// Other variations removed for brevity

The out modifier on the result generic type argument is covered in the
article on covariance.

There are variations of the Func delegate with up to
16 input arguments such as @System.Func%6017 .
The type of the result is always the last type parameter in all the Func
declarations, by convention.

Use one of the Func types for any delegate type that returns a value.

There’s also a specialized
@System.Predicate%601
type for a delegate that returns a test on a single value:

public delegate bool Predicate<in T>(T obj);

You may notice that for any Predicate type, a structurally equivalent Func
type exists For example:

Func<string, bool> TestForString;
Predicate<string> AnotherTestForString;

You might think these two types are equivalent. They are not.
These two variables cannot be used interchangeably. A variable of one type cannot
be assigned the other type. The C# type system uses the names of the defined types,
not the structure.

All these delegate type definitions in the .NET Core Library should mean that
you do not need to define a new delegate type for any new feature you create
that requires delegates. These generic definitions should provide all the
delegate types you need under most situations. You can simply instantiate
one of these types with the required type parameters. In the case of algorithms
that can be made generic, these delegates can be used as generic types.

This should save time, and minimize the number of new types that you need
to create in order to work with delegates.

In the next article, you’ll see several common patterns for working
with delegates in practice.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/features.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Features at a glance
description: Features at a glance
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: ebc727cd-8112-42e7-b59c-3c2873ad661c

🔧 Features at a glance

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/486] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/reflection.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Reflection & code generation
description: Reflection & code generation
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 53339c51-0fbc-4827-9de2-39c805bfc06b

🔧 Reflection & code generation

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/493] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/async.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Asynchronous programming
description: Asynchronous programming
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b878c34c-a78f-419e-a594-a2b44fa521a4

Asynchronous programming

If you have any I/O-bound needs (such as requesting data from a network or accessing a database), you’ll want to utilize asynchronous programming. You could also have CPU-bound code, such as performing an expensive calculation, which is also a good scenario for writing async code.

C# has a language-level asynchronous programming model which allows for easily writing asynchronous code without having to juggle callbacks or conform to a library which supports asynchrony. It follows what is known as the Task-based Asynchronous Pattern (TAP) [https://msdn.microsoft.com/en-us/library/hh873175%28v=vs.110%29.aspx].

Basic Overview of the Asynchronous Model

The core of async programming are the Task and Task<T> objects, which model asynchronous operations. They are supported by the async and await keywords. The model is fairly simple in most cases:

For I/O-bound code, you await an operation which returns a Task or Task<T> inside of an async method.

For CPU-bound code, you await an operation which is started on a background thread with the Task.Run method.

The await keyword is where the magic happens, because it yields control to the caller of the method which performed the await. It is what ultimately allows a UI to be responsive, or a service to be elastic.

There are other ways to approach async code than async and await outlined in the TAP article linked above, but this document will focus on the language-level constructs from this point forward.

I/O-Bound Example: Downloading data from a web service

You may need to download some data from a web service when a button is pressed, but don’t want to block the UI thread. It can be accomplished simply like this:

private readonly HttpClient _httpClient = new HttpClient();

downloadButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI as the request
 // from the web service is happening.
 //
 // The UI thread is now free to perform other work.
 var stringData = await _httpClient.GetStringAsync(URL);
 DoSomethingWithData(stringData);
};

And that’s it! The code expresses the intent (downloading some data asynchronously) without getting bogged down in interacting with Task objects.

CPU-bound Example: Performing a Calculation for a Game

Say you’re writing a mobile game where pressing a button can inflict damage on many enemies on the screen. Performing the damage calcuation can be expensive, and doing it on the UI thread would make the game appear to pause as the calculation is performed!

The best way to handle this is to start a background thread which does the work using Task.Run, and await its result. This will allow the UI to feel smooth as the work is being done.

private DamageResult CalculateDamageDone()
{
 // Code omitted:
 //
 // Does an expensive calculation and returns
 // the result of that calculation.
}

calculateButton.Clicked += async (o, e) =>
{
 // This line will yield control to the UI CalculateDamageDone()
 // performs its work. The UI thread is free to perform other work.
 var damageResult = await Task.Run(() => CalculateDamageDone());
 DisplayDamage(damageResult);
};

And that’s it! This code cleanly expresses the intent of the button’s click event, it doesn’t require managing a background thread manually, and it does so in a non-blocking way.

What happens under the covers

There’s a lot of moving pieces where asynchronous operations are concerned. If you’re curious about what’s happening underneath the covers of Task and Task<T>, checkout the Async in-depth article for more information.

On the C# side of things, the compiler transforms your code into a state machine which keeps track of things like yielding execution when an await is reached and resuming execution when a background job has finished.

For the theoretically-inclined, this is an implementation of the Promise Model of asynchrony [https://en.wikipedia.org/wiki/Futures_and_promises].

Key Pieces to Understand

		Async code can be used for both I/O-bound and CPU-bound code, but differently for each scenario.

		Async code uses Task<T> and Task, which are constructs used to model work being done in the background.

		The async keyword turns a method into an async method, which allows you to use the await keyword in its body.

		When the await keyword is applied, it suspends the calling method and yields control back to its caller until the awaited task is complete.

		await can only be used inside an async method.

Recognize CPU-Bound and I/O-Bound Work

The first two examples of this guide showed how you can use async and await for I/O-bound and CPU-bound work. It’s key that you can identify when a job you need to do is I/O-bound or CPU-bound, because it can greatly affect the performance of your code and could potentially lead to misusing certain constructs.

Here are two questions you should ask before you write any code:

		Will you code be “waiting” for something, such as data from a database?

If your answer is “yes”, then your work is I/O-bound.

		Will your code be performing a very expensive computation?

If you answered “yes”, then your work is CPU-bound.

If the work you have is I/O-bound, use async and await without Task.Run. You should not use the Task Parallel Library. The reason for this is outlined in the Async in Depth article.

If the work you have is CPU-bound and you care about responsiveness, use async and await but spawn the work off on another thread with Task.Run. If the work is appropriate for concurrency and parallelism, you should also consider using the Task Parallel Library.

Additionally, you should always measure the execution of your code. For example, you may find yourself in a situation where your CPU-bound work is not costly enough compared with the overhead of context switches when multithreading. Every choice has its tradeoff, and you should pick the correct tradeoff for your situation.

More Examples

The following examples demonstrate various ways you can write async code in C#. They cover a few different scenarios you may come across.

Extracting Data from a Network

This snippet downloads the HTML from www.dotnetfoundation.org and counts the number of times the string ”.NET” occurs in the HTML. It uses ASP.NET MVC to define a web controller method which performs this task, returning the number.

Note: you shouldn’t ever use Regexes if you plan on doing actual HTML parsing. Please using a parsing library if this is your aim in production code.

private readonly HttpClient _httpClient = new HttpClient();

[HttpGet]
[Route("DotNetCount")]
public async Task<int> GetDotNetCountAsync()
{
 // Suspends GetDotNetCountAsync() to allow the caller (the web server)
 // to accept another request, rather than blocking on this one.
 var html = await _httpClient.DownloadStringAsync("http://dotnetfoundation.org");

 return Regex.Matches(html, ".NET").Count;
}

Here’s the same scenario written for a Universal Windows App, which performs the same task when a Button is pressed:

private readonly HttpClient _httpClient = new HttpClient();

private async void SeeTheDotNets_Click(object sender, RoutedEventArgs e)
{
 // Capture the task handle here so we can await the background task later.
 var getDotNetFoundationHtmlTask = _httpClient.GetStringAsync("http://www.dotnetfoundation.org");

 // Any other work on the UI thread can be done here, such as enabling a Progress Bar.
 // This is important to do here, before the "await" call, so that the user
 // sees the progress bar before execution of this method is yielded.
 NetworkProgressBar.IsEnabled = true;
 NetworkProgressBar.Visibility = Visibility.Visible;

 // The await operator suspends SeeTheDotNets_Click, returning control to its caller.
 // This is what allows the app to be responsive and not hang on the UI thread.
 var html = await getDotNetFoundationHtmlTask;
 int count = Regex.Matches(html, ".NET").Count;

 DotNetCountLabel.Text = $"Number of .NETs on dotnetfoundation.org: {count}";

 NetworkProgressBar.IsEnabled = false;
 NetworkProgressBar.Visbility = Visibility.Collapsed;
}

Waiting for Multiple Tasks to Complete

You may find yourself in a situation where you need to retrieve multiple pieces of data concurrently. The Task API contains two methods, Task.WhenAll and Task.WhenAny which allow you to write asynchronous code which performs a non-blocking wait on mulitple background jobs.

This example shows how you might grab User data for a set of userIds.

public async Task<User> GetUser(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static Task<IEnumerable<User>> GetUsers(IEnumerable<int> userIds)
{
 var getUserTasks = new List<Task<User>>();

 foreach (int userId in userIds)
 {
 getUserTasks.Add(GetUser(id));
 }

 return await Task.WhenAll(getUserTasks);
}

Here’s another way to write this a bit more succinctly, using LINQ:

public async Task<User> GetUser(int userId)
{
 // Code omitted:
 //
 // Given a user Id {userId}, retrieves a User object corresponding
 // to the entry in the database with {userId} as its Id.
}

public static async Task<User[]> GetUsers(IEnumerable<int> userIds)
{
 var getUserTasks = userIds.Select(id => GetUser(id));
 return await Task.WhenAll(getUserTasks);
}

Although it’s less code, take care when mixing LINQ with asynchronous code. Because LINQ uses deferred (lazy) execution, async calls won’t happen immediately as they do in a foreach() loop unless you force the generated sequence to iterate with a call to .ToList() or .ToArray().

Important Info and Advice

Although async programming is relatively straightforward, there are some details to keep in mind which can prevent unexpected behavior.

		async methods need to have an await keyword in their body or they will never yield!

This is important to keep in mind. If await is not used in the body of an async method, the C# compiler will generate a warning, but the code will compile and run as if it were a normal method. Note that this would also be incredibly inefficient, as the state machine generated by the C# compiler for the async method would not be accomplishing anything.

		You should add “Async” as the suffix of every async method name you write.

This is the convention used in .NET to more-easily differentiate synchronous and asynchronous methods. Note that certain methods which aren’t explicitly called by your code (such as event handlers or web controller methods) don’t necessarily apply. Because these are not explicitly called by your code, being explicit about their naming isn’t as important.

		async void should only be used for event handlers.

async void is the only way to allow asynchronous event handlers to work because events do not have return types (thus cannot make use of Task and Task<T>). Any other use of async void does not follow the TAP model and can be challenging to use, such as:

		Exceptions thrown in an async void method can’t be caught outside of that method.

		async void methods are very difficult to test.

		async void methods can cause bad side effects if the caller isn’t expecting them to be async.

