

 Navigation

 	
 index

 	DotnetCore stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/dotnet/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/dotnet/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	DotnetCore stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 fsharp/language-reference/generics/constraints.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Constraints (F#)
description: Constraints (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 2f232a3a-9486-48fb-9759-f23404ed4b52

Constraints

This topic describes constraints that you can apply to generic type parameters to specify the requirements for a type argument in a generic type or function.

Syntax

type-parameter-list when constraint1 [and constraint2]

Remarks

There are several different constraints you can apply to limit the types that can be used in a generic type. The following table lists and describes these constraints.

|Constraint|Syntax|Description|
|———-|——|———–|
|Type Constraint|type-parameter :

>

 type|The provided type must be equal to or derived from the type specified, or, if the type is an interface, the provided type must implement the interface.|
|Null Constraint|type-parameter : null|The provided type must support the null literal. This includes all .NET object types but not F# list, tuple, function, class, record, or union types.|
|Explicit Member Constraint|[(]type-parameter [or ... or type-parameter)] : (member-signature)|At least one of the type arguments provided must have a member that has the specified signature; not intended for common use.|
|Constructor Constraint|type-parameter : (new : unit ->

 ‘a)|The provided type must have a default constructor.|
|Value Type Constraint|: struct|The provided type must be a .NET value type.|
|Reference Type Constraint|: not struct|The provided type must be a .NET reference type.|
|Enumeration Type Constraint|: enum<

underlying-type>

|The provided type must be an enumerated type that has the specified underlying type; not intended for common use.|
|Delegate Constraint|: delegate<

tuple-parameter-type, return-type>

|The provided type must be a delegate type that has the specified arguments and return value; not intended for common use.|
Comparison Constraint	: comparison	The provided type must support comparison.
Equality Constraint	: equality	The provided type must support equality.
Unmanaged Constraint	: unmanaged	The provided type must be an unmanaged type. Unmanaged types are either certain primitive types (sbyte, byte, char, nativeint, unativeint, float32, float, int16, uint16, int32, uint32, int64, uint64, or decimal), enumeration types, nativeptr<_>, or a non-generic structure whose fields are all unmanaged types.
You have to add a constraint when your code has to use a feature that is available on the constraint type but not on types in general. For example, if you use the type constraint to specify a class type, you can use any one of the methods of that class in the generic function or type.

Specifying constraints is sometimes required when writing type parameters explicitly, because without a constraint, the compiler has no way of verifying that the features that you are using will be available on any type that might be supplied at run time for the type parameter.

The most common constraints you use in F# code are type constraints that specify base classes or interfaces. The other constraints are either used by the F# library to implement certain functionality, such as the explicit member constraint, which is used to implement operator overloading for arithmetic operators, or are provided mainly because F# supports the complete set of constraints that is supported by the common language runtime.

During the type inference process, some constraints are inferred automatically by the compiler. For example, if you use the + operator in a function, the compiler infers an explicit member constraint on variable types that are used in the expression.

The following code illustrates some constraint declarations.

// Base Type Constraint
type Class1<'T when 'T :> System.Exception> =
class end

// Interface Type Constraint
type Class2<'T when 'T :> System.IComparable> =
class end

// Null constraint
type Class3<'T when 'T : null> =
class end

// Member constraint with static member
type Class4<'T when 'T : (static member staticMethod1 : unit -> 'T) > =
class end

// Member constraint with instance member
type Class5<'T when 'T : (member Method1 : 'T -> int)> =
class end

// Member constraint with property
type Class6<'T when 'T : (member Property1 : int)> =
class end

// Constructor constraint
type Class7<'T when 'T : (new : unit -> 'T)>() =
member val Field = new 'T()

// Reference type constraint
type Class8<'T when 'T : not struct> =
class end

// Enumeration constraint with underlying value specified
type Class9<'T when 'T : enum<uint32>> =
class end

// 'T must implement IComparable, or be an array type with comparable
// elements, or be System.IntPtr or System.UIntPtr. Also, 'T must not have
// the NoComparison attribute.
type Class10<'T when 'T : comparison> =
class end

// 'T must support equality. This is true for any type that does not
// have the NoEquality attribute.
type Class11<'T when 'T : equality> =
class end

type Class12<'T when 'T : delegate<obj * System.EventArgs, unit>> =
class end

type Class13<'T when 'T : unmanaged> =
class end

// Member constraints with two type parameters
// Most often used with static type parameters in inline functions
let inline add(value1 : ^T when ^T : (static member (+) : ^T * ^T -> ^T), value2: ^T) =
value1 + value2

// ^T and ^U must support operator +
let inline heterogenousAdd(value1 : ^T when (^T or ^U) : (static member (+) : ^T * ^U -> ^T), value2 : ^U) =
value1 + value2

// If there are multiple constraints, use the and keyword to separate them.
type Class14<'T,'U when 'T : equality and 'U : equality> =
class end

See Also

Generics

Constraints

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/language-reference/generics/index.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Generics (F#)
description: Generics (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: a9f2e2ee-bcb1-4ce3-8531-850aa183040f

Generics

F# function values, methods, properties, and aggregate types such as classes, records, and discriminated unions can be generic. Generic constructs contain at least one type parameter, which is usually supplied by the user of the generic construct. Generic functions and types enable you to write code that works with a variety of types without repeating the code for each type. Making your code generic can be simple in F#, because often your code is implicitly inferred to be generic by the compiler’s type inference and automatic generalization mechanisms.

Syntax

// Explicitly generic function.
let function-name<type-parameters> parameter-list =
function-body

// Explicitly generic method.
[static] member object-identifer.method-name<type-parameters> parameter-list [return-type] =
method-body

// Explicitly generic class, record, interface, structure,
// or discriminated union.
type type-name<type-parameters> type-definition

Remarks

The declaration of an explicitly generic function or type is much like that of a non-generic function or type, except for the specification (and use) of the type parameters, in angle brackets after the function or type name.

Declarations are often implicitly generic. If you do not fully specify the type of every parameter that is used to compose a function or type, the compiler attempts to infer the type of each parameter, value, and variable from the code you write. For more information, see Type Inference. If the code for your type or function does not otherwise constrain the types of parameters, the function or type is implicitly generic. This process is named automatic generalization. There are some limits on automatic generalization. For example, if the F# compiler is unable to infer the types for a generic construct, the compiler reports an error that refers to a restriction called the value restriction. In that case, you may have to add some type annotations. For more information about automatic generalization and the value restriction, and how to change your code to address the problem, see Automatic Generalization.

In the previous syntax, type-parameters is a comma-separated list of parameters that represent unknown types, each of which starts with a single quotation mark, optionally with a constraint clause that further limits what types may be used for that type parameter. For the syntax for constraint clauses of various kinds and other information about constraints, see Constraints.

The type-definition in the syntax is the same as the type definition for a non-generic type. It includes the constructor parameters for a class type, an optional as clause, the equal symbol, the record fields, the inherit clause, the choices for a discriminated union, let and do bindings, member definitions, and anything else permitted in a non-generic type definition.

The other syntax elements are the same as those for non-generic functions and types. For example, object-identifier is an identifier that represents the containing object itself.

Properties, fields, and constructors cannot be more generic than the enclosing type. Also, values in a module cannot be generic.

Implicitly Generic Constructs

When the F# compiler infers the types in your code, it automatically treats any function that can be generic as generic. If you specify a type explicitly, such as a parameter type, you prevent automatic generalization.

In the following code example, makeList is generic, even though neither it nor its parameters are explicitly declared as generic.

[!code-fsharpMain]

The signature of the function is inferred to be 'a -> 'a -> 'a list. Note that a and b in this example are inferred to have the same type. This is because they are included in a list together, and all elements of a list must be of the same type.

You can also make a function generic by using the single quotation mark syntax in a type annotation to indicate that a parameter type is a generic type parameter. In the following code, function1 is generic because its parameters are declared in this manner, as type parameters.

[!code-fsharpMain]

Explicitly Generic Constructs

You can also make a function generic by explicitly declaring its type parameters in angle brackets (<type-parameter>). The following code illustrates this.

[!code-fsharpMain]

Using Generic Constructs

When you use generic functions or methods, you might not have to specify the type arguments. The compiler uses type inference to infer the appropriate type arguments. If there is still an ambiguity, you can supply type arguments in angle brackets, separating multiple type arguments with commas.

The following code shows the use of the functions that are defined in the previous sections.

[!code-fsharpMain]

[!NOTE]
There are two ways to refer to a generic type by name. For example, list<int> and int list are two ways to refer to a generic type list that has a single type argument int. The latter form is conventionally used only with built-in F# types such as list and option. If there are multiple type arguments, you normally use the syntax Dictionary<int, string> but you can also use the syntax (int, string) Dictionary.

Wildcards as Type Arguments

To specify that a type argument should be inferred by the compiler, you can use the underscore, or wildcard symbol (_), instead of a named type argument. This is shown in the following code.

[!code-fsharpMain]

Constraints in Generic Types and Functions

In a generic type or function definition, you can use only those constructs that are known to be available on the generic type parameter. This is required to enable the verification of function and method calls at compile time. If you declare your type parameters explicitly, you can apply an explicit constraint to a generic type parameter to notify the compiler that certain methods and functions are available. However, if you allow the F# compiler to infer your generic parameter types, it will determine the appropriate constraints for you. For more information, see Constraints.

Statically Resolved Type Parameters

There are two kinds of type parameters that can be used in F# programs. The first are generic type parameters of the kind described in the previous sections. This first kind of type parameter is equivalent to the generic type parameters that are used in languages such as Visual Basic and C#. Another kind of type parameter is specific to F# and is referred to as a statically resolved type parameter. For information about these constructs, see Statically Resolved Type Parameters.

Examples

[!code-fsharpMain]

See Also

Language Reference

Types

Statically Resolved Type Parameters

Generics in the .NET Framework [https://msdn.microsoft.com/library/ms172192.aspx]

Automatic Generalization

Constraints

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/language-reference/symbol-and-operator-reference/nullable-operators.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Nullable Operators (F#)
description: Nullable Operators (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3108c4ac-9e13-464d-a829-084a6eba038f

Nullable Operators

Nullable operators are binary arithmetic or comparison operators that work with nullable arithmetic types on one or both sides. Nullable types arise frequently when you work with data from sources such as databases that allow nulls in place of actual values. Nullable operators are used frequently in query expressions. In addition to nullable operators for arithmetic and comparison, conversion operators can be used to convert between nullable types. There are also nullable versions of certain query operators.

Table of Nullable Operators

The following table lists nullable operators supported in the F# language.