		Tread carefully when using async lambdas in LINQ expressions

Lambda expressions in LINQ use deferred execution, meaning code could end up executing at a time when you’re not expecting it to. The introduction of blocking tasks into this can easily result in a deadlock if not written correctly. Additionally, the nesting of asynchronous code like this can also make it more difficult to reason about the execution of the code. Async and LINQ are powerful, but should be used together as carefully and clearly as possible.

		Write code that awaits Tasks in a non-blocking manner

Blocking the current thread as a means to wait for a Task to complete can result in deadlocks and blocked context threads, and can require significantly more complex error-handling. The following table provides guidance on how to deal with waiting for Tasks in a non-blocking way:

Use this...	Instead of this...	When wishing to do this
—	—	—
await	Task.Wait or Task.Result	Retrieving the result of a background task
await Task.WhenAny	Task.WaitAny	Waiting for any task to complete
await Task.WhenAll	Task.WaitAll	Waiting for all tasks to complete
await Task.Delay	Thread.Sleep	Waiting for a period of time

		Write less stateful code

Don’t depend on the state of global objects or the execution of certain methods. Instead, depend only on the return values of methods. Why?

		Code will be easier to reason about.

		Code will be easier to test.

		Mixing async and synchronous code is far simpler.

		Race conditions can typically be avoided altogether.

		Depending on return values makes coordinating async code simple.

		(Bonus) it works really well with dependency injection.

A recommended goal is to achieve complete or near-complete Referential Transparency [https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29] in your code. Doing so will result in an extremely predictable, testable, and maintainable codebase.

Other Resources

		Async in-depth provides more information about how Tasks work.

		Lucian Wischik’s Six Essential Tips for Async [https://channel9.msdn.com/Series/Three-Essential-Tips-for-Async] are a wonderful resource for async programming

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/type-system.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: C# Type system
description: C# Type system
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 08589912-2fa0-4636-9aa6-d8b2b83cdf88

🔧 C# Type system

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/487] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Expression Trees
description: Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: aceb4719-0d5a-4b19-b01f-b51063bcc54f

Expression Trees

If you have used LINQ, you have experience with a rich library
where the Func types are part of the API set. (If you are not familiar
with LINQ, you probably want to read the LINQ tutorial and
the tutorial on lambda expressions before this one.)
Expression Trees provide richer interaction with the arguments that
are functions.

You write function arguments, typically using Lambda Expressions, when
you create LINQ queries. In a typical LINQ query, those function arguments are
transformed into a delegate the compiler creates.

When you want to have a richer interaction, you need to use Expression Trees.
Expression Trees represent code as a structure that you can examine,
modify, or execute. These tools give you the power to manipulate code during
run time. You can write code that examines running algorithms, or injects new
capabilities. In more advanced scenarios, you can modify running algorithms,
and even translate C# expressions into another form for execution in another
environment.

You’ve likely already written code that uses Expression Trees. Entity Framework’s
LINQ APIs accept Expression Trees as the arguments for the LINQ Query Expression Pattern.
That enables Entity Framework [http://docs.efproject.net/en/latest/] to translate the query you wrote in C# into SQL
that executes in the database engine. Another example is Moq [https://github.com/Moq/moq],
which is a popular mocking framework for .NET.

The remaining sections of this tutorial will explore what Expression Trees are,
examine the framework classes that support expression trees, and show you how to work
with expression trees. You’ll learn how to read expression trees, how to create
expression trees, how to create modified expression trees, and how to execute the
code represented by expression trees. After reading, you will be ready to use these
structures to create rich adaptive algorithms.

1. [Expression Trees Explained](expression-trees-explained.md)Understand the structure and concepts behind *Expression Trees*.

		Framework Types Supporting Expression Trees

Learn about the structures and classes that define and manipulate expression trees.

		Executing Expressions

Learn how to convert an expression tree represented as a Lambda Expression into a delegate and execute the resulting delegate.

		Interpreting Expressions

Learn how to traverse and examine expression trees to understand what code the expression tree represents.

		Building Expressions

Learn how to construct the nodes for an expression tree and build expression trees.

		Translating Expressions

Learn how to build a modified copy of an expression tree, or translate an expression tree into a different format.

		Summing up

Review the information on expression trees.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/delegate-class.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: System.Delegate and the delegate keyword
description: System.Delegate and the delegate keyword
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f3742fda-13c2-4283-8966-9e21c2674393

System.Delegate and the delegate keyword

Previous

This article will cover the classes in the .NET framework
that support delegates, and how those map to the delegate
keyword.

Defining Delegate Types

Let’s start with the ‘delegate’ keyword, because that’s primarily what
you will use as you work with delegates. The code that the
compiler generates when you use the delegate keyword will
map to method calls that invoke members of the @System.Delegate
and @System.MulticastDelegate classes.

You define a delegate type using syntax that is similar to defining
a method signature. You just add the delegate keyword to the
definition.

Let’s continue to use the List.Sort() method as our example. The first
step is to create a type for the comparison delegate:

// From the .NET Core library

// Define the delegate type:
public delegate int Comparison<in T>(T left, T right);

The compiler generates a class, derived from System.Delegate
that matches the signature used (in this case, a method that
returns an integer, and has two arguments). The type
of that delegate is Comparison. The Comparison delegate
type is a generic type. For details on generics see here.

Notice that the syntax may appear as though it is declaring
a variable, but it is actually declaring a type. You can
define delegate types inside classes, directly inside namespaces,
or even in the global namespace.

[!NOTE]
Declaring delegate types (or other types) directly in
the global namespace is not recommended.

The compiler also generates add and remove handlers for this new
type so that clients of this class can add and remove methods from an instance’s
invocation list. The compiler will enforce that the signature
of the method being added or removed matches the signature
used when declaring the method.

Declaring instances of delegates

After defining the delegate, you can create an instance of that type.
Like all variables in C#, you cannot declare delegate instances directly
in a namespace, or in the global namespace.

// inside a class definition:

// Declare an instance of that type:
public Comparison<T> comparator;

The type of the variable is Comparison<T>, the delegate type
defined earlier. The name of the variable is comparator.

That code snippet above declared a member variable inside a class. You can also
declare delegate variables that are local variables, or arguments to methods.

Invoking Delegates

You invoke the methods that are in the invocation list of a delegate by calling
that delegate. Inside the Sort() method, the code will call the
comparison method to determine which order to place objects:

int result = comparator(left, right);

In the line above, the code invokes the method attached to the delegate.
You treat the variable as a method name, and invoke it using normal
method call syntax.

That line of code makes an unsafe assumption: There’s no guarantee that
a target has been added to the delegate. If no targets have been attached,
the line above would cause a NullReferenceException to be thrown. The
idioms used to address this problem are more complicated than a simple
null-check, and are covered later in this series.

Assigning, Adding and removing Invocation Targets

That’s how a delegate type is defined, and how delegate instances
are declared and invoked.

Developers that want to use the List.Sort() method need to define
a method whose signature matches the delegate type definition, and
assign it to the delegate used by the sort method. This assignment
adds the method to the invocation list of that delegate object.

Suppose you wanted to sort a list of strings by their length. Your
comparison function might be the following:

private static int CompareLength(string left, string right)
{
 return left.Length.CompareTo(right.Length);
}

The method is declared as a private method. That’s fine. You may not
want this method to be part of your public interface. It can still
be used as the comparison method when attached to a delegate. The
calling code will have this method attached to the target list of
the delegate object, and can access it through that delegate.

You create that relationship by passing that method to the
List.Sort() method:

phrases.Sort(CompareLength);

Notice that the method name is used, without parentheses. Using the method
as an argument tells the compiler to convert the method reference into a reference
that can be used as a delegate invocation target, and attach that method as
an invocation target.

You could also have been explicit by declaring a variable of type
‘Comparison` and doing an assignment:

Comparison<string> comparer = CompareLength;
phrases.Sort(comparer);

In uses where the method being used as a delegate target is a small method,
it’s common to use Lambda Expression syntax
to perform the assignment:

Comparison<string> comparer = (left, right) => left.Length.CompareTo(right.Length);
phrases.Sort(comparer);

Using Lambda Expressions for delegate targets
is covered more in a later section.

The Sort() example typically attaches a single target method to the
delegate. However, delegate objects do support invocation lists that
have multiple target methods attached to a delegate object.

Delegate and MulticastDelegate classes

The language support desccribed above provides the features
and support you’ll typically need to work with delegates. These
features are built on two classes in the .NET Core
framework: @System.Delegate and @”System.MulticastDelegate”.

The System.Delegate class, and its single direct sub-class,
System.MulticastDelegate, provide the framework support for
creating delegates, registering methods as delegate targets,
and invoking all methods that are registered as a delegate
target.

Interestingly, the System.Delegate and System.MulticastDelegate
classes are not themselves delegate types. They do provide the
basis for all specific delegate types. That same language
design process mandated that you cannot declare a class that derives
from Delegate or MulticastDelegate. The C# language rules prohibit it.

Instead, the C# compiler creates instances of a class derived from MulticastDelegate
when you use the C# language keyword to declare delegate types.

This design has its roots in the first release of C# and .NET. One
goal for the design team was to ensure that the language enforced
type safety when using delegates. That meant ensuring that delegates
were invoked with the right type and number of arguments. And, that
any return type was correctly indicated at compile time. Delegates
were part of the 1.0 .NET release, which was before generics.

The best way to enforce this type safety was for the compiler to
create the concrete delegate classes that represented the
method signature being used.

Even though you cannot create derived classes directly, you will
use the methods defined on these classes. Let’s go through
the most common methods that you will use when you work with delegates.

The first, most important fact to remember is that every delegate you
work with is derived from MulticastDelegate. A multicast delegate means
that more than one method target can be invoked when invoking through
a delegate. The original design considered making a distinction between
delegates where only one target method could be attached and invoked,
and delegates where multiple target methods could be attached and
invoked. That distinction proved to be less useful in practice than
originally thought. The two different classes were already created,
and have been in the framework since its initial public release.

The methods that you will use the most with delegates are Invoke() and
BeginInvoke() / EndInvoke(). Invoke() will invoke all the methods that
have been attached to a particular delegate instance. As you saw above, you
typically invoke delegates using the method call syntax on the delegate
variable. As you’ll see later in this series,
there are patterns that work directly with these methods.

Now that you’ve seen the language syntax and the classes that support
delegates, let’s examine how strongly typed delegates are used, created
and invoked.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-trees-building.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Building Expression Trees
description: Building Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 542754a9-7f40-4293-b299-b9f80241902c

Building Expression Trees

Previous – Interpreting Expressions

All the expression trees you’ve seen so far have been created
by the C# compiler. All you had to do was create a lambda expression
that was assigned to a variable typed as an Expression<Func<T>> or
some similar type. That’s not the only way to create an expression
tree. For many scenarios you may find that you need to build an
expression in memory at runtime.