Nullable on left
?>= [https://msdn.microsoft.com/library/94d29e32-a204-4f60-a527-6b0af86268f3]
?> [https://msdn.microsoft.com/library/62dc0021-1312-4ac3-be87-798b60b81bb6]
?<= [https://msdn.microsoft.com/library/56fddf0a-e4ca-4891-a3be-fad1876be3b6]
?< [https://msdn.microsoft.com/library/b71897f0-6e29-4c58-b0a7-a5bfa6f88917]
?= [https://msdn.microsoft.com/library/5cdc8ff6-244b-49cf-9376-69ecf249fd7c]
?<> [https://msdn.microsoft.com/library/3643a5a8-2ea5-4ad6-82c4-83927c3884a0]
?+ [https://msdn.microsoft.com/library/2e8ddd05-b3f3-41b3-9d73-938d9e540f3f]
?- [https://msdn.microsoft.com/library/f237a7a6-89f2-48b2-a2fe-f0b98a2bedc2]
?* [https://msdn.microsoft.com/library/519da708-5ad6-4075-9d74-d00441cd6078]
?/ [https://msdn.microsoft.com/library/add02a42-f556-40a7-a168-fbf2053322e3]
?% [https://msdn.microsoft.com/library/44297bba-1bd9-4ed2-a848-f1e1e598db87]

Remarks

The nullable operators are included in the NullableOperators [https://msdn.microsoft.com/library/2c3633c5-3f31-4d62-a9f8-272ad6b19007] module in the namespace Microsoft.FSharp.Linq [https://msdn.microsoft.com/library/4765b4e8-4006-4d8c-a405-39c218b3c82d]. The type for nullable data is System.Nullable<'T>.

In query expressions, nullable types arise when selecting data from a data source that allows nulls instead of values. In a SQL Server database, each data column in a table has an attribute that indicates whether nulls are allowed. If nulls are allowed, the data returned from the database can contain nulls that cannot be represented by a primitive data type such as int, float, and so on. Therefore, the data is returned as a System.Nullable<int> instead of int, and System.Nullable<float> instead of float. The actual value can be obtained from a System.Nullable<'T> object by using the Value property, and you can determine if a System.Nullable<'T> object has a value by calling the HasValue method. Another useful method is the System.Nullable<'T>.GetValueOrDefault method, which allows you to get the value or a default value of the appropriate type. The default value is some form of “zero” value, such as 0, 0.0, or false.

Nullable types may be converted to non-nullable primitive types using the usual conversion operators such as int or float. It is also possible to convert from one nullable type to another nullable type by using the conversion operators for nullable types. The appropriate conversion operators have the same name as the standard ones, but they are in a separate module, the Nullable [https://msdn.microsoft.com/library/e7a4ea13-28cc-462e-bc3a-33131ace976e] module in the Microsoft.FSharp.Linq [https://msdn.microsoft.com/library/4765b4e8-4006-4d8c-a405-39c218b3c82d] namespace. Typically, you open this namespace when working with query expressions. In that case, you can use the nullable conversion operators by adding the prefix Nullable. to the appropriate conversion operator, as shown in the following code.

open Microsoft.Fsharp.Linq

let nullableInt = new System.Nullable<int>(10)

// Use the Nullable.float conversion operator to convert from one nullable type to another nullable type.
let nullableFloat = Nullable.float nullableInt

// Use the regular non-nullable float operator to convert to a non-nullable float.
printfn "%f" (float nullableFloat)

The output is 10.000000.

Query operators on nullable data fields, such as sumByNullable, also exist for use in query expressions. The query operators for non-nullable types are not type-compatible with nullable types, so you must use the nullable version of the appropriate query operator when you are working with nullable data values. For more information, see Query Expressions.

The following example shows the use of nullable operators in an F# query expression. The first query shows how you would write a query without a nullable operator; the second query shows an equivalent query that uses a nullable operator. For the full context, including how to set up the database to use this sample code, see Walkthrough: Accessing a SQL Database by Using Type Providers.

open System
open System.Data
open System.Data.Linq
open Microsoft.FSharp.Data.TypeProviders
open Microsoft.FSharp.Linq

[<Generate>]
type dbSchema = SqlDataConnection<"Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;">

let db = dbSchema.GetDataContext()

query {
 for row in db.Table2 do
 where (row.TestData1.HasValue && row.TestData1.Value > 2)
 select row
} |> Seq.iter (fun row -> printfn "%d %s" row.TestData1.Value row.Name)

query {
 for row in db.Table2 do
 // Use a nullable operator ?>
 where (row.TestData1 ?> 2)
 select row
} |> Seq.iter (fun row -> printfn "%d %s" (row.TestData1.GetValueOrDefault()) row.Name)

See Also

Type Providers

Query Expressions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/language-reference/generics/automatic-generalization.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Automatic Generalization (F#)
description: Automatic Generalization (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 14a3554c-3fad-4eba-a93d-8ba07d1245b4

Automatic Generalization

F# uses type inference to evaluate the types of functions and expressions. This topic describes how F# automatically generalizes the arguments and types of functions so that they work with multiple types when this is possible.

Automatic Generalization

The F# compiler, when it performs type inference on a function, determines whether a given parameter can be generic. The compiler examines each parameter and determines whether the function has a dependency on the specific type of that parameter. If it does not, the type is inferred to be generic.

The following code example illustrates a function that the compiler infers to be generic.

[!code-fsharpMain]

The type is inferred to be 'a -> 'a -> 'a.

The type indicates that this is a function that takes two arguments of the same unknown type and returns a value of that same type. One of the reasons that the previous function can be generic is that the greater-than operator (>) is itself generic. The greater-than operator has the signature 'a -> 'a -> bool. Not all operators are generic, and if the code in a function uses a parameter type together with a non-generic function or operator, that parameter type cannot be generalized.

Because max is generic, it can be used with types such as int, float, and so on, as shown in the following examples.

[!code-fsharpMain]

However, the two arguments must be of the same type. The signature is 'a -> 'a -> 'a, not 'a -> 'b -> 'a. Therefore, the following code produces an error because the types do not match.

// Error: type mismatch.
let biggestIntFloat = max 2.0 3

The max function also works with any type that supports the greater-than operator. Therefore, you could also use it on a string, as shown in the following code.

[!code-fsharpMain]

Value Restriction

The compiler performs automatic generalization only on complete function definitions that have explicit arguments, and on simple immutable values.

This means that the compiler issues an error if you try to compile code that is not sufficiently constrained to be a specific type, but is also not generalizable. The error message for this problem refers to this restriction on automatic generalization for values as the value restriction.

Typically, the value restriction error occurs either when you want a construct to be generic but the compiler has insufficient information to generalize it, or when you unintentionally omit sufficient type information in a nongeneric construct. The solution to the value restriction error is to provide more explicit information to more fully constrain the type inference problem, in one of the following ways:

		Constrain a type to be nongeneric by adding an explicit type annotation to a value or parameter.

		If the problem is using a nongeneralizable construct to define a generic function, such as a function composition or incompletely applied curried function arguments, try to rewrite the function as an ordinary function definition.

		If the problem is an expression that is too complex to be generalized, make it into a function by adding an extra, unused parameter.

		Add explicit generic type parameters. This option is rarely used.

		The following code examples illustrate each of these scenarios.

Case 1: Too complex an expression. In this example, the list counter is intended to be int option ref, but it is not defined as a simple immutable value.

let counter = ref None
// Adding a type annotation fixes the problem:
let counter : int option ref = ref None

Case 2: Using a nongeneralizable construct to define a generic function. In this example, the construct is nongeneralizable because it involves partial application of function arguments.

let maxhash = max << hash
// The following is acceptable because the argument for maxhash is explicit:
let maxhash obj = (max << hash) obj

Case 3: Adding an extra, unused parameter. Because this expression is not simple enough for generalization, the compiler issues the value restriction error.

let emptyList10 = Array.create 10 []
// Adding an extra (unused) parameter makes it a function, which is generalizable.
let emptyList10 () = Array.create 10 []

Case 4: Adding type parameters.

let arrayOf10Lists = Array.create 10 []
// Adding a type parameter and type annotation lets you write a generic value.
let arrayOf10Lists<'T> = Array.create 10 ([]:'T list)

In the last case, the value becomes a type function, which may be used to create values of many different types, for example as follows:

let intLists = arrayOf10Lists<int>
let floatLists = arrayOf10Lists<float>

See Also

Type Inference

Generics

Statically Resolved Type Parameters

Constraints

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/language-reference/generics/statically-resolved-type-parameters.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Statically Resolved Type Parameters (F#)
description: Statically Resolved Type Parameters (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: b3797415-3e49-4f8a-a8ee-fa614c5721aa

Statically Resolved Type Parameters

A statically resolved type parameter is a type parameter that is replaced with an actual type at compile time instead of at run time. They are preceded by a caret (^) symbol.

Syntax

ˆtype-parameter

Remarks

In the F# language, there are two distinct kinds of type parameters. The first kind is the standard generic type parameter. These are indicated by an apostrophe (‘), as in 'T and 'U. They are equivalent to generic type parameters in other .NET Framework languages. The other kind is statically resolved and is indicated by a caret symbol, as in ^T and ^U.

Statically resolved type parameters are primarily useful in conjunction with member constraints, which are constraints that allow you to specify that a type argument must have a particular member or members in order to be used. There is no way to create this kind of constraint by using a regular generic type parameter.

The following table summarizes the similarities and differences between the two kinds of type parameters.

Feature	Generic	Statically resolved
——-	——-	——————-
Syntax	'T, 'U	^T, ^U
Resolution time	Run time	Compile time
Member constraints	Cannot be used with member constraints.	Can be used with member constraints.
Code generation	A type (or method) with standard generic type parameters results in the generation of a single generic type or method.	Multiple instantiations of types and methods are generated, one for each type that is needed.
Use with types	Can be used on types.	Cannot be used on types.
Use with inline functions	No. An inline function cannot be parameterized with a standard generic type parameter.	Yes. Statically resolved type parameters cannot be used on functions or methods that are not inline.
Many F# core library functions, especially operators, have statically resolved type parameters. These functions and operators are inline, and result in efficient code generation for numeric computations.

Inline methods and functions that use operators, or use other functions that have statically resolved type parameters, can also use statically resolved type parameters themselves. Often, type inference infers such inline functions to have statically resolved type parameters. The following example illustrates an operator definition that is inferred to have a statically resolved type parameter.

[!code-fsharpMain]

The resolved type of (+@) is based on the use of both (+) and (*), both of which cause type inference to infer member constraints on the statically resolved type parameters. The resolved type, as shown in the F# interpreter, is as follows.

^a -> ^c -> ^d
when (^a or ^b) : (static member (+) : ^a * ^b -> ^d) and
(^a or ^c) : (static member (+) : ^a * ^c -> ^b)

The output is as follows.

2
1.500000

See Also

Generics

Type Inference

Automatic Generalization

Constraints

Inline Functions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/garbagecollection/fundamentals.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Fundamentals of garbage collection
description: Fundamentals of garbage collection
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9d5fce64-95a4-4609-8eee-b0ac70078cdb

Fundamentals of garbage collection

In the Common Language Runtime (CLR), the garbage collector serves as an automatic memory manager. It provides the following benefits:

		Enables you to develop your application without having to free memory.

		Allocates objects on the managed heap efficiently.

		Reclaims objects that are no longer being used, clears their memory, and keeps the memory available for future allocations. Managed objects automatically get clean content to start with, so their constructors do not have to initialize every data field.

		Provides memory safety by making sure that an object cannot use the content of another object.

This topic describes the core concepts of garbage collection. It contains the following sections:

		Fundamentals of memory

		Conditions for a garbage collection

		The managed heap

		Generations

		What happens during a garbage collection

		Manipulating unmanaged resources

Fundamentals of memory

The following list summarizes important CLR memory concepts.