Building Expression Trees is complicated by the fact that those
expression trees are immutable. Being immutable means that you must
build the tree from the leaves up to the root. The APIs you’ll use to
build expression trees reflect this fact: The methods you’ll use to
build a node take all its children as arguments. Let’s walk through
a few examples to show you the techniques.

Creating Nodes

Let’s start relatively simply again. We’ll use the addition
expression I’ve been working with throughout these sections:

Expression<Func<int>> sum = () => 1 + 2;

To construct that expression tree, you must construct the leaf nodes.
The leaf nodes are constants, so you can use the Expression.Constant
method to create the nodes:

var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));

Next, you’ll build the addition expression:

var addition = Expression.Add(one, two);

Once you’ve got the addition expression, you can create the lambda
expression:

var lamdba = Expression.Lambda(addition);

This is a very simple LambdaExpression, because it contains no arguments.
Later in this section, you’ll see how to map arguments to parameters
and build more complicated expressions.

For expressions that are as simple as this one, you may combine all the
calls into a single statement:

var lambda = Expression.Lambda(
 Expression.Add(
 Expression.Constant(1, typeof(int)),
 Expression.Constant(2, typeof(int))
)
);

Building a Tree

That’s the basics of building an expression tree in memory. More
complex trees generally mean more node types, and more nodes in the
tree. Let’s run through one more example and show two more node types
that you will typically build when you create expression trees:
the argument nodes, and method call nodes.

Let’s build an expression tree to create this expression:

Expression<Func<double, double, double>> distanceCalc =
 (x, y) => Math.Sqrt(x * x + y * y);

You’ll start by creating parameter expressions for x and y:

var xParameter = Expression.Parameter(typeof(double), "x");
var yParameter = Expression.Parameter(typeof(double), "y");

Creating the multiplication and addition expressions follows the pattern
you’ve already seen:

var xSquared = Expression.Multiply(xParameter, xParameter);
var ySquared = Expression.Multiply(yParameter, yParameter);
var sum = Expression.Add(xSquared, ySquared);

Next, you need to create a method call expression for the call to
Math.Sqrt.

var sqrtMethod = typeof(Math).GetMethod("Sqrt", new[] { typeof(double) });
var distance = Expression.Call(sqrtMethod, sum);

And then finally, you put the method call into a lambda expression,
and make sure to define the arguments to the lambda expression:

var distanceLambda = Expression.Lambda(
 distance,
 xParameter,
 yParameter);

In this more complicated example, you see a couple more techniques that
you will often need to create expression trees.

First, you need to create the objects that represent parameters or
local variables before you use them. Once you’ve created those objects,
you can use them in your expression tree wherever you need.

Second, you need to use a subset of the Reflection APIs to create a MethodInfo object
so that you can create an expression tree to access that method. You must limit
yourself to the subset of the Reflection APIs that are available on the .NET Core platform. Again,
these techniques will extend to other expression trees.

Building Code In Depth

You aren’t limited in what you can build using these APIs. However, the more
complicated expression tree that you want to build, the more difficult
the code is to manage and to read.

Let’s build an expression tree that is the equivalent of this code:

Func<int, int> factorialFunc = (n) =>
{
 var res = 1;
 while (n > 1)
 {
 res = res * n;
 n--;
 }
 return res;
};

Notice above that I did not build the expression tree, but simply the delegate. Using
the Expression class, you can’t build statement lambdas. Here’s the code that is required
to build the same functionality. It’s complicated by the fact that there isn’t an API to build
a while loop, instead you need to build a loop that contains a conditional test, and a label
target to break out of the loop.

var nArgument = Expression.Parameter(typeof(int), "n");
var result = Expression.Variable(typeof(int), "result");

// Creating a label that represents the return value
LabelTarget label = Expression.Label(typeof(int));

var initializeResult = Expression.Assign(result, Expression.Constant(1));

// This is the inner block that performs the multiplication,
// and decrements the value of 'n'
var block = Expression.Block(
 Expression.Assign(result,
 Expression.Multiply(result, nArgument)),
 Expression.PostDecrementAssign(nArgument)
);

// Creating a method body.
BlockExpression body = Expression.Block(
 new[] { result },
 initializeResult,
 Expression.Loop(
 Expression.IfThenElse(
 Expression.GreaterThan(nArgument, Expression.Constant(1)),
 block,
 Expression.Break(label, result)
),
 label
)
);

The code to build the expression tree for the factorial function is quite a bit longer,
more complicated, and it’s riddled with labels and break statements and other elements
we’d like to avoid in our everyday coding tasks.

For this section, I’ve also updated the visitor code to visit every node in this expression
tree and write out information about the nodes that are created in this sample. You can see
the code in the samples section [https://github.com/dotnet/core-docs/tree/master/samples/csharp-language/expression-trees].
You can experiment for yourself: build it and run the samples.

Examining the APIs

The expression tree APIs are some of the more difficult to navigate in
.NET Core, but that’s fine. Their purpose is a rather complex undertaking: writing code that generates
code at runtime. They are necessarily complicated to provide a balance between supporting
all the control structures available in the C# language and keeping the surface area
of the APIs as small as reasonable. This balance means that many control structures are
represented not by their C# constructs, but by constructs that represent the underlying
logic that the compiler generates from these higher level constructs.

Also, at this time, there are C# expressions that cannot be built directly
using Expression class methods. In general, these will be the newest operators
and expressions added in C# 5 and C# 6. (For example, async expressions cannot be built, and
the new ?. operator cannot be directly created.)

Next – Translating Expressions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/parallel.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Parallel programming
description: Parallel programming
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8045b1b8-7835-4a7a-980d-bc9c70d62a0c

🔧 Parallel programming

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/491] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/delegates-overview.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Introduction to Delegates
description: Introduction to Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 59b61d77-84e5-457b-8da5-fb5f24ca6ed6

Introduction to Delegates

Previous

Delegates provide a late binding mechanism in .NET. Late Binding
means that you create an algorithm where the caller also supplies
at least one method that implements part of the algorithm.

For example, consider sorting a list of stars in an astronomy application.
You may choose to sort those stars by their distance from the earth, or the
magnitude of the star, or their perceived brightness.

In all those cases, the Sort() method does essentially the same thing:
arranges the items in the list based on some comparison. The code that
compares two stars is different for each of the sort orderings.

These kinds of solutions have been used in software for half a century.
The C# language delegate concept provides first class language support,
and type safety around the concept.

As you’ll see later in this series, the C# code you write for algorithms
like this is type safe, and leverages the language and the compiler to
ensure that the types match for arguments and return types.

Language Design Goals for Delegates

The language designers enumerated several goals for the feature that
eventually became delegates.

The team wanted a common language construct that could be used for
any late binding algorithms. That enables developers to learn one
concept, and use that same concept across many different software
problems.

Second, the team wanted to support both single and multi-cast method
calls. (Multicast delegates are delegates where multiple methods have
been chained together. You’ll see examples
later in this series.

The team wanted delegates to support the same type safety that developers
expect from all C# constructs.

Finally, the team recognized that an event pattern is one specific pattern
where delegates, or any late binding algorithm) is very useful. The team
wanted to ensure that the code for delegates could provide the basis for
the .NET event pattern.

The result of all that work was the delegate and event support in C# and
.NET. The remaining articles in this section will cover the language
features, the library support, and the common idioms that are used
when you work with delegates.

You’ll learn about the delegate keyword and what code it generates. You’ll
learn about the features in the System.Delegate class, and how those features
are used. You’ll learn how to create type safe delegates, and how to create methods
that can be invoked through delegates. You’ll also learn how to work with delegates
and events by using Lambda expressions. You’ll see where delegates become one of the
building blocks for LINQ. You’ll learn how delegates are the basis for the .NET
event pattern, and how they are different.

Overall, you’ll see how delegates are an integral part of programming in .NET
and working with the framework APIs.

Let’s get started.

Next

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-new.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-new
description: dotnet-new
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 263c3d05-3a47-46a6-8023-3ca16b488410

dotnet-new

NAME

dotnet-new – Creates a new .NET Core project

SYNOPSIS

dotnet new [--type] [--lang]

DESCRIPTION

The dotnet new command provides a convenient way to initialize a valid .NET Core project and sample source code to try out the Command Line Interface (CLI) toolset.

This command is invoked in the context of a directory. When invoked, the command will result in two main artifacts being dropped to the directory:

		A Program.cs (or Program.fs) file that contains a sample “Hello World” program.

		A valid project.json file.

After this, the project is ready to be compiled and/or edited further.

Options

-l, --lang [C#|F#]

Language of the project. Defaults to C#. csharp (fsharp) or cs (fs) are also valid options.

-t, --type

Type of the project. Valid values are console, web, lib and xunittest.

EXAMPLES

dotnet new

Drops a C# project in the current directory.

dotnet new --lang f#

Drops an F# project in the current directory.

dotnet new --lang c#

Drops an C# project in the current directory.

dotnet new -t web

Drops a new ASP.NET Core project in the current directory.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tools/dotnet-restore.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: dotnet-restore
description: dotnet-restore
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 60489b25-38de-47e6-bed1-59d9f42e2d46

dotnet-restore

NAME

dotnet-restore - Restores the dependencies and tools of a project

SYNOPSIS

dotnet restore [--source] [--packages] [--disable-parallel] [--fallbacksource] [--configfile] [--verbosity] [<root>]

DESCRIPTION

The dotnet restore command uses NuGet to restore dependencies as well as project-specific tools that are specified in the project.json file.
By default, the restoration of dependencies and tools are done in parallel.

In order to restore the dependencies, NuGet needs the feeds where the packages are located.
Feeds are usually provided via the NuGet.config configuration file; a default one is present when the CLI tools are installed.
You can specify more feeds by creating your own NuGet.config file in the project directory.
Feeds can also be specified per invocation on the command line.

For dependencies, you can specify where the restored packages are placed during the restore operation using the
--packages argument.
If not specified, the default NuGet package cache is used.
It is found in the .nuget/packages directory in the user’s home directory on all operating systems (for example, /home/user1 on Linux or C:\Users\user1 on Windows).

For project-specific tooling, dotnet restore first restores the package in which the tool is packed, and then
proceeds to restore the tool’s dependencies as specified in its project.json.

OPTIONS

[root]

A list of projects or project folders to restore. The list can contain either a path to a project.json file, or a path to global.json file or folder. The restore operation runs recursively for all subdirectories and restores for each given project.json file it finds.

-s, --source [SOURCE]

Specifies a source to use during the restore operation. This overrides all of the sources specified in the NuGet.config file(s). Multiple sources can be provided by specifying this option multiple times.

--packages [DIR]

Specifies the directory to place the restored packages in.

--disable-parallel

Disables restoring multiple projects in parallel.

-f, --fallbacksource [FEED]

Specifies a fallback source that will be used in the restore operation if all other sources fail. All valid feed formats are allowed. Multiple fallback sources can be provided by specifying this option multiple times.

--configfile [FILE]

Configuration file (NuGet.config) to use for the restore operation.

--verbosity [LEVEL]

The verbosity of logging to use. Allowed values: Debug, Verbose, Information, Minimal, Warning, or Error.

EXAMPLES

dotnet restore

Restores dependencies and tools for the project in the current directory.

dotnet restore ~/projects/app1/project.json

Restores dependencies and tools for the app1 project found in the given path.

dotnet restore -f c:\packages\mypackages

Restores the dependencies and tools for the project in the current directory using the file path provided as the fallback source.

dotnet restore -f c:\packages\mypackages -f c:\packages\myotherpackages

Restores the dependencies and tools for the project in the current directory using the two file paths provided as the fallback sources.

dotnet restore --verbosity Error

Restores dependencies and tools for the project in the current directory and shows only errors in the output.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/using-on-macos.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with .NET Core on macOS
description: Getting started with .NET Core on macOS, using Visual Studio Code
keywords: .NET, .NET Core
author: bleroy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8ad82148-dac8-4b31-9128-b0e9610f4d9b

Getting started with .NET Core on macOS, using Visual Studio Code

by Bertrand Le Roy [https://github.com/bleroy], Phillip Carter [https://github.com/cartermp],
Bill Wagner [https://github.com/billwagner]

Contributions by Toni Solarin-Sodara [https://github.com/tsolarin]

This document provides a tour of the steps and workflow to create a .NET
Core Solution using Visual Studio Code [http://code.visualstudio.com].
You’ll learn how to create projects, create unit tests, use the debugging
tools, and incorporate third-party libraries via NuGet [http://nuget.org].

This article uses Visual Studio Code on Mac OS. Where there are differences,
it points out the differences for the Windows platform.

Prerequisites

Before starting, you’ll need to install the .NET Core SDK [https://www.microsoft.com/net/core],
currently in a preview release. The .NET Core SDK includes the latest release
of the .NET Core framework and runtime.

You’ll also need to install Visual Studio Code [http://code.visualstudio.com].
During the course of this article, you’ll also install extensions
that will improve the .NET Core development experience.

You can find the links to all of these at the .NET home page [http://dot.net].

Getting Started

The source for this tutorial is available on
GitHub [https://github.com/dotnet/core-docs/tree/master/samples/getting-started/golden].

Start Visual Studio Code. Press Ctrl + ‘`‘ (the back-quote character) to open
an embedded terminal in VS Code. (Alternatively, you can use a separate
terminal window, if you prefer).

By the time we’re done, you’ll create three projects: a library project,
tests for that library project, and a console application that makes
use of the library. You’ll follow a standard folder structure for
the three projects. Following this standard folder structure
means that the .NET Core SDK tools understand the relationship between
your production code projects and your test code projects. That makes
your development experience more productive.

Let’s start by creating those folders. In the terminal, create a ‘golden’
directory. Under that directory create src and test
directories. Under src create app and library directories. In test
create a test-library directory. You can do this either using the terminal
in VS code, or by clicking on the parent folder in VS Code and selecting the
“New Folder” icon.

In VS Code, open the ‘golden’ directory. This directory is the root of your solution.

Next, create a global.json file in the root directory for your solution.
The contents of global.json are:

{
 "projects": [
 "src",
 "test"
]
}

At this point, your directory tree should look like this:

/golden
|__global.json
|__/src
 |__/app
 |__/library
|__/test
 |__/test-library

Writing the library

Your next task is to create the library. In the terminal window
(either the embedded terminal in VS code, or another terminal),
cd to golden/src/library and type the command dotnet new -t lib.
This creates a library project, with two files: project.json and
Library.cs.

project.json contains the following information:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable"
 },
 "dependencies": {},
 "frameworks": {
 "netstandard1.6": {
 "dependencies": {
 "NETStandard.Library": "1.6.0"
 }
 }
 }
}

This library project will make use of JSON representation of objects, so you’ll want to
add a reference to the Newtonsoft.Json NuGet package. Inproject.json
add the latest pre-release version of the package as a dependency:

"dependencies": {
 "Newtonsoft.Json": "9.0.1-beta1"
},

After you’ve finished adding those dependencies, you need to install those
packages into workspace. Run the dotnet restore command to updates all dependencies,
and write a project.lock.json file in the project directory. This
file contains the full dependency tree of all the dependencies in your
project. You don’t need to read this file, it’s used by tools in the .NET
Core SDK.

Now, let’s update the C# code. Let’s create a Thing class that contains
one public method. This method will return the sum of two numbers,
but will do so by converting that number to a JSON string, and then
deserializing it. Rename the file Library.cs to Thing.cs. Then, replace
the existing code (for the template-generated Class1) with the following:

using static Newtonsoft.Json.JsonConvert;

namespace Library
{
 public class Thing
 {
 public int Get(int left, int right) =>
 DeserializeObject<int>($"{left + right}");
 }
}

This makes use of a number of modern C# features, such as
static usings, expression bodied members, and interpolated strings,
that you can learn
about in the Learn C# section.

Now that you’ve updated the code, you can build the library using
dotnet build.

You now have a built library.dll file under golden/src/library/bin/Debug/netstandard1.6.

Writing the test project

Let’s build a test project for this library that you’ve build. Cd into the test/test-library
directory. Run dotnet new -t xunittest to create a new test project.

You’ll need to add a dependency node for the library you wrote in the steps
above. Open project.json and update the dependencies section to the following
(including the library node, which is the last node below):

"dependencies": {
 "System.Runtime.Serialization.Primitives": "4.1.1",
 "xunit": "2.1.0",
 "dotnet-test-xunit": "1.0.0-rc2-192208-24",
 "library": {
 "target": "project"
 }
}

The library node specifies that this dependency should resolve to a project
in the current workspace. Without explicitly specifying this, it’s possible
that the test project would build against a NuGet package of the same name.

Now that the dependencies have been properly configured, let’s create
the tests for your library. Open Tests.cs and
replace its contents with the following code:

using Library;
using Xunit;

namespace TestApp
{
 public class LibraryTests
 {
 [Fact]
 public void TestThing() {
 Assert.Equal(42, new Thing().Get(19, 23));
 }
 }
}

Now, run dotnet restore, dotnet build and dotnet test.
The xUnit console test runner will run the one test, and report
that it is passing.

Writing the console app

In your terminal, cd to the golden/src/app directory. Run dotnet new
to create a new console application.

Your console application depends on the library you built and tested
in the previous steps. You need to indicate that by editing project.json
to add this dependency. In the dependencies node, add the Library
node below the Microsoft.NetCore.App node as follows:

"dependencies": {
 "library": {
 "target": "project"
 }
}

The project node is important here, as it was in the test library. It
indicates that this is a project in the current solution, and not a
NuGet package.

Run dotnet restore to restore all dependencies. Open program.cs
and replace the contents of the Main method with this line:

WriteLine($"The answer is {new Thing().Get(19, 23)}");

You’ll need to add a couple using directives to the top of the file:

using static System.Console;
using Library;

Then, run dotnet build. That creates the assemblies, and you
can type dotnet run to run the executable.

Debugging your application

You can debug your code in VS Code using the C# extension.
You install this extension by pressing F1 to open the VS Code
palette. Type ext install to see the list of extensions. Select the C#
extension. (More details are available on the Visual Studio
Code C# Extension documentation [https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md]
page.)

After you install the extension, VS Code will ask that you restart the application
to load the new extension. Once the extension is installed, you can open the
debugger tab (see figure).

[image: VS Code Debugger]

When you start the debugger, VS Code will instruct you to configure
the debugger. When you do, it creates a .vscode directory
with two files: tasks.json and launch.json. These two files control the debugger
configuration. In most projects, this directory is not included in source control.
It is included in the sample associated with this walk through so you can see
the edits you need to make.

Your solution contains multiple projects, so you’ll want to modify each of these files
to perform the correct commands. First, open tasks.json. The default build task
runs dotnet build in the workspace source directory. Instead, you want to run it in
the src/app directory. You need to add a options node to set the current
working directory to that:

"options": {
 "cwd": "${workspaceRoot}/src/app"
}

Next, you’ll need to open launch.json and update the program path. You’ll see a
node under “configurations” that describes the program. You’ll see:

"program": "${workspaceRoot}/bin/Debug/<target-framework>/<project-name.dll>",

You’ll change this to:

"program": "${workspaceRoot}/src/app/bin/Debug/netcoreapp1.0/app.dll",

If you are running on Windows, you’ll need to update the Application’s project.json
(in the src/app directory) to
generate portable PDB files (this happens by default on Mac OSX and Linux).
Add the debugType node inside buildOptions. You’ll need to add the debugType node
in project.json for both the src/app and src/library folders.

 "buildOptions": {
 "debugType": "portable"
 },

Set a breakpoint at the WriteLine statement in Main. You do this
by pressing the F9 key, or by clicking the mouse in the left margin
on the line you want the breakpoint.
Open the debugger by pressing the debug
icon on the left of the VS Code screen (see figure). Then,
press the Play button to start the application under the debugger.

You should hit the breakpoint. Step into the Get method and make sure that you
have passed in the correct arguments. Make sure that the answer is actually 42.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/using-on-windows.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with .NET Core on Windows
description: Getting started with .NET Core on Windows, using Visual Studio 2015
keywords: .NET, .NET Core
author: bleroy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d743134a-08a3-4ff6-aab7-49f71f0568c3

Getting started with .NET Core on Windows, using Visual Studio 2015

by Bertrand Le Roy [https://github.com/bleroy] and Phillip Carter [https://github.com/cartermp]

Visual Studio 2015 provides a full-featured development environment for developing .NET Core applications. The procedures in this document describe the steps necessary to build a number of typical .NET Core solutions, or solutions that include .NET Core components, using Visual Studio. The scenarios include testing and using third-party libraries that have not been explicitly built for the most recent version of .NET Core.

Prerequisites

		Visual Studio 2015 Update 3 [https://www.visualstudio.com/news/releasenotes/vs2015-update3-vs]. If you don’t have Visual Studio already, you can download Visual Studio Community 2015 [https://www.visualstudio.com/downloads/download-visual-studio-vs] for free.

		NuGet Manager extension for Visual Studio [https://dist.nuget.org/visualstudio-2015-vsix/v3.5.0-beta/NuGet.Tools.vsix]. NuGet is the package manager for the Microsoft development platform including .NET Core. When you use NuGet to install a package, it copies the library files to your solution and automatically updates your project (add references, change config files, etc.).

		.NET Core Tooling Preview 2 for Visual Studio 2015 [https://go.microsoft.com/fwlink/?LinkId=817245]. This installs templates and other tools for Visual Studio 2015, as well as .NET Core 1.0 itself.