		Each process has its own, separate virtual address space. All processes on the same computer share the same physical memory, and share the page file if there is one.

		By default, on 32-bit computers, each process has a 2-GB user-mode virtual address space.

		As an application developer, you work only with virtual address space and never manipulate physical memory directly. The garbage collector allocates and frees virtual memory for you on the managed heap.

		Virtual memory can be in three states:
		Free. The block of memory has no references to it and is available for allocation.

		Reserved. The block of memory is available for your use and cannot be used for any other allocation request. However, you cannot store data to this memory block until it is committed.

		Committed. The block of memory is assigned to physical storage.

		Virtual address space can get fragmented. This means that there are free blocks, also known as holes, in the address space. When a virtual memory allocation is requested, the virtual memory manager has to find a single free block that is large enough to satisfy that allocation request. Even if you have 2 GB of free space, the allocation that requires 2 GB will be unsuccessful unless all of that space is in a single address block.

		You can run out of memory if you run out of virtual address space to reserve or physical space to commit.

Your page file is used even if physical memory pressure (that is, demand for physical memory) is low. The first time your physical memory pressure is high, the operating system must make room in physical memory to store data, and it backs up some of the data that is in physical memory to the page file. That data is not paged until it is needed, so it is possible to encounter paging in situations where the physical memory pressure is very low.

Conditions for a garbage collection

Garbage collection occurs when one of the following conditions is true:

		The system has low physical memory.

		The memory that is used by allocated objects on the managed heap surpasses an acceptable threshold. This threshold is continuously adjusted as the process runs.

		The GC.Collect method is called. In almost all cases, you do not have to call this method, because the garbage collector runs continuously. This method is primarily used for unique situations and testing.

The managed heap

After the garbage collector is initialized by the CLR, it allocates a segment of memory to store and manage objects. This memory is called the managed heap, as opposed to a native heap in the operating system.

There is a managed heap for each managed process. All threads in the process allocate memory for objects on the same heap.

[!IMPORTANT]
The size of segments allocated by the garbage collector is implementation-specific and is subject to change at any time, including in periodic updates. Your app should never make assumptions about or depend on a particular segment size, nor should it attempt to configure the amount of memory available for segment allocations.

The fewer objects allocated on the heap, the less work the garbage collector has to do. When you allocate objects, do not use rounded-up values that exceed your needs, such as allocating an array of 32 bytes when you need only 15 bytes.

When a garbage collection is triggered, the garbage collector reclaims the memory that is occupied by dead objects. The reclaiming process compacts live objects so that they are moved together, and the dead space is removed, thereby making the heap smaller. This ensures that objects that are allocated together stay together on the managed heap, to preserve their locality.

The intrusiveness (frequency and duration) of garbage collections is the result of the volume of allocations and the amount of survived memory on the managed heap.

The heap can be considered as the accumulation of two heaps: the large object heap and the small object heap.

The large object heap contains very large objects that are 85,000 bytes and larger. The objects on the large object heap are usually arrays. It is rare for an instance object to be extremely large.

Generations

The heap is organized into generations so it can handle long-lived and short-lived objects. Garbage collection primarily occurs with the reclamation of short-lived objects that typically occupy only a small part of the heap. There are three generations of objects on the heap:

		Generation 0. This is the youngest generation and contains short-lived objects. An example of a short-lived object is a temporary variable. Garbage collection occurs most frequently in this generation.

Newly allocated objects form a new generation of objects and are implicitly generation 0 collections, unless they are large objects, in which case they go on the large object heap in a generation 2 collection.

Most objects are reclaimed for garbage collection in generation 0 and do not survive to the next generation.

		Generation 1. This generation contains short-lived objects and serves as a buffer between short-lived objects and long-lived objects.

		Generation 2. This generation contains long-lived objects. An example of a long-lived object is an object in a server application that contains static data that is live for the duration of the process.

Garbage collections occur on specific generations as conditions warrant. Collecting a generation means collecting objects in that generation and all its younger generations. A generation 2 garbage collection is also known as a full garbage collection, because it reclaims all objects in all generations (that is, all objects in the managed heap).

Survival and promotions

Objects that are not reclaimed in a garbage collection are known as survivors, and are promoted to the next generation. Objects that survive a generation 0 garbage collection are promoted to generation 1; objects that survive a generation 1 garbage collection are promoted to generation 2; and objects that survive a generation 2 garbage collection remain in generation 2.

When the garbage collector detects that the survival rate is high in a generation, it increases the threshold of allocations for that generation, so the next collection gets a substantial size of reclaimed memory. The CLR continually balances two priorities: not letting an application’s working set get too big and not letting the garbage collection take too much time.

Ephemeral generations and segments

Because objects in generations 0 and 1 are short-lived, these generations are known as the ephemeral generations.

Ephemeral generations must be allocated in the memory segment that is known as the ephemeral segment. Each new segment acquired by the garbage collector becomes the new ephemeral segment and contains the objects that survived a generation 0 garbage collection. The old ephemeral segment becomes the new generation 2 segment.

The ephemeral segment can include generation 2 objects. Generation 2 objects can use multiple segments (as many as your process requires and memory allows for).

The amount of freed memory from an ephemeral garbage collection is limited to the size of the ephemeral segment. The amount of memory that is freed is proportional to the space that was occupied by the dead objects.

What happens during a garbage collection

A garbage collection has the following phases:

		A marking phase that finds and creates a list of all live objects.

		A relocating phase that updates the references to the objects that will be compacted.

		A compacting phase that reclaims the space occupied by the dead objects and compacts the surviving objects. The compacting phase moves objects that have survived a garbage collection toward the older end of the segment.

Because generation 2 collections can occupy multiple segments, objects that are promoted into generation 2 can be moved into an older segment. Both generation 1 and generation 2 survivors can be moved to a different segment, because they are promoted to generation 2.

Ordinarily, the large object heap is not compacted, because copying large objects imposes a performance penalty. However, you can use the GCSettings.LargeObjectHeapCompactionMode property to compact the large object heap on demand.

The garbage collector uses the following information to determine whether objects are live:

		Stack roots. Stack variables provided by the just-in-time (JIT) compiler and stack walker.

		Garbage collection handles. Handles that point to managed objects and that can be allocated by user code or by the Common Language Runtime.

		Static data. Static objects in application domains that could be referencing other objects. Each application domain keeps track of its static objects.

Before a garbage collection starts, all managed threads are suspended except for the thread that triggered the garbage collection.

The following illustration shows a thread that triggers a garbage collection and causes the other threads to be suspended.

[image: When a thread triggers a garbage collection]

Thread that triggers a garbage collection

Manipulating unmanaged resources

If your managed objects reference unmanaged objects by using their native file handles, you have to explicitly free the unmanaged objects, because the garbage collector tracks memory only on the managed heap.

Users of your managed object may not dispose the native resources used by the object. To perform the cleanup, you can make your managed object finalizable. Finalization consists of cleanup actions that you execute when the object is no longer in use. When your managed object dies, it performs cleanup actions that are specified in its finalizer method.

When a finalizable object is discovered to be dead, its finalizer is put in a queue so that its cleanup actions are executed, but the object itself is promoted to the next generation. Therefore, you have to wait until the next garbage collection that occurs on that generation (which is not necessarily the next garbage collection) to determine whether the object has been reclaimed.

See Also

Garbage collection in .NET

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

fsharp/language-reference/values/null-values.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Null Values (F#)
description: Null Values (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 68ebd261-51cf-4582-b2dc-44c84d1c2500

Null Values

This topic describes how the null value is used in F#.

Null Value

The null value is not normally used in F# for values or variables. However, null appears as an abnormal value in certain situations. If a type is defined in F#, null is not permitted as a regular value unless the AllowNullLiteral [https://msdn.microsoft.com/library/4f315196-f444-4cca-ba07-1176ff71eb0f] attribute is applied to the type. If a type is defined in some other .NET language, null is a possible value, and when you are interoperating with such types, your F# code might encounter null values.

For a type defined in F# and used strictly from F#, the only way to create a null value using the F# library directly is to use Unchecked.defaultof [https://msdn.microsoft.com/library/9ff97f2a-1bd4-4f4c-afbe-5886a74ab977] or Array.zeroCreate [https://msdn.microsoft.com/library/fa5b8e7a-1b5b-411c-8622-b58d7a14d3b2]. However, for an F# type that is used from other .NET languages, or if you are using that type with an API that is not written in F#, such as the .NET Framework, null values can occur.

You can use the option type in F# when you might use a reference variable with a possible null value in another .NET language. Instead of null, with an F# option type, you use the option value None if there is no object. You use the option value Some(obj) with an object obj when there is an object. For more information, see Options.

The null keyword is a valid keyword in the F# language, and you have to use it when you are working with .NET Framework APIs or other APIs that are written in another .NET language. The two situations in which you might need a null value are when you call a .NET API and pass a null value as an argument, and when you interpret the return value or an output parameter from a .NET method call.

To pass a null value to a .NET method, just use the null keyword in the calling code. The following code example illustrates this.

[!code-fsharpMain]

To interpret a null value that is obtained from a .NET method, use pattern matching if you can. The following code example shows how to use pattern matching to interpret the null value that is returned from ReadLine when it tries to read past the end of an input stream.

[!code-fsharpMain]

Null values for F# types can also be generated in other ways, such as when you use Array.zeroCreate, which calls Unchecked.defaultof. You must be careful with such code to keep the null values encapsulated. In a library intended only for F#, you do not have to check for null values in every function. If you are writing a library for interoperation with other .NET languages, you might have to add checks for null input parameters and throw an ArgumentNullException, just as you do in C# or Visual Basic code.

You can use the following code to check if an arbitrary value is null.

[!code-fsharpMain]

See Also

Values

Match Expressions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

standard/garbagecollection/latency.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Latency modes
description: Latency modes
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 810bd8be-5a48-42c6-b080-3afdb31fc61b

Latency modes

To reclaim objects, the garbage collector must stop all the executing threads in an application. In some situations, such as when an application retrieves data or displays content, a full garbage collection can occur at a critical time and impede performance. You can adjust the intrusiveness of the garbage collector by setting the GCSettings.LatencyMode property to one of the System.Runtime.GCLatencyMode values.

Latency refers to the time that the garbage collector intrudes in your application. During low latency periods, the garbage collector is more conservative and less intrusive in reclaiming objects. The System.Runtime.GCLatencyMode enumeration provides two low latency settings:

		LowLatency suppresses generation 2 collections and performs only generation 0 and 1 collections. It can be used only for short periods of time. Over longer periods, if the system is under memory pressure, the garbage collector will trigger a collection, which can briefly pause the application and disrupt a time-critical operation. This setting is available only for workstation garbage collection.

		SustainedLowLatency suppresses foreground generation 2 collections and performs only generation 0, 1, and background generation 2 collections. It can be used for longer periods of time, and is available for both workstation and server garbage collection. This setting cannot be used if concurrent garbage collection [https://msdn.microsoft.com/library/yhwwzef8.aspx] is disabled.

During low latency periods, generation 2 collections are suppressed unless the following occurs:

		The system receives a low memory notification from the operating system.

		Your application code induces a collection by calling the GC.Collect method and specifying 2 for the generation parameter.

The following table lists the application scenarios for using the GCLatencyMode values.

Latency mode | Application scenarios
———— | ———————
Batch | For applications that have no UI or server-side operations. This is the default mode when concurrent garbage collection [https://msdn.microsoft.com/library/yhwwzef8.aspx] is disabled.
Interactive | For most applications that have a UI. For applications that have no UI or server-side operations. This is the default mode when concurrent garbage collection [https://msdn.microsoft.com/library/yhwwzef8.aspx] is enabled.
LowLatency | For applications that have short-term, time-sensitive operations during which interruptions from the garbage collector could be disruptive. For example, applications that do animation rendering or data acquisition functions.
SustainedLowLatency | For applications that have time-sensitive operations for a contained but potentially longer duration of time during which interruptions from the garbage collector could be disruptive. For example, applications that need quick response times as market data changes during trading hours. This mode results in a larger managed heap size than other modes. Because it does not compact the managed heap, higher fragmentation is possible. Ensure that sufficient memory is available.

Guidelines for Using Low Latency

When you use LowLatency mode, consider the following guidelines:

		Keep the period of time in low latency as short as possible.

		Avoid allocating high amounts of memory during low latency periods. Low memory notifications can occur because garbage collection reclaims fewer objects.

		While in the low latency mode, minimize the number of allocations you make, in particular allocations onto the Large Object Heap and pinned objects.

		Be aware of threads that could be allocating. Because the LatencyMode property setting is process-wide, you could generate an OutOfMemoryException on any thread that may be allocating.

		You can force generation 2 collections during a low latency period by calling the GC.Collect(Int32, GCCollectionMode) method.

See Also

System.GC

Induced Collections

Garbage collection in .NET

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

standard/garbagecollection/index.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Garbage Collection
description: Garbage Collection
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: db39a0f5-e363-490f-a7e6-adb9a6ff2a8c

Garbage collection

Garbage collection is one of most important features of the .NET managed code platform. The garbage collector (GC) manages allocating and releasing memory for you. You do not need to how to allocate and release memory or manage the lifetime of the objects that use that memory. An allocation is made any time you new an object or a value type is boxed. Allocations are typically very fast. When there isn’t enough memory to allocate an object, the GC must collect and dispose of garbage memory to make memory available for new allocations. This process is called “garbage collection”.

The garbage collector serves as an automatic memory manager. It provides the following benefits:

		Enables you to develop your application without having to free memory.

		Allocates objects on the managed heap efficiently.

		Reclaims objects that are no longer being used, clears their memory, and keeps the memory available for future allocations. Managed objects automatically get clean content to start with, so their constructors do not have to initialize every data field.

		Provides memory safety by making sure that an object cannot use the content of another object.

The .NET GC is generational and has 3 generations. Each generation has its own heap that it uses for storage of allocated objects. There is a basic principle that most objects are either short lived or long lived. Generation 0 is where objects are first allocated. Objects often don’t live past the first generation, since they are no longer in use (out of scope) by the time the next garbage collection occurs. Generation 0 is quick to collect because its associated heap is small. Generation 1 is really a second chance space. Objects that are short lived but survive the generation 0 collection (often based on coincidental timing) go to generation 1. Generation 1 collections are also quick because its associated heap is also small. The first two heaps remain small because objects are either collected or are promoted to the next generation heap. Generation 2 is where all long lived objects are. The generation 2 heap can grow to be very large, since the objects it contains can survive a long time and there is no generation 3 heap to further promote objects.

The GC has has an additional heap for large objects called the Large Object Heap (LOH). It is reserved for objects that are 85,000 bytes or greater. A byte array (Byte[]) with 85k elements would be an example of a large object. Large objects are not allocated to the generational heaps but are allocated directly to the LOH.

Generation 2 and LOH collections can take noticeable time for programs that have run for a long time or operate over large amounts of data. Large server programs are known to have heaps in the 10s of GBs. The GC employs a variety of techniques to reduce the amount of time that it blocks program execution. The primary approach is to do as much garbage collection work as possible on a background thread in a way that does not interfere with program execution. The GC also exposes a few ways for developers to influence its behavior, which can be quite useful to improve performance.

Related Topics

Title | Description
—– | ———–
Automatic memory management and garbage collection | Introduces the basic concepts of memory management in .NET
Fundamentals of garbage collection | Describes how garbage collection works, how objects are allocated on the managed heap, and other core concepts.
Induced collections | Describes how to make a garbage collection occur.
Latency modes | Describes the modes that determine the intrusiveness of garbage collection.
Weak references | Describes features that permit the garbage collector to collect an object while still allowing the application to access that object.

Reference

System.GC

System.GCCollectionMode

System.Runtime.GCLatencyMode

System.Runtime.GCSettings

GCSettings.LargeObjectHeapCompactionMode

Object.Finalize

System.IDisposable

See Also

Cleaning up unmanaged resources

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

standard/garbagecollection/weak-references.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Weak references
description: Weak references
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/19/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 22319f2f-0008-4ace-815e-545892a0512a

Weak references

The garbage collector cannot collect an object in use by an application while the application’s code can reach that object. The application is said to have a strong reference to the object.

A weak reference permits the garbage collector to collect the object while still allowing the application to access the object. A weak reference is valid only during the indeterminate amount of time until the object is collected when no strong references exist. When you use a weak reference, the application can still obtain a strong reference to the object, which prevents it from being collected. However, there is always the risk that the garbage collector will get to the object first before a strong reference is reestablished.

Weak references are useful for objects that use a lot of memory, but can be recreated easily if they are reclaimed by garbage collection.

Suppose a tree view displays a complex hierarchical choice of options to the user. If the underlying data is large, keeping the tree in memory is inefficient when the user is involved with something else in the application.

When the user switches away to another part of the application, you can use the WeakReference or WeakReference

<

T>

 class to create a weak reference to the tree and destroy all strong references. When the user switches back to the tree, the application attempts to obtain a strong reference to the tree and, if successful, avoids reconstructing the tree.

To establish a weak reference with an object, you create a WeakReference using the instance of the object to be tracked. You then set the Target property to that object and set the original reference to the object to null.

Short and Long Weak References

You can create a short weak reference or a long weak reference:

		Short

The target of a short weak reference becomes null when the object is reclaimed by garbage collection. The weak reference is itself a managed object, and is subject to garbage collection just like any other managed object. A short weak reference is the default constructor for WeakReference.

		Long

A long weak reference is retained after the object’s Finalize method has been called. This allows the object to be recreated, but the state of the object remains unpredictable. To use a long reference, specify true in the WeakReference constructor.

If the object’s type does not have a Finalize method, the short weak reference functionality applies and the weak reference is valid only until the target is collected, which can occur anytime after the finalizer is run.

To establish a strong reference and use the object again, cast the Target property of a WeakReference to the type of the object. If the Target property returns null, the object was collected; otherwise, you can continue to use the object because the application has regained a strong reference to it.

Guidelines for Using Weak References

Use long weak references only when necessary as the state of the object is unpredictable after finalization.

Avoid using weak references to small objects because the pointer itself may be as large or larger.

Avoid using weak references as an automatic solution to memory management problems. Instead, develop an effective caching policy for handling your application’s objects.

See Also

Garbage collection in .NET

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/concepts.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: C# Concepts
description: C# Concepts
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 809148dd-b231-4f2c-bb81-f5bfc426378d

🔧 C# Concepts

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this issue at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/garbagecollection/induced.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Induced collections
description: Induced collections
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3e09b9dd-a800-4e56-b468-619f910ae22e

Induced collections

In most cases, the garbage collector can determine the best time to perform a collection, and you should let it run independently. There are rare situations when a forced collection might improve your application’s performance. In these cases, you can induce garbage collection by using the GC.Collect method to force a garbage collection.

Use the Collect method when there is a significant reduction in the amount of memory being used at a specific point in your application’s code. For example, if your application uses a complex dialog box that has several controls, calling Collect when the dialog box is closed could improve performance by immediately reclaiming the memory used by the dialog box. Be sure that your application is not inducing garbage collection too frequently, because that can decrease performance if the garbage collector is trying to reclaim objects at non-optimal times. You can supply a GCCollectionMode.Optimized enumeration value to the Collect method to collect only when collection would be productive, as discussed in the next section.

GC collection mode

You can use one of the GC.Collect method overloads that includes a GCCollectionMode value to specify the behavior for a forced collection as follows.

GCCollectionMode value | Description
———————- | ———–
Default | Uses the default garbage collection setting for the running version of the .NET Framework.
Forced | Forces garbage collection to occur immediately. This is equivalent to calling the GC.Collect() overload. It results in a full blocking collection of all generations. You can also compact the large object heap by setting the GCSettings.LargeObjectHeapCompactionMode property to GCLargeObjectHeapCompactionMode.CompactOnce before forcing an immediate full blocking garbage collection.
Optimized | Enables the garbage collector to determine whether the current time is optimal to reclaim objects. The garbage collector could determine that a collection would not be productive enough to be justified, in which case it will return without reclaiming objects.

Background or blocking collections

You can call the GC.Collect(Int32, GCCollectionMode, Boolean) method overload to specify whether an induced collection is blocking or not. The type of collection performed depends on a combination of the method’s mode and blocking parameters. mode is a member of the GCCollectionMode enumeration, and blocking is a Boolean value. The following table summarizes the interaction of the mode and blocking arguments.

mode | blocking = true | blocking = false
—— | —————– | ——————
Forced or Default | A blocking collection is performed as soon as possible. If a background collection is in progress and generation is 0 or 1, the Collect(Int32, GCCollectionMode, Boolean) method immediately triggers a blocking collection and returns when the collection is finished. If a background collection is in progress and the generation parameter is 2, the method waits until the background collection is finished, triggers a blocking generation 2 collection, and then returns. | A collection is performed as soon as possible. The Collect(Int32, GCCollectionMode, Boolean) method requests a background collection, but this is not guaranteed; depending on the circumstances, a blocking collection may still be performed. If a background collection is already in progress, the method returns immediately.
Optimized | A blocking collection may be performed, depending on the state of the garbage collector and the generation parameter. The garbage collector tries to provide optimal performance. | A collection may be performed, depending on the state of the garbage collector. The Collect(Int32, GCCollectionMode, Boolean) method requests a background collection, but this is not guaranteed; depending on the circumstances, a blocking collection may still be performed. The garbage collector tries to provide optimal performance. If a background collection is already in progress, the method returns immediately.

See Also

Latency modes

Garbage collection in .NET

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/properties.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Properties
description: Properties
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6950d25a-bba1-4744-b7c7-a3cc90438c55

Properties

Properties are first class citizens in C#. The language
defines syntax that enables developers to write code
that accurately expresses their design intent.

Properties behave like fields when they are accessed.
However, unlike fields, properties are implemented
with accessors that define the statements executed
when a property is accessed or assigned.