		A supported version of the Windows client or server operating system. For a list of supported versions, see .NET Core Release Notes [https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0.0.md].

Getting Started

The following steps will set up Visual Studio 2015 for .NET Core development:

		Verify that you’re running Visual Studio 2015 Update 3:
		On the Help menu, choose About Microsoft Visual Studio.

		In the About Microsoft Visual Studio dialog, the version number should include “Update 3” (or higher).

		Download and install the .NET Core for Visual Studio official MSI Installer [https://go.microsoft.com/fwlink/?linkid=817245]. This will install the .NET Core Tooling Preview 2 for Visual Studio 2015.

		Download and install NuGet Manager extension for Visual Studio [https://dist.nuget.org/visualstudio-2015-vsix/v3.5.0-beta/NuGet.Tools.vsix]. This will install the latest version of the extension.

		Open Visual Studio, and on the File menu, choose New, Project.

		In the New Project dialog, in the Templates list, expand the Visual C# node and choose .NET Core. You should see three new project templates for Class Library (.NET Core), Console Application (.NET Core), and ASP.NET Core Web Application (.NET Core).

A solution using only .NET Core projects

Writing the library

		In Visual Studio, choose File, New, Project. In the New Project dialog, expand the Visual C# node and choose the .NET Core node, and then choose Class Library (.NET Core).

		Name the project “Library” and the solution “Golden”. Leave Create directory for solution checked. Click OK.

		In Solution Explorer, open the context menu for the References node and choose Manage NuGet Packages.

		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for Newtonsoft.Json. Click Install.

		Open the context menu for the References node and choose Restore packages.

		Rename the Class1.cs file to Thing.cs. Accept the rename of the class. Remove the constructor and add a method: public int Get(int number) => Newtonsoft.Json.JsonConvert.DeserializeObject<int>($"{number}");

		On the Build menu, choose Build Solution.

The solution should build without error.

Writing the test project

		In Solution Explorer, open the context menu for the Solution node and choose Add, New Solution Folder. Name the folder “test”.
This is only a solution folder, not a physical folder.

		Open the context menu for the test folder and choose Add. New Project. In the New Project dialog, choose Console Application (.NET Core). Name it “TestLibrary” and explicitly put it under the Golden\test path.

Important

The project needs to be a console application, not a class library.

		In the TestLibrary project, open the context menu for the References node and choose Add Reference.

		In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK.

		In the TestLibrary project, open the project.json file, and replace "Library": "1.0.0-*" with "Library": {"target": "project", "version": "1.0.0-*"}.

This is to avoid the resolution of the Library project to a NuGet package with the same name. Explicitly setting the target to “project” ensures that the tooling will first search for a project with that name, and not a package.

		In the TestLibrary project, open the context menu for the References node and choose Restore Packages.

		Open the context menu for the References node and choose Manage NuGet Packages.

		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for xUnit version 2.2.0 or newer, and then click Install.

		Browse for dotnet-test-xunit version 2.2.0 or newer, and then click Install.

		Edit project.json and replace "imports": "dnxcore50" with "imports": ["dnxcore50", "portable-net45+win8"].

This enables the xunit libraries to be correctly restored and used by the project: those libraries have been compiled to be used with portable profiles that include “portable-net45+win8”, but not .NET Core, which didn’t exist when they were built. The import relaxes the tooling version checks at build time. You may now restore packages without error.

		Edit project.json to add "testRunner": "xunit", after the "frameworks" section.

		Add a LibraryTests.cs class file to the TestLibrary project, add the using directives using Xunit; and using Library; to the top of the file, and add the following code to the class:

[Fact]
public void ThingGetsObjectValFromNumber() {
 Assert.Equal(42, new Thing().Get(42));
}

		Optionally, delete the Program.cs file from the TestLibrary project, and remove "buildOptions": {"emitEntryPoint": true}, from project.json.

You should now be able to build the solution.

		On the Test menu, choose Windows, Test Explorer, and in Test Explorer choose Run All.

The test should pass.

Writing the console app

		In Solution Explorer, open the context menu for the src folder, and add a new Console Application (.NET Core) project. Name it “App”, and set the location to Golden\src.

		In the App project, open the context menu for the References node and choose Add, Reference.

		In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK

		In the App project, open the project.json file, and replace "Library": "1.0.0-*" with "Library": {"target": "project"}.

		Open the context menu for the References node and choose Restore Packages.

		Open the context menu for the App node and choose Set as StartUp Project.

		Open the Program.cs file, add a using Library; directive to the top of the file, and then add Console.WriteLine($"The answer is {new Thing().Get(42)}"); to the Main method.

		Set a breakpoint after the line that you just added.

		Press F5 to run the application..

The application should build without error, and should hit the breakpoint. You should also be able to check that the application output “The answer is 42.”.

A mixed .NET Core library and .NET Framework application

Starting from the solution obtained with the previous script, execute the following steps:

		In Solution Explorer, open the project.json file for the Library project and replace "frameworks": { "netstandard1.6" } with "frameworks": { "netstandard1.4" }.

		In the Library project, open the context menu for the References node and choose Restore Packages.

The solution should still build and function exactly like it did before: the test should pass, and the console application should run and be debuggable.

		In the Library project, open the context menu and choose Build.

		In Solution Explorer, open the context menu for the src folder, and choose Add. , New Project.

		In the New Project dialog, choose the Visual C# node, and then choose Console Application.

Important

Make sure you choose a standard console application, not the .NET Core version. In this section, you’ll be consuming the library from a .NET Framework application

		Name the project “FxApp”, and set the location to Golden\src.

		In the FxApp project, open the context menu for the References node and choose Add Reference.

		In the Reference Manager dialog, choose Browse and browse to the location of the built Library.dll (under the ..Golden\src\Library\bin\Debug\netstandard1.4 path), and then click Add.

You could also package the library and reference the package, as another way to reference .NET Core code from the .NET Framework.

		Open the context menu for the References node and choose Manage NuGet Packages.

		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for Newtonsoft.Json. Click Install.

		In the FxApp project, open the Program.cs file and add a using Library; directive to the top of the file, and add Console.WriteLine($"The answer is {new Thing().Get(42)}."); to the Main method of the program.

		Set a breakpoint after the line that you just added.

		Make FxApp the startup application for the solution.

		Press F5 to run the app.

The application should build and hit the breakpoint. The application output should be “The answer is 42.”.

Moving a library from netstandard 1.4 to 1.3

		In Solution Explorer, open the project.json file in the Library project.

		Replace frameworks": { "netstandard1.4" } with frameworks": { "netstandard1.3" }.

		In the Library project, open the context menu for the References node and choose Restore Packages.

		On the Build menu, choose Build Library.

		Remove the Library reference from the FxApp then add it back using the ..Golden\src\Library\bin\Debug\netstandard1.3 path. This will now reference the 1.3 version.

		Press F5 to run the application.

Everything should still work as it did before. Check that the application output is “The answer is 42.”, that the breakpoint was hit, and that variables can be inspected.

A mixed PCL library and .NET Framework application

Close the previous solution if it was open: you will be starting a new script from this section on.

Writing the library

		In Visual Studio, choose File, New, Project. In the New Project dialog, expand the Visual C# node, and choose Class Library (Portable for iOS, Android and Windows).

		Name the project “PCLLibrary” and the solution “GoldenPCL”. Leave Create directory for solution checked. Click OK.

		In Solution Explorer, open the context menu for the References node and choose Manage NuGet Packages.

		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for Newtonsoft.Json. Click Install.

		Rename the class “Thing” and add a method: public int Get(int number) => Newtonsoft.Json.JsonConvert.DeserializeObject<int>($"{number}");

		On the Build menu, choose Build Solution, and verify that the solution builds.

Writing the console app

		In Solution Explorer, open the context menu for the Solution ‘GoldenPCL’ node and choose Add. New Project. In the New Project dialog, expand the Visual C# node, choose Console Application, and name the project “App”.

		In the App project, open the context menu for the References node and choose Add, Reference.

		In the Reference Manager dialog, choose Browse and browse to the location of the built PCLLibrary.dll (under the ..\GoldenPCL\PCLLibrary\bin\Debug path), and then click Add.

		In the App project, open the Program.cs file and add a using PCLLibrary; directive to the top of the file, and add Console.WriteLine($"The answer is {new Thing().Get(42)}."); to the Main method of the program.

		Set a breakpoint after the line that you just added..

		In Solution Explorer, open the context menu for the App node and choose Set as StartUp Project.

		Press F5 to run the app.

The application should build, run, and hit the breakpoint after it outputs “The answer is 42.”.

Moving a PCL to a NetStandard library

The PCL library that we built in the previous procedure is based on a csproj project file. In order to move it to NetStandard, the simplest solution is to manually move its code into a new empty .NET Core Class Library project.

If you have older PCL libraries with a xproj file and a project.json file, you should be able to edit the project.json file instead, to reference "NETStandard.Library": "1.6.0", and target “netstandard1.3”.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/aspnet-core.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with ASP.NET Core
description: Getting started with ASP.NET Corekeywords: .NET, .NET Core
author: tdykstra
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4172512e-b93d-4169-abdb-bd0b0b2d657e

Getting started with ASP.NET Core

For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation [https://docs.asp.net].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/managing-package-dependency-versions.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: How to Manage Package Dependency Versions for .NET Core 1.0
description: How to Manage Package Dependency Versions for .NET Core 1.0
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4424a947-bdf9-4775-8d48-dc350a4e0aee

How to Manage Package Dependency Versions for .NET Core 1.0

This article covers what you need to know about package versions for your .NET Core libraries and apps.

Glossary

Fix - Fixing dependencies means you are using the same “family” of packages released on NuGet for .NET Core 1.0.

Metapackage - A NuGet package that represents a set of NuGet packages.

Trimming - The act of removing the packages you do not depend on from a metapackage. This is something relevant for NuGet package authors. See Reducing Package Dependencies with project.json for more information.

Fix your dependencies to .NET Core 1.0

To reliably restore packages and write reliable code, it’s important that you fix your dependencies to the versions of packages shipping alongside .NET Core 1.0. This means every package should have a single version with no additional qualifiers.

Examples of packages fixed to 1.0

"System.Collections":"4.0.11"

"NETStandard.Library":"1.6.0"

"Microsoft.NETCore.App":"1.0.0"

Examples of packages that are NOT fixed to 1.0

"Microsoft.NETCore.App":"1.0.0-rc4-00454-00"

"System.Net.Http":"4.1.0-*"

"System.Text.RegularExpressions":"4.0.10-rc3-24021-00"

Why does this matter?

We guarantee that if you fixed your dependencies to what ships alongside .NET Core 1.0, those packages will all work together. There is no such guarantee if you use packages which aren’t fixed in this way.

Scenarios

Although there is a big list of all packages and their versions released with .NET Core 1.0, you may not have to look through it if your code falls under certain scenarios.