Property Syntax

The syntax for properties is a natural extension to
fields. A field defines a storage location:

public class Person
{
 public string FirstName;
 // remaining implementation removed from listing
}

A property definition contains declarations for a get and
set accessor that retrieves and assigns the value of that
property:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }
 // remaining implementation removed from listing
}

The syntax shown above is the auto property syntax. The compiler
generates the storage location for the field that backs up the
property. The compiler also implements the body of the get and set accessors.
You can also define the storage yourself, as shown below:

public class Person
{
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }
 private string firstName;
 // remaining implementation removed from listing
}

The property definition shown above is a read-write property. Notice
the keyword value in the set accessor. The set accessor always has
a single parameter named value. The get accessor must return a value
that is convertible to the type of the property (string in this example).

That’s the basics of the syntax. There are many different variations that support
a variety of different design idioms. Let’s explore those, and learn the syntax
options for each.

Scenarios

The examples above showed one of the simplest cases of property definition:
a read-write property with no validation. By writing the code you want in the
get and set accessors, you can create many different scenarios.

Validation

You can write code in the set accessor to ensure that the values represented
by a property are always valid. For example, suppose one rule for the Person
class is that the name cannot be blank, or whitespace. You would write that as
follows:

public class Person
{
 public string FirstName
 {
 get { return firstName; }
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 firstName = value;
 }
 }
 private string firstName;
 // remaining implementation removed from listing
}

The example above enforces the rule that the first name must not be blank,
or whitespace. If a developer writes

hero.FirstName = "";

That assignment throws an ArgumentException. Because a property set accessor
must have a void return type, you report errors in the set accessor by throwing an exception.

That is a simple case of validation. You can extend this same syntax to anything needed
in your scenario. You can check the relationships between different properties, or validate
against any external conditions. Any valid C# statements are valid in a property accessor.

Read-only

Up to this point, all the property definitions you have seen are read/write properties
with public accessors. That’s not the only valid accessibility for properties.
You can create read-only properties, or give different accessibility to the set and get
accessors. Suppose that your Person class should only enable changing the value of the
FirstName property from other methods in that class. You could give the set accessor
private accessibility instead of public:

public class Person
{
 public string FirstName
 {
 get;
 private set;
 }
 // remaining implementation removed from listing
}

Now, the FirstName property can be accessed from any code, but it can only be assigned
from other code in the Person class.
You can add any restrictive access modifier to either the set or get accessors. Any access modifier
you place on the individual accessor must be more limited than the access modifier on the property
definition. The above is legal because the FirstName property is public, but the set accessor is
private. You could not declare a private property with a public accessor. Property declarations
can also be declared protected, internal, protected internal or even private.

It is also legal to place the more restrictive modifier on the get accessor. For example, you could
have a public property, but restrict the get accessor to private. That scenario is rarely done
in practice.

Computed Properties

A property does not need to simply return the value of a member field. You can create properties
that return a computed value. Let’s expand the Person object to return the full name, computed
by concatenating the first and last names:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 public string FullName
 {
 get
 {
 return $"{FirstName} {LastName}";
 }
 }
}

The example above uses the String Interpolation syntax to create
the formatted string for the full name.

You can also use Expression Bodied Members, which provides a more
succinct way to create the computed FullName property:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 public string FullName => $"{FirstName} {LastName}";
}

Expression Bodied Members use the lambda expression syntax to
define a method that contain a single expression. Here, that
expression returns the full name for the person object.

Lazy Evaluated Properties

You can mix the concept of a computed property with storage and create
a lazy evaluated property. For example, you could update the FullName
property so that the string formatting only happened the first time it
was accessed:

public class Person
{
 public string FirstName
 {
 get;
 set;
 }

 public string LastName
 {
 get;
 set;
 }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

The above code contains a bug though. If code updates the value of
either the FirstName or LastName property, the previously evaluated
fullName field is invalid. You need to update the set accessors of the
FirstName and LastName property so that the fullName field is calculated
again:

public class Person
{
 private string firstName;
 public string FirstName
 {
 get { return firstName; }
 set
 {
 firstName = value;
 fullName = null;
 }
 }

 private string lastName;
 public string LastName
 {
 get { return lastName; }
 set
 {
 lastName = value;
 fullName = null;
 }
 }

 private string fullName;
 public string FullName
 {
 get
 {
 if (fullName == null)
 fullName = $"{FirstName} {LastName}";
 return fullName;
 }
 }
}

This final version evaluates the FullName property only when needed.
If the previously calculated version is valid, it’s used. If another
state change invalidates the previously calculated version, it will be
recalculated. Developers that use this class do not need to know the
details of the implementation. None of these internal changes affect the
use of the Person object. That’s the key reason for using Properties to
expose data members of an object.

INotifyPropertyChanged

A final scenario where you need to write code in a property accessor is to
support the INotifyPropertyChanged interface used to notify data binding
clients that a value has changed. When the value of a property changes, the object
raises the PropertyChanged event
to indicate the change. The data binding libraries, in turn, update display elements
based on that change. The code below shows how you would implement INotifyPropertyChanged
for the FirstName property of this person class.

public class Person : INotifyPropertyChanged
{
 public string FirstName
 {
 get { return firstName; }
 set
 {
 if (string.IsNullOrWhiteSpace(value))
 throw new ArgumentException("First name must not be blank");
 if (value != firstName)
 {
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(FirstName)));
 }
 firstName = value;
 }
 }
 private string firstName;

 public event PropertyChangedEventHandler PropertyChanged;
 // remaining implementation removed from listing
}

The ?. operator is called
the null conditional operator. It checks for a null reference before evaluating
the right side of the operator. The end result is that if there are no subscribers
to the PropertyChanged event, the code to raise the event doesn’t execute. It would
throw a NullReferenceException without this check in that case. See the page on
events for more details. This example also uses the new
nameof operator to convert from the property name symbol to its text representation.
Using nameof can reduce errors where you have mistyped the name of the property.

Again, this is an example of a case where you can write code in your accessors to
support the scenarios you need.

Summing up

Properties are a form of smart fields in a class or object. From
outside the object, they appear like fields in the object. However,
properties can be implemented using the full palette of C# functionality.
You can provide validation, different accessibility, lazy evaluation,
or any requirements your scenarios need.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/datetime/access-utc-and-local.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: “How to: access the predefined UTC and local time zone objects”
description: How to access the predefined UTC and local time zone objects
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/11/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 13454d47-d957-421b-9ecd-940058b8835e

How to: access the predefined UTC and local time zone objects

The System.TimeZoneInfo class provides two properties, Utc and Local, that give your code access to predefined time zone objects. This topic discusses how to access the TimeZoneInfo objects returned by those properties.

To access the Coordinated Universal Time (UTC) TimeZoneInfo object

		Use the static (Shared in Visual Basic) TimeZoneInfo.Utc property to access Coordinated Universal Time.

		Rather than assigning the TimeZoneInfo object returned by the property to an object variable, continue to access Coordinated Universal Time through the TimeZoneInfo.Utc property.

To access the local time zone

		Use the static (Shared in Visual Basic) TimeZoneInfo.Local property to access the local system time zone.

		Rather than assigning the TimeZoneInfo object returned by the property to an object variable, continue to access the local time zone through the TimeZoneInfo.Local property.

Example

The following code uses the TimeZoneInfo.Local and TimeZoneInfo.Utc properties to convert a time from the U.S. and Canadian Eastern Standard time zone, as well as to display the time zone name to the console.

// Create Eastern Standard Time value and TimeZoneInfo object
DateTime estTime = new DateTime(2007, 1, 1, 00, 00, 00);
string timeZoneName = "Eastern Standard Time";
try
{
 TimeZoneInfo est = TimeZoneInfo.FindSystemTimeZoneById(timeZoneName);

 // Convert EST to local time
 DateTime localTime = TimeZoneInfo.ConvertTime(estTime, est, TimeZoneInfo.Local);
 Console.WriteLine("At {0} {1}, the local time is {2} {3}.",
 estTime,
 est,
 localTime,
 TimeZoneInfo.Local.IsDaylightSavingTime(localTime) ?
 TimeZoneInfo.Local.DaylightName :
 TimeZoneInfo.Local.StandardName);

 // Convert EST to UTC
 DateTime utcTime = TimeZoneInfo.ConvertTime(estTime, est, TimeZoneInfo.Utc);
 Console.WriteLine("At {0} {1}, the time is {2} {3}.",
 estTime,
 est,
 utcTime,
 TimeZoneInfo.Utc.StandardName);
}
catch (TimeZoneNotFoundException)
{
 Console.WriteLine("The {0} zone cannot be found in the registry.",
 timeZoneName);
}
catch (InvalidTimeZoneException)
{
 Console.WriteLine("The registry contains invalid data for the {0} zone.",
 timeZoneName);
}

' Create Eastern Standard Time value and TimeZoneInfo object
Dim estTime As Date = #01/01/2007 00:00:00#
Dim timeZoneName As String = "Eastern Standard Time"
Try
 Dim est As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById(timeZoneName)

 ' Convert EST to local time
 Dim localTime As Date = TimeZoneInfo.ConvertTime(estTime, est, TimeZoneInfo.Local)
 Console.WriteLine("At {0} {1}, the local time is {2} {3}.", _
 estTime, _
 est, _
 localTime, _
 IIf(TimeZoneInfo.Local.IsDaylightSavingTime(localTime), _
 TimeZoneInfo.Local.DaylightName, _
 TimeZoneInfo.Local.StandardName))

 ' Convert EST to UTC
 Dim utcTime As Date = TimeZoneInfo.ConvertTime(estTime, est, TimeZoneInfo.Utc)
 Console.WriteLine("At {0} {1}, the time is {2} {3}.", _
 estTime, _
 est, _
 utcTime, _
 TimeZoneInfo.Utc.StandardName)
Catch e As TimeZoneNotFoundException
 Console.WriteLine("The {0} zone cannot be found in the registry.", _
 timeZoneName)
Catch e As InvalidTimeZoneException
 Console.WriteLine("The registry contains invalid data for the {0} zone.", _
 timeZoneName)
End Try

You should always access the local time zone through the TimeZoneInfo.Local property rather than assigning the local time zone to a TimeZoneInfo object variable. Similarly, you should always access Coordinated Universal Time through the TimeZoneInfo.Utc property rather than assigning the UTC zone to a TimeZoneInfo object variable. This prevents the TimeZoneInfo object variable from being invalidated by an external method.

See Also

Dates, times, and time zones

Finding the time zones defined on a local system

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/expression-classes.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Framework Types Supporting Expression Trees
description: Framework Types Supporting Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e9c85021-0d36-48af-91b7-aaaa66f22654

Framework Types Supporting Expression Trees

Previous – Expression Trees Explained

There is a large list of classes in the .NET Core framework that work with Expression Trees.
You can see the full
list here [https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions].
Rather than run through the full list, let’s understand how the framework classes have been designed.

In language design, an expression is a body of code that evaluates and returns a value. Expressions
may be very simple: the constant expression 1 returns the constant value of 1. They may be more
complicated: The expression (-B + Math.Sqrt(B*B + 4 * A * C)) / (2 * A) returns one root for a
quadratic equation (in the case where the equation has a solution).

It all starts with System.Linq.Expression

One of the complexities of working with expression trees is that many different
kinds of expressions are valid in many places in programs. Consider an assignment
expression. The right hand side of an assignment could be a constant value, a variable,
a method call expression, or others. That language flexibility means that you may encounter
many different expression types anywhere in the nodes of a tree when you traverse an
expression tree. Therefore, when you can work with the base expression type, that’s
the simplest way to work. However, sometimes you need to know more.
The base Expression class contains a NodeType property for this purpose.
It returns an ExpressionType which is an enumeration of possible expression types.
Once you know the type of the node, you can cast it to that type, and perform
specific actions knowing the type of the expression node. You can search for certain
node types, and then work with the specific properties of that kind of expression.

For example, this code will print the name of a variable for a variable access
expression. I’ve followed the practice of checking the node type, then
casting to a variable access expression and then checking the properties of
the specific expression type:

Expression<Func<int, int>> addFive = (num) => num + 5;

if (addFive.NodeType == ExpressionType.Lambda)
{
 var lambdaExp = (LambdaExpression)addFive;

 var parameter = lambdaExp.Parameters.First();

 Console.WriteLine(parameter.Name);
 Console.WriteLine(parameter.Type);
}

Creating Expression Trees

The System.Linq.Expression class also contains many static methods to create expressions. These
methods create an expression node using the arguments supplied for its children. In this way,
you build an expression up from its leaf nodes. For example, this code builds an Add expression:

// Addition is an add expression for "1 + 2"
var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);

You can see from this simple example that many types are involved in creating and working
with expression trees. That complexity is necessary to provide the capabilities of
the rich vocabulary provided by the C# language.

Navigating the APIs

There are Expression node types that map to almost all of the syntax elements of the
C# language. Each type has specific methods for that type of language element. It’s a lot
to keep in your head at one time. Rather than try to memorize everything, here are the techniques
I use to work with Expression trees:

		Look at the members of the ExpressionType enum to determine possible nodes you should be
examining. This really helps when you want to traverse and understand an expression tree.

		Look at the static members of the Expression class to build an expression. Those methods
can build any expression type from a set of its child nodes.

		Look at the ExpressionVisitor class to build a modified expression tree.

You’ll find more as you look at each of those three areas. Invariably, you will find what you need when
you start with one of those three steps.

Next – Executing Expression Trees

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/garbagecollection/implementing-dispose.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Implementing a dispose method
description: Implementing a dispose method
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: eca6cdc3-6a14-4296-86fb-1eb2f21455b0

Implementing a dispose method

You implement a Dispose method to release unmanaged resources used by your application. The .NET garbage collector does not allocate or release unmanaged memory.

The pattern for disposing an object, referred to as a dispose pattern, imposes order on the lifetime of an object. The dispose pattern is used only for objects that access unmanaged resources, such as file and pipe handles, registry handles, wait handles, or pointers to blocks of unmanaged memory. This is because the garbage collector is very efficient at reclaiming unused managed objects, but it is unable to reclaim unmanaged objects.

The dispose pattern has two variations:

		You wrap each unmanaged resource that a type uses in a safe handle (that is, in a class derived from System.Runtime.InteropServices.SafeHandle). In this case, you implement the IDisposable interface and an additional Dispose(Boolean) method. This is the recommended variation and doesn’t require overriding the Object.Finalize method.

[!NOTE]
The Microsoft.Win32.SafeHandles namespace provides a set of classes derived from SafeHandle, which are listed in the Using safe handles section. If you can’t find a class that is suitable for releasing your unmanaged resource, you can implement your own subclass of SafeHandle.

		You implement the IDisposable interface and an additional Dispose(Boolean) method, and you also override the Object.Finalize method. You must override Finalize to ensure that unmanaged resources are disposed of if your IDisposable.Dispose implementation is not called by a consumer of your type. If you use the recommended technique discussed in the previous bullet, the System.Runtime.InteropServices.SafeHandle class does this on your behalf.

To help ensure that resources are always cleaned up appropriately, a Dispose method should be callable multiple times without throwing an exception.

The code example provided for the GC.KeepAlive method shows how aggressive garbage collection can cause a finalizer to run while a member of the reclaimed object is still executing. It is a good idea to call the KeepAlive method at the end of a lengthy Dispose method.

Dispose() and Dispose(Boolean)

The IDisposable interface requires the implementation of a single parameterless method, Dispose. However, the dispose pattern requires two Dispose methods to be implemented:

		A public non-virtual (NonInheritable in Visual Basic) IDisposable.Dispose implementation that has no parameters.

		A protected virtual (Overridable in Visual Basic) Dispose method whose signature is:

protected virtual void Dispose(bool disposing)

Protected Overridable Sub Dispose(disposing As Boolean)

The Dispose() overload

Because the public, non-virtual (NonInheritable in Visual Basic), parameterless Dispose method is called by a consumer of the type, its purpose is to free unmanaged resources and to indicate that the finalizer, if one is present, doesn’t have to run. Because of this, it has a standard implementation:

public void Dispose()
{
 // Dispose of unmanaged resources.
 Dispose(true);
 // Suppress finalization.
 GC.SuppressFinalize(this);
}

Public Sub Dispose() _
 Implements IDisposable.Dispose
 ' Dispose of unmanaged resources.
 Dispose(True)
 ' Suppress finalization.
 GC.SuppressFinalize(Me)
End Sub

The Dispose method performs all object cleanup, so the garbage collector no longer needs to call the objects’ Object.Finalize override. Therefore, the call to the GC.SuppressFinalize method prevents the garbage collector from running the finalizer. If the type has no finalizer, the call to SuppressFinalize has no effect. Note that the actual work of releasing unmanaged resources is performed by the second overload of the Dispose method.

The Dispose(Boolean) overload

In the second overload, the disposing parameter is a Boolean that indicates whether the method call comes from a Dispose method (its value is true) or from a finalizer (its value is false).

The body of the method consists of two blocks of code:

		A block that frees unmanaged resources. This block executes regardless of the value of the disposing parameter.

		A conditional block that frees managed resources. This block executes if the value of disposing is true. The managed resources that it frees can include:

Managed objects that implement IDisposable. The conditional block can be used to call their Dispose implementation. If you have used a safe handle to wrap your unmanaged resource, you should call the SafeHandle.Dispose(Boolean implementation here.

Managed objects that consume large amounts of memory or consume scarce resources. Freeing these objects explicitly in the Dispose method releases them faster than if they were reclaimed non-deterministically by the garbage collector.

If the method call comes from a finalizer (that is, if disposing is false), only the code that frees unmanaged resources executes. Because the order in which the garbage collector destroys managed objects during finalization is not defined, calling this Dispose overload with a value of false prevents the finalizer from trying to release managed resources that may have already been reclaimed.

Implementing the dispose pattern for a base class

If you implement the dispose pattern for a base class, you must provide the following:

[!IMPORTANT]
You should implement this pattern for all base classes that implement IDisposable and are not sealed.

		A Dispose implementation that calls the Dispose(Boolean) method.

		A Dispose(Boolean) method that performs the actual work of releasing resources.

		Either a class derived from SafeHandle that wraps your unmanaged resource (recommended), or an override to the Object.Finalize method. The SafeHandleSafeHandle class provides a finalizer that frees you from having to code one.

Here’s the general pattern for implementing the dispose pattern for a base class that uses a safe handle.

using Microsoft.Win32.SafeHandles;
using System;
using System.Runtime.InteropServices;

class BaseClass : IDisposable
{
 // Flag: Has Dispose already been called?
 bool disposed = false;
 // Instantiate a SafeHandle instance.
 SafeHandle handle = new SafeFileHandle(IntPtr.Zero, true);

 // Public implementation of Dispose pattern callable by consumers.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 // Protected implementation of Dispose pattern.
 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 return;

 if (disposing) {
 handle.Dispose();
 // Free any other managed objects here.
 //
 }

 // Free any unmanaged objects here.
 //
 disposed = true;
 }
}

Imports Microsoft.Win32.SafeHandles
Imports System.Runtime.InteropServices

Class BaseClass : Implements IDisposable
 ' Flag: Has Dispose already been called?
 Dim disposed As Boolean = False
 ' Instantiate a SafeHandle instance.
 Dim handle As SafeHandle = New SafeFileHandle(IntPtr.Zero, True)

 ' Public implementation of Dispose pattern callable by consumers.
 Public Sub Dispose() _
 Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 ' Protected implementation of Dispose pattern.
 Protected Overridable Sub Dispose(disposing As Boolean)
 If disposed Then Return

 If disposing Then
 handle.Dispose()
 ' Free any other managed objects here.
 '
 End If

 ' Free any unmanaged objects here.
 '
 disposed = True
 End Sub
End Class

[!NOTE]
The previous example uses a SafeFileHandle object to illustrate the pattern; any object derived from SafeHandle could be used instead. Note that the example does not properly instantiate its SafeFileHandle object.

Here’s the general pattern for implementing the dispose pattern for a base class that overrides Object.Finalize.

using System;

class BaseClass : IDisposable
{
 // Flag: Has Dispose already been called?
 bool disposed = false;

 // Public implementation of Dispose pattern callable by consumers.
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 // Protected implementation of Dispose pattern.
 protected virtual void Dispose(bool disposing)
 {
 if (disposed)
 return;

 if (disposing) {
 // Free any other managed objects here.
 //
 }

 // Free any unmanaged objects here.
 //
 disposed = true;
 }

 ~BaseClass()
 {
 Dispose(false);
 }
}

Class BaseClass : Implements IDisposable
 ' Flag: Has Dispose already been called?
 Dim disposed As Boolean = False

 ' Public implementation of Dispose pattern callable by consumers.
 Public Sub Dispose() _
 Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 ' Protected implementation of Dispose pattern.
 Protected Overridable Sub Dispose(disposing As Boolean)
 If disposed Then Return

 If disposing Then
 ' Free any other managed objects here.
 '
 End If

 ' Free any unmanaged objects here.
 '
 disposed = True
 End Sub

 Protected Overrides Sub Finalize()
 Dispose(False)
 End Sub
End Class

[!NOTE]
In C#, you override Object.Finalize by defining a destructor.

Implementing the dispose pattern for a derived class

A class derived from a class that implements the IDisposable interface shouldn’t implement IDisposable, because the base class implementation of IDisposable.Dispose is inherited by its derived classes. Instead, to implement the dispose pattern for a derived class, you provide the following:

		A protected Dispose(Boolean) method that overrides the base class method and performs the actual work of releasing the resources of the derived class. This method should also call the Dispose(Boolean) method of the base class and pass it a value of true for the disposing argument.

		Either a class derived from SafeHandle that wraps your unmanaged resource (recommended), or an override to the Object.Finalize method. The SafeHandle class provides a finalizer that frees you from having to code one. If you do provide a finalizer, it should call the Dispose(Boolean) overload with a disposing argument of false.