Are you depending only on NETStandard.Library?

If so, you should fixed your NETStandard.Library package to version 1.6. Because this is a curated metapackage, its package closure is also fixed to 1.0.

Are you depending only on Microsoft.NETCore.App?

If so, you should fixed your Microsoft.NETCore.App package to version 1.0.0. Because this is a curated metapackage, its package closure is also fixed to 1.0.

Are you trimming your NETStandard.Library or Microsoft.NETCore.App metapackage dependencies?

If so, you should ensure that the metapackage you start with is fixed to 1.0. The individual packages you depend on after trimming are also fixed to 1.0.

Are you depending on packages outside the NETStandard.Library or Microsoft.NETCore.App metapackages?

If so, you need to fixed your other dependencies to 1.0. See the correct package versions and build numbers at the end of this article.

A note on using a splat string (*) when versioning

You may have adopted a versioning pattern which uses a splat (*) string like this:
"System.Collections":"4.0.11-*".

You should not do this. Using the splat string could result in restoring packages from different builds, some of which may be further along than .NET Core 1.0. This could then result in some packages being incompatible.

Packages and Version Numbers organized by Metapackage

List of all .NET Standard library packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/corefx/release/1.0.0/Latest_Packages.txt].

List of all runtime packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/coreclr/release/1.0.0/LKG_Packages.txt].

List of all .NET Core application packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/core-setup/release/1.0.0/Latest_Packages.txt].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/project.png
Car.csproj
packages.config
- Wheel.cs

src Car

Car.Tests. csproj
packages.config

-WheelTest.cs
tests Car.Tests

core/tutorials/target-dotnetcore-with-msbuild.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Using MSBuild to build .NET Core projects
description: Using MSBuild to build .NET Core projects
keywords: .NET, .NET Core
author: dsplaisted
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 13c66464-4f14-4db6-aa8b-06f25e7ba894

Using MSBuild to build .NET Core projects

The .NET Core tooling is going to move from project.json to MSBuild based projects [https://blogs.msdn.microsoft.com/dotnet/2016/05/23/changes-to-project-json/].
We expect the first version of the .NET Core tools that use MSBuild to ship along with the next version of Visual Studio. However, it is possible to use MSBuild for .NET Core
projects today, and this page shows how.

We recommend that most people targeting .NET Core with new projects today use the default tooling experience with project.json because of the following
reasons:

		MSBuild doesn’t yet support a lot of the benefits of project.json

		A lot of the ASP.NET based tooling doesn’t currently work with MSBuild projects

		When we do release the .NET Core tooling that uses MSBuild, it will be able to automatically convert from project.json to MSBuild projects

You may want to use MSBuild to target .NET Core for existing projects that already use MSBuild that you want to port to .NET Core, or if you are using
MSBuild’s extensibility in your build for scenarios that are not well supported for project.json projects.

Prerequisites

		Visual Studio 2015 Update 3 RC [https://www.visualstudio.com/downloads/visual-studio-prerelease-downloads#sec1] or higher

		.NET Core tools for Visual Studio [https://www.visualstudio.com/downloads/download-visual-studio-vs]

		NuGet Visual Studio extension v3.5.0-beta [https://dist.nuget.org/visualstudio-2015-vsix/v3.5.0-beta/NuGet.Tools.vsix] or later

Creating a library targeting .NET Core

		In the Visual Studio menu bar, choose File | New | Project and select Class Library (Portable)

[image: New Project]

		Choose a name and location for your project and click OK

		The “Add Portable Class Library” dialog will appear. Select .NET Framework 4.6 and ASP.NET Core 1.0 as targets and click OK

[image: Portable targets dialog]

		In Solution Explorer, right click on your project and choose Properties

		In the Library tab of the project properties, click on the Target .NET Platform Standard link, and click Yes in the dialog that is shown

		Open the project.json file in your project, and make the following changes:

		Change the version number of the NETStandard.Library package to 1.6.0 (this is the .NET Core 1.0 version of the package)

		Add the below imports definition inside the netstandard1.6 framework definition. This will allow your project to reference .NET Core compatible
NuGet packages that haven’t been updated to target .NET Standard

"netstandard1.6": {
 "imports": ["dnxcore50", "portable-net452"]
}

Creating a .NET Core console application

Building a console application for .NET Core requires some customization of the MSBuild build process. You can find a sample project for a .NET Core console
application called CoreApp [https://github.com/dotnet/corefxlab/tree/master/samples/NetCoreSample/CoreApp] in the
corefxlab [https://github.com/dotnet/corefxlab] repo. Another good option is to start with coretemplate [https://github.com/mellinoe/coretemplate],
which uses separate MSBuild targets files to target .NET Core instead of putting the changes directly in the project file.

It is also possible to start by creating a project in Visual Studio and modifying it to target .NET Core. The instructions below show the minimal steps
to get this working. In contrast to CoreApp [https://github.com/dotnet/corefxlab/tree/master/samples/NetCoreSample/CoreApp] or
coretemplate [https://github.com/mellinoe/coretemplate], a project created this way won’t include configurations for targeting Linux and macOS.

		In the Visual Studio menu bar, choose File | New | Project and select Console Application

		Choose a name and location for your project and click OK

		In Solution Explorer, right click on your project, choose Properties, and then go to the Build tab

		In the Configuration dropdown (at the top of the properties page), select All Configurations, and then change the Platform Target to x64

		Delete the app.config file from the project

		Add a project.json file to the project with the following contents:

{
 "dependencies": {
 "Microsoft.NETCore.App": "1.0.0-rc2-3002702"
 },
 "runtimes": {
 "win7-x64": { },
 "ubuntu.14.04-x64": { },
 "osx.10.10-x64": { }
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": ["dnxcore50", "portable-net452"]
 }
 }
}

		In Solution Explorer, right click on the project, choose Unload Project, then right click again and choose
Edit MyProj.csproj, and make the following changes

		Remove all the default Reference items (to System, System.Core, etc.)

		Add the following properties to the first PropertyGroup in the project:

<TargetFrameworkIdentifier>.NETCoreApp</TargetFrameworkIdentifier>
<TargetFrameworkVersion>v1.0</TargetFrameworkVersion>
<BaseNuGetRuntimeIdentifier>win7</BaseNuGetRuntimeIdentifier>
<NoStdLib>true</NoStdLib>
<NoWarn>$(NoWarn);1701</NoWarn>

		Add the following at the end of the file (after the import of Microsoft.CSharp.Targets):

<PropertyGroup>
 <!-- We don't use any of MSBuild's resolution logic for resolving the framework, so just set these two
 properties to any folder that exists to skip the GetReferenceAssemblyPaths task (not target) and
 to prevent it from outputting a warning (MSB3644).
 -->
 <_TargetFrameworkDirectories>$(MSBuildThisFileDirectory)</_TargetFrameworkDirectories>
 <_FullFrameworkReferenceAssemblyPaths>$(MSBuildThisFileDirectory)</_FullFrameworkReferenceAssemblyPaths>

 <!-- MSBuild thinks all EXEs need binding redirects, not so for CoreCLR! -->
 <AutoUnifyAssemblyReferences>true</AutoUnifyAssemblyReferences>
 <AutoGenerateBindingRedirects>false</AutoGenerateBindingRedirects>

 <!-- Set up debug options to run with host, and to use the CoreCLR debug engine -->
 <StartAction>Program</StartAction>
 <StartProgram>$(TargetDir)dotnet.exe</StartProgram>
 <StartArguments>$(TargetPath)</StartArguments>
 <DebugEngines>{2E36F1D4-B23C-435D-AB41-18E608940038}</DebugEngines>
</PropertyGroup>

		Close the .csproj file, and reload the project in Visual Studio

		You should be able to run your program with F5 in Visual Studio, or from the command line in the output folder with dotnet MyApp.exe

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/cli-console-app-tutorial-advanced.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: “Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide”
description: “Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide”
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: dab9e2f9-9088-4089-b990-fbc3d8dcd611

🔧 Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can
track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/180] at GitHub.

If you would like to review early drafts and outlines of this
topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/up.png

csharp/concepts.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: C# Concepts
description: C# Concepts
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/24/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 809148dd-b231-4f2c-bb81-f5bfc426378d

🔧 C# Concepts

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/608] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/properties.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Properties
description: Properties
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6950d25a-bba1-4744-b7c7-a3cc90438c55

Properties

Properties are first class citizens in C#. The language
defines syntax that enables developers to write code
that accurately expresses their design intent.

Properties behave like fields when they are accessed.
However, unlike fields, properties are implemented
with accessors that define the statements executed
when a property is accessed or assigned.

Property Syntax

The syntax for properties is a natural extension to
fields. A field defines a storage location:

public class Person
{
 public string FirstName;
 // remaining implementation removed from listing
}

A property definition contains declarations for a get and
set accessor that retrieves and assigns the value of that
property:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }
 // remaining implementation removed from listing
}

The syntax shown above is the auto property syntax. The compiler
generates the storage location for the field that backs up the
property. The compiler also implements the body of the get and set accessors.
You can also define the storage yourself, as shown below:

public class Person
{
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }
 private string firstName;
 // remaining implementation removed from listing
}

The property definition shown above is a read-write property. Notice
the keyword value in the set accessor. The set accessor always has
a single parameter named value. The get accessor must return a value
that is convertible to the type of the property (string in this example).

That’s the basics of the syntax. There are many different variations that support
a variety of different design idioms. Let’s explore those, and learn the syntax
options for each.

Scenarios

The examples above showed one of the simplest cases of property definition:
a read-write property with no validation. By writing the code you want in the
get and set accessors, you can create many different scenarios.

Validation

You can write code in the set accessor to ensure that the values represented
by a property are always valid. For example, suppose one rule for the Person
class is that the name cannot be blank, or whitespace. You would write that as
follows:

public class Person
{
 public string FirstName
 {
 get { return firstName; }
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 firstName = value;
 }
 }
 private string firstName;
 // remaining implementation removed from listing
}

The example above enforces the rule that the first name must not be blank,
or whitespace. If a developer writes

hero.FirstName = "";

That assignment throws an ArgumentException. Because a property set accessor
must have a void return type, you report errors in the set accessor by throwing an exception.

That is a simple case of validation. You can extend this same syntax to anything needed
in your scenario. You can check the relationships between different properties, or validate
against any external conditions. Any valid C# statements are valid in a property accessor.

Read-only

Up to this point, all the property definitions you have seen are read/write properties
with public accessors. That’s not the only valid accessibility for properties.
You can create read-only properties, or give different accessibility to the set and get
accessors. Suppose that your Person class should only enable changing the value of the
FirstName property from other methods in that class. You could give the set accessor
private accessibility instead of public:

public class Person
{
 public string FirstName
 {
 get;
 private set;
 }
 // remaining implementation removed from listing
}

Now, the FirstName property can be accessed from any code, but it can only be assigned
from other code in the Person class.
You can add any restrictive access modifier to either the set or get accessors. Any access modifier
you place on the individual accessor must be more limited than the access modifier on the property
definition. The above is legal because the FirstName property is public, but the set accessor is
private. You could not declare a private property with a public accessor. Property declarations
can also be declared protected, internal, protected internal or even private.

It is also legal to place the more restrictive modifier on the get accessor. For example, you could
have a public property, but restrict the get accessor to private. That scenario is rarely done
in practice.

Computed Properties

A property does not need to simply return the value of a member field. You can create properties
that return a computed value. Let’s expand the Person object to return the full name, computed
by concatenating the first and last names:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 public string FullName
 {
 get
 {
 return $"{FirstName} {LastName}";
 }
 }
}

The example above uses the String Interpolation syntax to create
the formatted string for the full name.

You can also use Expression Bodied Members, which provides a more
succinct way to create the computed FullName property:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 public string FullName => $"{FirstName} {LastName}";
}

Expression Bodied Members use the lambda expression syntax to
define a method that contain a single expression. Here, that
expression returns the full name for the person object.

Lazy Evaluated Properties

You can mix the concept of a computed property with storage and create
a lazy evaluated property. For example, you could update the FullName
property so that the string formatting only happened the first time it
was accessed:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

The above code contains a bug though. If code updates the value of
either the FirstName or LastName property, the previously evaluated
fullName field is invalid. You need to update the set accessors of the
FirstName and LastName property so that the fullName field is calculated
again:

public class Person
{
 private string firstName;
 public string FirstName
 {
 get { return firstName; }
 set
 {
 firstName = value;
 fullName = null;
 }
 }

 private string lastName;
 public string LastName
 {
 get { return lastName; }
 set
 {
 lastName = value;
 fullName = null;
 }
 }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

This final version evaluates the FullName property only when needed.
If the previously calculated version is valid, it’s used. If another
state change invalidates the previously calculated version, it will be
recalculated. Developers that use this class do not need to know the
details of the implementation. None of these internal changes affect the
use of the Person object. That’s the key reason for using Properties to
expose data members of an object.

INotifyPropertyChanged

A final scenario where you need to write code in a property accessor is to
support the INotifyPropertyChanged interface used to notify data binding
clients that a value has changed. When the value of a property changes, the object
raises the PropertyChanged event
to indicate the change. The data binding libraries, in turn, update display elements
based on that change. The code below shows how you would implement INotifyPropertyChanged
for the FirstName property of this person class.

public class Person : INotifyPropertyChanged
{
 public string FirstName
 {
 get { return firstName; }
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 if (value != firstName)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(FirstName)));
 }
 firstName = value;
 }
 }
 private string firstName;

 public event PropertyChangedEventHandler PropertyChanged;
 // remaining implementation removed from listing
}

The ?. operator is called
the null conditional operator. It checks for a null reference before evaluating
the right side of the operator. The end result is that if there are no subscribers
to the PropertyChanged event, the code to raise the event doesn’t execute. It would
throw a NullReferenceException without this check in that case. See the page on
events for more details. This example also uses the new
nameof operator to convert from the property name symbol to its text representation.
Using nameof can reduce errors where you have mistyped the name of the property.

Again, this is an example of a case where you can write code in your accessors to
support the scenarios you need.

Summing up

Properties are a form of smart fields in a class or object. From
outside the object, they appear like fields in the object. However,
properties can be implemented using the full palette of C# functionality.
You can provide validation, different accessibility, lazy evaluation,
or any requirements your scenarios need.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/syntax.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Syntax
description: Syntax
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 901184ac-1370-40b0-ad57-1f674890befe

🔧 Syntax

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/485] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-classes.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Framework Types Supporting Expression Trees
description: Framework Types Supporting Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e9c85021-0d36-48af-91b7-aaaa66f22654

Framework Types Supporting Expression Trees

Previous – Expression Trees Explained

There is a large list of classes in the .NET Core framework that work with Expression Trees.
You can see the full
list here [https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions].
Rather than run through the full list, let’s understand how the framework classes have been designed.

In language design, an expression is a body of code that evaluates and returns a value. Expressions
may be very simple: the constant expression 1 returns the constant value of 1. They may be more
complicated: The expression (-B + Math.Sqrt(B*B + 4 * A * C)) / (2 * A) returns one root for a
quadratic equation (in the case where the equation has a solution).

It all starts with System.Linq.Expression

One of the complexities of working with expression trees is that many different
kinds of expressions are valid in many places in programs. Consider an assignment
expression. The right hand side of an assignment could be a constant value, a variable,
a method call expression, or others. That language flexibility means that you may encounter
many different expression types anywhere in the nodes of a tree when you traverse an
expression tree. Therefore, when you can work with the base expression type, that’s
the simplest way to work. However, sometimes you need to know more.
The base Expression class contains a NodeType property for this purpose.
It returns an ExpressionType which is an enumeration of possible expression types.
Once you know the type of the node, you can cast it to that type, and perform
specific actions knowing the type of the expression node. You can search for certain
node types, and then work with the specific properties of that kind of expression.

For example, this code will print the name of a variable for a variable access
expression. I’ve followed the practice of checking the node type, then
casting to a variable access expression and then checking the properties of
the specific expression type:

Expression<Func<int, int>> addFive = (num) => num + 5;

if (addFive.NodeType == ExpressionType.Lambda)
{
 var lambdaExp = (LambdaExpression)addFive;

 var parameter = lambdaExp.Parameters.First();

 Console.WriteLine(parameter.Name);
 Console.WriteLine(parameter.Type);
}

Creating Expression Trees

The System.Linq.Expression class also contains many static methods to create expressions. These
methods create an expression node using the arguments supplied for its children. In this way,
you build an expression up from its leaf nodes. For example, this code builds an Add expression:

// Addition is an add expression for "1 + 2"
var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);

You can see from this simple example that many types are involved in creating and working
with expression trees. That complexity is necessary to provide the capabilities of
the rich vocabulary provided by the C# language.

Navigating the APIs

There are Expression node types that map to almost all of the syntax elements of the
C# language. Each type has specific methods for that type of language element. It’s a lot
to keep in your head at one time. Rather than try to memorize everything, here are the techniques
I use to work with Expression trees:

		Look at the members of the ExpressionType enum to determine possible nodes you should be
examining. This really helps when you want to traverse and understand an expression tree.

		Look at the static members of the Expression class to build an expression. Those methods
can build any expression type from a set of its child nodes.

		Look at the ExpressionVisitor class to build a modified expression tree.

You’ll find more as you look at each of those three areas. Invariably, you will find what you need when
you start with one of those three steps.

Next – Executing Expression Trees

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

core/tutorials/libraries-with-vs.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Developing .NET Core libraries using Visual Studio
description: Developing .NET Core libraries using Visual Studio
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 01b988ed-583f-48c8-a016-caeee282e0a6

🔧 Developing .NET Core libraries using Visual Studio

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach.

Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/index.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: .NET Core Tutorials
description: .NET Core Tutorials
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/24/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f6f654b1-1d2c-4105-8376-7c1959e23803

.NET Core Tutorials

The following tutorials are available for learning about .NET Core.

		Getting started with .NET Core on Windows

		Getting started with .NET Core on macOS

		Getting started with .NET Core on Windows/Linux/macOS using the command line

		Developing Libraries with Cross Platform Tools

		How to Manage Package Dependency Versions for .NET Core 1.0

		Using MSBuild to build .NET Core projects

For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation [https://docs.asp.net].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

core/tutorials/using-with-xplat-cli.html

 Navigation

 		
 index

 		DotnetCore latest documentation »

title: Getting started with .NET Core on Windows/Linux/macOS using the command line
description: Getting started with .NET Core on Windows, Linux, or macOS using the .NET Core command line interface (CLI)
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: be988f09-7349-43b0-97fb-3a703d4587ce

Getting started with .NET Core on Windows/Linux/macOS using the command line

This guide will show you how to use the .NET Core CLI tooling to build cross-platform console apps. It will start with the most basic console app and eventually span multiple projects, including testing. You’ll add these features step-by-step, building on what you’ve already seen and built.

If you’re unfamiliar with the .NET Core CLI toolset, read the .NET Core SDK overview.

Prerequisites

Before you begin, ensure you have the latest .NET Core CLI tooling [https://www.microsoft.com/net/core]. You’ll also need a text editor.

Hello, Console App!

First, navigate to or create a new folder with a name you like. “Hello” is the name chosen for the sample code, which can be found here [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/Hello].

Open up a command prompt and type the following:

$ dotnet new
$ dotnet restore
$ dotnet run

Let’s do a quick walkthrough:

		$ dotnet new

dotnet new creates an up-to-date project.json file with NuGet dependencies necessary to build a console app. It also creates a Program.cs, a basic file containing the entry point for the application.

project.json:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 }
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
 }
}

Program.cs:

using System;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 Console.WriteLine("Hello World!");
 }
 }
}

		$ dotnet restore

dotnet restore calls into NuGet to restore the tree of dependencies. NuGet analyzes the project.json file, downloads the dependencies stated in the file (or grabs them from a cache on your machine), and writes the project.lock.json file. The project.lock.json file is necessary to be able to compile and run.

The project.lock.json file is a persisted and complete set of the graph of NuGet dependencies and other information describing an app. This file is read by other tools, such as dotnet build and dotnet run, enabling them to process the source code with a correct set of NuGet dependencies and binding resolutions.

		$ dotnet run

dotnet run calls dotnet build to ensure that the build targets have been built, and then calls dotnet <assembly.dll> to run the target application.

$ dotnet run
Hello, World!

You can also execute dotnet build to compile and the code without running the build console applications.

Building a self-contained application

Let’s try compiling a self-contained application instead of a portable application. You can read more about the types of portability in .NET Core to learn about the different application types, and how they are deployed.

You need to make some changes to your project.json
file to direct the tools to build a self-contained application. You can see these in the
HelloNative [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/HelloNative]
project in the samples directory.

The first change is to remove the "type": "platform" element from all dependencies.
This project’s only dependency so far is "Microsoft.NETCore.App". The dependencies section should look like this:

"dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0"
 }
},

Next, you need to add a runtimes node to specify all the target execution environments. For example, the following
runtimes node instructs the build system to create executables for the 64 bit version of Windows 10 and the 64 bit version of Mac OS X version 10.11.
The build system will generate native executables for the current environment. If you are following these steps on a Windows machine,
you’ll build a Windows executable. If you are following these steps on a Mac, you’ll build the OS X executable.

"runtimes": {
 "win10-x64": {},
 "osx.10.11-x64": {}
}

See the full list of supported runtimes in the RID catalog.

After making those two changes you execute dotnet restore, followed by dotnet build to create the native executable. Then, you can run the generated
native executable.