Here’s the general pattern for implementing the dispose pattern for a derived class that uses a safe handle:

using Microsoft.Win32.SafeHandles;
using System;
using System.Runtime.InteropServices;

class DerivedClass : BaseClass
{
 // Flag: Has Dispose already been called?
 bool disposed = false;
 // Instantiate a SafeHandle instance.
 SafeHandle handle = new SafeFileHandle(IntPtr.Zero, true);

 // Protected implementation of Dispose pattern.
 protected override void Dispose(bool disposing)
 {
 if (disposed)
 return;

 if (disposing) {
 handle.Dispose();
 // Free any other managed objects here.
 //
 }

 // Free any unmanaged objects here.
 //

 disposed = true;
 // Call base class implementation.
 base.Dispose(disposing);
 }
}

Imports Microsoft.Win32.SafeHandles
Imports System.Runtime.InteropServices

Class DerivedClass : Inherits BaseClass
 ' Flag: Has Dispose already been called?
 Dim disposed As Boolean = False
 ' Instantiate a SafeHandle instance.
 Dim handle As SafeHandle = New SafeFileHandle(IntPtr.Zero, True)

 ' Protected implementation of Dispose pattern.
 Protected Overrides Sub Dispose(disposing As Boolean)
 If disposed Then Return

 If disposing Then
 handle.Dispose()
 ' Free any other managed objects here.
 '
 End If

 ' Free any unmanaged objects here.
 '
 disposed = True

 ' Call base class implementation.
 MyBase.Dispose(disposing)
 End Sub
End Class

[!NOTE]
The previous example uses a SafeFileHandle object to illustrate the pattern; any object derived from SafeHandle could be used instead. Note that the example does not properly instantiate its SafeFileHandle object.

Here’s the general pattern for implementing the dispose pattern for a derived class that overrides Object.Finalize:

using System;

class DerivedClass : BaseClass
{
 // Flag: Has Dispose already been called?
 bool disposed = false;

 // Protected implementation of Dispose pattern.
 protected override void Dispose(bool disposing)
 {
 if (disposed)
 return;

 if (disposing) {
 // Free any other managed objects here.
 //
 }

 // Free any unmanaged objects here.
 //
 disposed = true;

 // Call the base class implementation.
 base.Dispose(disposing);
 }

 ~DerivedClass()
 {
 Dispose(false);
 }
}

Class DerivedClass : Inherits BaseClass
 ' Flag: Has Dispose already been called?
 Dim disposed As Boolean = False

 ' Protected implementation of Dispose pattern.
 Protected Overrides Sub Dispose(disposing As Boolean)
 If disposed Then Return

 If disposing Then
 ' Free any other managed objects here.
 '
 End If

 ' Free any unmanaged objects here.
 '
 disposed = True

 ' Call the base class implementation.
 MyBase.Dispose(disposing)
 End Sub

 Protected Overrides Sub Finalize()
 Dispose(False)
 End Sub
End Class

[!NOTE]
In C#, you override Object.Finalize by defining a destructor.

Using safe handles

Writing code for an object’s finalizer is a complex task that can cause problems if not done correctly. Therefore, we recommend that you construct System.Runtime.InteropServices.SafeHandle objects instead of implementing a finalizer.

Classes derived from the System.Runtime.InteropServices.SafeHandle class simplify object lifetime issues by assigning and releasing handles without interruption. They contain a critical finalizer that is guaranteed to run while an application domain is unloading. The following derived classes in the Microsoft.Win32.SafeHandles namespace provide safe handles:

		The SafeFileHandle, SafeMemoryMappedFileHandle, and SafePipeHandle class, for files, memory mapped files, and pipes.

		The SafeMemoryMappedViewHandle class, for memory views.

		The SafeNCryptKeyHandle, SafeNCryptProviderHandle, and SafeNCryptSecretHandle classes, for cryptography constructs.

		The SafeRegistryHandle class, for registry keys.

		The SafeWaitHandle class, for wait handles.

Using a safe handle to implement the dispose pattern for a base class

The following example illustrates the dispose pattern for a base class, DisposableStreamResource, that uses a safe handle to encapsulate unmanaged resources. It defines a DisposableResource class that uses a SafeFileHandle to wrap a Stream object that represents an open file. The DisposableResource method also includes a single property, Size, that returns the total number of bytes in the file stream.

using Microsoft.Win32.SafeHandles;
using System;
using System.IO;
using System.Runtime.InteropServices;

public class DisposableStreamResource : IDisposable
{
 // Define constants.
 protected const uint GENERIC_READ = 0x80000000;
 protected const uint FILE_SHARE_READ = 0x00000001;
 protected const uint OPEN_EXISTING = 3;
 protected const uint FILE_ATTRIBUTE_NORMAL = 0x80;
 protected IntPtr INVALID_HANDLE_VALUE = new IntPtr(-1);
 private const int INVALID_FILE_SIZE = unchecked((int) 0xFFFFFFFF);

 // Define Windows APIs.
 [DllImport("kernel32.dll", EntryPoint = "CreateFileW", CharSet = CharSet.Unicode)]
 protected static extern IntPtr CreateFile (
 string lpFileName, uint dwDesiredAccess,
 uint dwShareMode, IntPtr lpSecurityAttributes,
 uint dwCreationDisposition, uint dwFlagsAndAttributes,
 IntPtr hTemplateFile);

 [DllImport("kernel32.dll")]
 private static extern int GetFileSize(SafeFileHandle hFile, out int lpFileSizeHigh);

 // Define locals.
 private bool disposed = false;
 private SafeFileHandle safeHandle;
 private long bufferSize;
 private int upperWord;

 public DisposableStreamResource(string filename)
 {
 if (filename == null)
 throw new ArgumentNullException("The filename cannot be null.");
 else if (filename == "")
 throw new ArgumentException("The filename cannot be an empty string.");

 IntPtr handle = CreateFile(filename, GENERIC_READ, FILE_SHARE_READ,
 IntPtr.Zero, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 IntPtr.Zero);
 if (handle != INVALID_HANDLE_VALUE)
 safeHandle = new SafeFileHandle(handle, true);
 else
 throw new FileNotFoundException(String.Format("Cannot open '{0}'", filename));

 // Get file size.
 bufferSize = GetFileSize(safeHandle, out upperWord);
 if (bufferSize == INVALID_FILE_SIZE)
 bufferSize = -1;
 else if (upperWord > 0)
 bufferSize = (((long)upperWord) << 32) + bufferSize;
 }

 public long Size
 { get { return bufferSize; } }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposed) return;

 // Dispose of managed resources here.
 if (disposing)
 safeHandle.Dispose();

 // Dispose of any unmanaged resources not wrapped in safe handles.

 disposed = true;
 }
}

Imports Microsoft.Win32.SafeHandles
Imports System.IO

Public Class DisposableStreamResource : Implements IDisposable
 ' Define constants.
 Protected Const GENERIC_READ As UInteger = &H80000000ui
 Protected Const FILE_SHARE_READ As UInteger = &H0000000i
 Protected Const OPEN_EXISTING As UInteger = 3
 Protected Const FILE_ATTRIBUTE_NORMAL As UInteger = &H80
 Protected INVALID_HANDLE_VALUE As New IntPtr(-1)
 Private Const INVALID_FILE_SIZE As Integer = &HFFFFFFFF

 ' Define Windows APIs.
 Protected Declare Function CreateFile Lib "kernel32" Alias "CreateFileA" (
 lpFileName As String, dwDesiredAccess As UInt32,
 dwShareMode As UInt32, lpSecurityAttributes As IntPtr,
 dwCreationDisposition As UInt32, dwFlagsAndAttributes As UInt32,
 hTemplateFile As IntPtr) As IntPtr
 Private Declare Function GetFileSize Lib "kernel32" (hFile As SafeFileHandle,
 ByRef lpFileSizeHigh As Integer) As Integer

 ' Define locals.
 Private disposed As Boolean = False
 Private safeHandle As SafeFileHandle
 Private bufferSize As Long
 Private upperWord As Integer

 Public Sub New(filename As String)
 If filename Is Nothing Then
 Throw New ArgumentNullException("The filename cannot be null.")
 Else If filename = ""
 Throw New ArgumentException("The filename cannot be an empty string.")
 End If

 Dim handle As IntPtr = CreateFile(filename, GENERIC_READ, FILE_SHARE_READ,
 IntPtr.Zero, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
 IntPtr.Zero)
 If handle <> INVALID_HANDLE_VALUE Then
 safeHandle = New SafeFileHandle(handle, True)
 Else
 Throw New FileNotFoundException(String.Format("Cannot open '{0}'", filename))
 End If

 ' Get file size.
 bufferSize = GetFileSize(safeHandle, upperWord)
 If bufferSize = INVALID_FILE_SIZE Then
 bufferSize = -1
 Else If upperWord > 0 Then
 bufferSize = (CLng(upperWord) << 32) + bufferSize
 End If
 End Sub

 Public ReadOnly Property Size As Long
 Get
 Return bufferSize
 End Get
 End Property

 Public Sub Dispose() _
 Implements IDisposable.Dispose
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 Protected Overridable Sub Dispose(disposing As Boolean)
 If disposed Then Exit Sub

 ' Dispose of managed resources here.
 If disposing Then
 safeHandle.Dispose()
 End If

 ' Dispose of any unmanaged resources not wrapped in safe handles.

 disposed = True
 End Sub
End Class

Using a safe handle to implement the dispose pattern for a derived class

The following example illustrates the dispose pattern for a derived class, DisposableStreamResource2, that inherits from the DisposableStreamResource class presented in the previous example. The class adds an additional method, WriteFileInfo, and uses a SafeFileHandle object to wrap the handle of the writable file.

using Microsoft.Win32.SafeHandles;
using System;
using System.IO;
using System.Runtime.InteropServices;
using System.Threading;

public class DisposableStreamResource2 : DisposableStreamResource
{
 // Define additional constants.
 protected const uint GENERIC_WRITE = 0x40000000;
 protected const uint OPEN_ALWAYS = 4;

 // Define additional APIs.
 [DllImport("kernel32.dll")]
 protected static extern bool WriteFile(
 SafeFileHandle safeHandle, string lpBuffer,
 int nNumberOfBytesToWrite, out int lpNumberOfBytesWritten,
 IntPtr lpOverlapped);

 // Define locals.
 private bool disposed = false;
 private string filename;
 private bool created = false;
 private SafeFileHandle safeHandle;

 public DisposableStreamResource2(string filename) : base(filename)
 {
 this.filename = filename;
 }

 public void WriteFileInfo()
 {
 if (! created) {
 IntPtr hFile = CreateFile(xref:".\FileInfo.txt", GENERIC_WRITE, 0,
 IntPtr.Zero, OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, IntPtr.Zero);
 if (hFile != INVALID_HANDLE_VALUE)
 safeHandle = new SafeFileHandle(hFile, true);
 else
 throw new IOException("Unable to create output file.");

 created = true;
 }

 string output = String.Format("{0}: {1:N0} bytes\n", filename, Size);
 int bytesWritten;
 bool result = WriteFile(safeHandle, output, output.Length, out bytesWritten, IntPtr.Zero);
 }

 protected new virtual void Dispose(bool disposing)
 {
 if (disposed) return;

 // Release any managed resources here.
 if (disposing)
 safeHandle.Dispose();

 disposed = true;

 // Release any unmanaged resources not wrapped by safe handles here.