The following example shows the commands for Windows. The example shows where the native executable gets generated and assumes that the project directory is named HelloNative.

$ dotnet restore
$ dotnet build
$.\bin\Debug\netcoreapp1.0\win10-x64\HelloNative.exe
Hello World!

You may notice that the native application takes slightly longer to build, but executes slightly faster. This behavior
becomes more noticeable as the application grows.

The build process generates several more files when your project.json creates a native build. These files
are created in bin\Debug\netcoreapp1.0\<platform> where <platform> is the RID chosen. In addition to the
project’s HelloNative.dll there is a HelloNative.exe that loads the runtime and starts the application.
Note that the name of the generated application changed because the project directory’s name has changed.

You may want to package this application to execute it on a machine that does not include the .NET runtime.
You do that using the dotnet publish command. The dotnet publish command creates a new subdirectory
under the ./bin/Debug/netcoreapp1.0/<platform> directory called publish. It copies the executable,
all dependent DLLs and the framework to this sub directory. You can package that directory to another machine
(or a container) and execute the application there.

Let’s contrast that with the behavior of dotnet publish in the first Hello World sample. That application
is a portable application, which is the default type of application for .NET Core. A portable application
requires that .NET Core is installed on the target machine. Portable applications can be built on one machine
and executed anywhere. Native applications must be built separately for each target machine. dotnet publish
creates a directory that has the application’s DLL, and any dependent dlls that are not part of the platform
installation.

Augmenting the program

Let’s change the file just a little bit. Fibonacci numbers are fun, so let’s try that out (using
the native version):

Program.cs:

using static System.Console;

namespace ConsoleApplication
{
 public class Program
 {
 public static int FibonacciNumber(int n)
 {
 int a = 0;
 int b = 1;
 int tmp;

 for (int i = 0; i < n; i++)
 {
 tmp = a;
 a = b;
 b += tmp;
 }

 return a;
 }

 public static void Main(string[] args)
 {
 WriteLine("Hello World!");
 WriteLine("Fibonacci Numbers 1-15:");

 for (int i = 0; i < 15; i++)
 {
 WriteLine($"{i+1}: {FibonacciNumber(i)}");
 }
 }
 }
}

And running the program (assuming you’re on Windows, and have changed the project directory name to Fibonacci):

$ dotnet build
$.\bin\Debug\netcoreapp1.0\win10-x64\Fibonacci.exe
1: 0
2: 1
3: 1
4: 2
5: 3
6: 5
7: 8
8: 13
9: 21
10: 34
11: 55
12: 89
13: 144
14: 233
15: 377

And that’s it! You can augment Program.cs any way you like.

Adding some new files

Single files are fine for simple one-off programs, but chances are you’re going to want to break things out into multiple files if you’re building anything which has multiple components. Multiple files are a way to do that.

Create a new file and give it a unique namespace:

using System;

namespace NumberFun
{
 // code can go here
}

Next, include it in your Program.cs file:

using static System.Console;
using NumberFun;

And finally, you can build it:

$ dotnet build

Now the fun part: making the new file do something!

Example: A Fibonacci Sequence Generator

Let’s say you want to build off of the previous Fibonacci example [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/Fibonacci] by caching some Fibonacci values and add some recursive flair. Your code for a better Fibonacci example [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/FibonacciBetter] might look something like this:

using System;
using System.Collections.Generic;

namespace NumberFun
{
 public class FibonacciGenerator
 {
 private Dictionary<int, int> _cache = new Dictionary<int, int>();

 private int Fib(int n) => n < 2 ? n : FibValue(n - 1) + FibValue(n - 2);

 private int FibValue(int n)
 {
 if (!_cache.ContainsKey(n))
 {
 _cache.Add(n, Fib(n));
 }

 return _cache[n];
 }

 public IEnumerable<int> Generate(int n)
 {
 for (int i = 0; i < n; i++)
 {
 yield return FibValue(i);
 }
 }
 }
}

Note that the use of Dictionary<int, int> and IEnumerable<int> means incorporating the System.Collections namespace.
The Microsoft.NetCore.App package is a metapackage that contains many of the core
assemblies from the .NET Framework. By including this metapackage, you’ve already included
the System.Collections.dll assembly as part of your project. You can verify this by
running dotnet publish and examining the files that are part of the installed
package. You’ll see System.Collections.dll in the list.

{
 "version": "1.0.0-*",
 "buildOptions": {
 "debugType": "portable",
 "emitEntryPoint": true
 },
 "dependencies": {},
 "frameworks": {
 "netcoreapp1.0": {
 "dependencies": {
 "Microsoft.NETCore.App": {
 "version": "1.0.0"
 }
 },
 "imports": "dnxcore50"
 }
 },
 "runtimes": {
 "win10-x64": {},
 "osx.10.11-x64": {}
 }
}

Now adjust the Main() method in your Program.cs file as shown below. The example assumes that Program.cs has a using System; statement. If you have a using static System.Console; statement, remove Console. from Console.WriteLine.

public static void Main(string[] args)
{
 var generator = new FibonacciGenerator();
 foreach (var digit in generator.Generate(15))
 {
 WriteLine(digit);
 }
}

Finally, run it!

$ dotnet run
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377

And that’s it!

Using folders to organize code

Say you wanted to introduce some new types to do work on. You can do this by adding more files and making sure to give them namespaces you can include in your Program.cs file.

/MyProject
|__Program.cs
|__AccountInformation.cs
|__MonthlyReportRecords.cs
|__project.json

This works great when the size of your project is relatively small. However, if you have a larger app with many different data types and potentially multiple layers, you may wish to organize things logically. This is where folders come into play. You can either follow along with the NewTypes sample project [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/NewTypes] that this guide covers, or create your own files and folders.

To begin, create a new folder under the root of your project. /Model is chosen here.

/NewTypes
|__/Model
|__Program.cs
|__project.json

Now add some new types to the folder:

/NewTypes
|__/Model
 |__AccountInformation.cs
 |__MonthlyReportRecords.cs
|__Program.cs
|__project.json

Now, just as if they were files in the same directory, give them all the same namespace so you can include them in your Program.cs.

Example: Pet Types

This example creates two new types, Dog and Cat, and has them implement an interface, IPet.

Folder Structure:

/NewTypes
|__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
|__Program.cs
|__project.json

IPet.cs:

using System;

namespace Pets
{
 public interface IPet
 {
 string TalkToOwner();
 }
}

Dog.cs:

using System;

namespace Pets
{
 public class Dog : IPet
 {
 public string TalkToOwner() => "Woof!";
 }
}

Cat.cs:

using System;

namespace Pets
{
 public class Cat : IPet
 {
 public string TalkToOwner() => "Meow!";
 }
}

Program.cs:

using System;
using Pets;
using System.Collections.Generic;

namespace ConsoleApplication
{
 public class Program
 {
 public static void Main(string[] args)
 {
 List<IPet> pets = new List<IPet>
 {
 new Dog(),
 new Cat()
 };

 foreach (var pet in pets)
 {
 Console.WriteLine(pet.TalkToOwner());
 }
 }
 }
}

project.json:

{
 "version": "1.0.0-*",
 "buildOptions": {
 "emitEntryPoint": true
 },
 "dependencies": {
 "Microsoft.NETCore.App": {
 "type": "platform",
 "version": "1.0.0"
 }
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": "dnxcore50"
 }
 }
}

And if you run this:

$ dotnet restore
$ dotnet run
Woof!
Meow!

New pet types can be added (such as a Bird), extending this project.

Testing your Console App

You’ll probably be wanting to test your projects at some point. Here’s a good way to do it:

		Move any source of your existing project into a new src folder.

/Project
|__/src

		Create a /test directory.

/Project
|__/src
|__/test

		Create a new global.json file:

/Project
|__/src
|__/test
|__global.json

global.json:

{
 "projects": [
 "src", "test"
]
}

This file tells the build system that this is a multi-project system, which allows it to look for dependencies in more than just the current folder it happens to be executing in. This is important because it allows you to place a dependency on the code under test in your test project.

Example: Extending the NewTypes project

Now that the project system is in place, you can create your test project and start writing tests! From here on out, this guide will use and extend the sample Types project [https://github.com/dotnet/core-docs/tree/master/samples/core-projects/console-apps/NewTypes]. Additionally, it will use the Xunit [https://xunit.github.io/] test framework. Feel free to follow along or create your own multi-project system with tests.

The whole project structure should look like this:

/NewTypes
|__/src
 |__/NewTypes
 |__/Pets
 |__Dog.cs
 |__Cat.cs
 |__IPet.cs
 |__Program.cs
 |__project.json
|__/test
 |__NewTypesTests
 |__PetTests.cs
 |__project.json
|__global.json

There are two new things to make sure you have in your test project:

		A correct project.json with the following:
		A reference to xunit

		A reference to dotnet-test-xunit

		A reference to the namespace corresponding to the code under test

		An Xunit test class.

NewTypesTests/project.json:

{
 "version": "1.0.0-*",
 "testRunner": "xunit",

 "dependencies": {
 "Microsoft.NETCore.App": {
 "type":"platform",
 "version": "1.0.0"
 },
 "xunit":"2.2.0-beta2-build3300",
 "dotnet-test-xunit": "2.2.0-preview2-build1029",
 "NewTypes": "1.0.0"
 },
 "frameworks": {
 "netcoreapp1.0": {
 "imports": [
 "dnxcore50",
 "portable-net45+win8"
]
 }
 }
}

PetTests.cs:

using System;
using Xunit;
using Pets;
public class PetTests
{
 [Fact]
 public void DogTalkToOwnerTest()
 {
 string expected = "Woof!";
 string actual = new Dog().TalkToOwner();

 Assert.Equal(expected, actual);
 }

 [Fact]
 public void CatTalkToOwnerTest()
 {
 string expected = "Meow!";
 string actual = new Cat().TalkToOwner();

 Assert.Equal(expected, actual);
 }
}

Now you can run tests! The dotnet test command runs the test runner you have specified in your project. Make sure you start at the top-level directory.

$ dotnet restore
$ cd test/NewTypesTests
$ dotnet test

Output should look like this:

xUnit.net .NET CLI test runner (64-bit win10-x64)
 Discovering: NewTypesTests
 Discovered: NewTypesTests
 Starting: NewTypesTests
 Finished: NewTypesTests
=== TEST EXECUTION SUMMARY ===
 NewTypesTests Total: 2, Errors: 0, Failed: 0, Skipped: 0, Time: 0.144s
SUMMARY: Total: 1 targets, Passed: 1, Failed: 0.

Conclusion

Hopefully this guide has helped you learn how to create a .NET Core console app, from the basics all the way up to a multi-project system with unit tests. The next step is to create awesome console apps of your own!

If a more advanced example of a console app interests you, check out the next tutorial: Using the CLI tools to write console apps: An advanced step-by-step guide.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