 // Call the base class implementation.
 base.Dispose(true);
 }
}

Imports Microsoft.Win32.SafeHandles
Imports System.IO

Public Class DisposableStreamResource2 : Inherits DisposableStreamResource
 ' Define additional constants.
 Protected Const GENERIC_WRITE As Integer = &H40000000
 Protected Const OPEN_ALWAYS As Integer = 4

 ' Define additional APIs.
 Protected Declare Function WriteFile Lib "kernel32.dll" (
 safeHandle As SafeFileHandle, lpBuffer As String,
 nNumberOfBytesToWrite As Integer, ByRef lpNumberOfBytesWritten As Integer,
 lpOverlapped As Object) As Boolean

 ' Define locals.
 Private disposed As Boolean = False
 Private filename As String
 Private created As Boolean = False
 Private safeHandle As SafeFileHandle

 Public Sub New(filename As String)
 MyBase.New(filename)
 Me.filename = filename
 End Sub

 Public Sub WriteFileInfo()
 If Not created Then
 Dim hFile As IntPtr = CreateFile(".\FileInfo.txt", GENERIC_WRITE, 0,
 IntPtr.Zero, OPEN_ALWAYS,
 FILE_ATTRIBUTE_NORMAL, IntPtr.Zero)
 If hFile <> INVALID_HANDLE_VALUE Then
 safeHandle = New SafeFileHandle(hFile, True)
 Else
 Throw New IOException("Unable to create output file.")
 End If
 created = True
 End If
 Dim output As String = String.Format("{0}: {1:N0} bytes {2}", filename, Size,
 vbCrLf)
 WriteFile(safeHandle, output, output.Length, 0&, Nothing)
 End Sub

 Protected Overloads Overridable Sub Dispose(disposing As Boolean)
 If disposed Then Exit Sub

 ' Release any managed resources here.
 If disposing Then
 safeHandle.Dispose()
 End If

 disposed = True
 ' Release any unmanaged resources not wrapped by safe handles here.

 ' Call the base class implementation.
 MyBase.Dispose(True)
 End Sub
End Class

See Also

SuppressFinalize

IDisposable

IDisposable.Dispose

Microsoft.Win32.SafeHandles

System.Runtime.InteropServices.SafeHandle

IDisposable.Dispose

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/classes.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Classes | C# Guide
description: Learn about the class types and how you create them
keywords: .NET, .NET Core, C#
author: dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: 95c686ba-ae4f-440e-8e94-0dbd6e04d11f

🔧 Classes

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/964] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/datetime/instantiating-a-datetimeoffset-object.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Instantiating a DateTimeOffset object
description: Instantiating a DateTimeOffset object
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 476fe67b-6be4-4435-88ab-ced37304f1d1

Instantiating a DateTimeOffset object

The System.DateTimeOffset structure offers a number of ways to create new DateTimeOffset values. Many of them correspond directly to the methods available for instantiating new System.DateTime values, with enhancements that allow you to specify the date and time value’s offset from Coordinated Universal Time (UTC). In particular, you can instantiate a DateTimeOffset value in the following ways:

		By calling a DateTimeOffset constructor.

		By implicitly converting a value to DateTimeOffset value.

		By parsing the string representation of a date and time.

Date and Time Literals

For languages that support it, one of the most common ways to instantiate a DateTime value is to provide the date and time as a hard-coded literal value. For example, the following Visual Basic code creates a DateTime object whose value is January 1, 2008, at 10:00 AM.

Dim literalDate1 As Date = #05/01/2008 8:06:32 AM#
Console.WriteLine(literalDate1.ToString())
' Displays:
' 5/1/2008 8:06:32 AM

DateTimeOffset values can also be initialized using date and time literals when using languages that support DateTime literals. For example, the following Visual Basic code creates a DateTimeOffset object.

Dim literalDate As DateTimeOffset = #05/01/2008 8:06:32 AM#
Console.WriteLine(literalDate.ToString())
' Displays:
' 5/1/2008 8:06:32 AM -07:00

As the console output shows, the DateTimeOffset value created in this way is assigned the offset of the local time zone. This means that a DateTimeOffset value assigned using a character literal does not identify a single point of time if the code is run on different computers.

DateTimeOffset Constructors

The System.DateTimeOffset type defines five constructors. Three of them correspond directly to DateTime constructors, with an additional parameter of type System.TimeSpan that defines the date and time’s offset from UTC. These allow you to define a DateTimeOffset value based on the value of its individual date and time components. For example, the following code uses these three constructors to instantiate DateTimeOffset objects with identical values of 7/1/2008 12:05 AM +01:00.

DateTimeOffset dateAndTime;

// Instantiate date and time using years, months, days,
// hours, minutes, and seconds
dateAndTime = new DateTimeOffset(2008, 5, 1, 8, 6, 32,
 new TimeSpan(1, 0, 0));
Console.WriteLine(dateAndTime);
// Instantiate date and time using years, months, days,
// hours, minutes, seconds, and milliseconds
dateAndTime = new DateTimeOffset(2008, 5, 1, 8, 6, 32, 545,
 new TimeSpan(1, 0, 0));
Console.WriteLine("{0} {1}", dateAndTime.ToString("G"),
 dateAndTime.ToString("zzz"));

// Instantiate date and time using number of ticks
// 05/01/2008 8:06:32 AM is 633,452,259,920,000,000 ticks
dateAndTime = new DateTimeOffset(633452259920000000, new TimeSpan(1, 0, 0));
Console.WriteLine(dateAndTime);
// The example displays the following output to the console:
// 5/1/2008 8:06:32 AM +01:00
// 5/1/2008 8:06:32 AM +01:00
// 5/1/2008 8:06:32 AM +01:00

Dim dateAndTime As DateTimeOffset

' Instantiate date and time using years, months, days,
' hours, minutes, and seconds
dateAndTime = New DateTimeOffset(2008, 5, 1, 8, 6, 32, _
 New TimeSpan(1, 0, 0))
Console.WriteLine(dateAndTime)
' Instantiate date and time using years, months, days,
' hours, minutes, seconds, and milliseconds
dateAndTime = New DateTimeOffset(2008, 5, 1, 8, 6, 32, 545, _
 New TimeSpan(1, 0, 0))
Console.WriteLine("{0} {1}", dateAndTime.ToString("G"), _
 dateAndTime.ToString("zzz"))

' Instantiate date and time using Persian calendar with years,
' months, days, hours, minutes, seconds, and milliseconds
dateAndTime = New DateTimeOffset(1387, 2, 12, 8, 6, 32, 545, New PersianCalendar, New TimeSpan(1, 0, 0))
' Note that the console output displays the date in the Gregorian
' calendar, not the Persian calendar.
Console.WriteLine("{0} {1}", dateAndTime.ToString("G"), _
 dateAndTime.ToString("zzz"))

' Instantiate date and time using number of ticks
' 05/01/2008 8:06:32 AM is 633,452,259,920,000,000 ticks
dateAndTime = New DateTimeOffset(633452259920000000, New TimeSpan(1, 0, 0))
Console.WriteLine(dateAndTime)
' The example displays the following output to the console:
' 5/1/2008 8:06:32 AM +01:00
' 5/1/2008 8:06:32 AM +01:00
' 5/1/2008 8:06:32 AM +01:00
' 5/1/2008 8:06:32 AM +01:00

Note that, when the value of the DateTimeOffset object instantiated using a PersianCalendar object as one of the arguments to its constructor is displayed to the console, it is expressed as a date in the Gregorian rather than the Persian calendar.

The other two constructors create a DateTimeOffset object from a DateTime value. The first of these has a single parameter, the DateTime value to convert to a DateTimeOffset value. The offset of the resulting DateTimeOffset value depends on the Kind property of the constructor’s single DateTime parameter. If its value is DateTimeKind.Utc, the offset is set equal to TimeSpan.Zero. Otherwise, its offset is set equal to that of the local time zone. The following example illustrates the use of this constructor to instantiate DateTimeOffset objects representing UTC and the local time zone:

// Declare date; Kind property is DateTimeKind.Unspecified
DateTime sourceDate = new DateTime(2008, 5, 1, 8, 30, 0);
DateTimeOffset targetTime;

// Instantiate a DateTimeOffset value from a UTC time
DateTime utcTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Utc);
targetTime = new DateTimeOffset(utcTime);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM +00:00
// Because the Kind property is DateTimeKind.Utc,
// the offset is TimeSpan.Zero.

// Instantiate a DateTimeOffset value from a UTC time with a zero offset
targetTime = new DateTimeOffset(utcTime, TimeSpan.Zero);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM +00:00
// Because the Kind property is DateTimeKind.Utc,
// the call to the constructor succeeds

// Instantiate a DateTimeOffset value from a UTC time with a negative offset
try
{
 targetTime = new DateTimeOffset(utcTime, new TimeSpan(-2, 0, 0));
 Console.WriteLine(targetTime);
}
catch (ArgumentException)
{
 Console.WriteLine("Attempt to create DateTimeOffset value from {0} failed.",
 targetTime);
}
// Throws exception and displays the following to the console:
// Attempt to create DateTimeOffset value from 5/1/2008 8:30:00 AM +00:00 failed.

// Instantiate a DateTimeOffset value from a local time
DateTime localTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Local);
targetTime = new DateTimeOffset(localTime);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -07:00
// Because the Kind property is DateTimeKind.Local,
// the offset is that of the local time zone.

// Instantiate a DateTimeOffset value from an unspecified time
targetTime = new DateTimeOffset(sourceDate);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -07:00
// Because the Kind property is DateTimeKind.Unspecified,
// the offset is that of the local time zone.

' Declare date; Kind property is DateTimeKind.Unspecified
Dim sourceDate As Date = #5/1/2008 8:30 AM#
Dim targetTime As DateTimeOffset

' Instantiate a DateTimeOffset value from a UTC time
Dim utcTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Utc)
targetTime = New DateTimeOffset(utcTime)
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM +00:00
' Because the Kind property is DateTimeKind.Utc,
' the offset is TimeSpan.Zero.

' Instantiate a DateTimeOffset value from a local time
Dim localTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Local)
targetTime = New DateTimeOffset(localTime)
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM -07:00
' Because the Kind property is DateTimeKind.Local,
' the offset is that of the local time zone.

' Instantiate a DateTimeOffset value from an unspecified time
targetTime = New DateTimeOffset(sourceDate)
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM -07:00
' Because the Kind property is DateTimeKind.Unspecified,
' the offset is that of the local time zone.

[!NOTE]
Calling the overload of the DateTimeOffset constructor that has a single DateTime parameter is equivalent to performing an implicit conversion of a DateTime value to a DateTimeOffset value.

The second constructor that creates a DateTimeOffset object from a DateTime value has two parameters: the DateTime value to convert, and a TimeSpan value representing the date and time’s offset from UTC. This offset value must correspond to the Kind property of the constructor’s first parameter or an System.ArgumentException is thrown. If the Kind property of the first parameter is DateTimeKind.Utc, the value of the second parameter must be TimeSpan.Zero. If the Kind property of the first parameter is DateTimeKind.Local, the value of the second parameter must be the offset of the local system’s time zone. If the Kind property of the first parameter is DateTimeKind.Unspecified, the offset can be any valid value. The following code illustrates calls to this constructor to convert DateTime to DateTimeOffset values.

DateTime sourceDate = new DateTime(2008, 5, 1, 8, 30, 0);
DateTimeOffset targetTime;

// Instantiate a DateTimeOffset value from a UTC time with a zero offset.
DateTime utcTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Utc);
targetTime = new DateTimeOffset(utcTime, TimeSpan.Zero);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM +00:00
// Because the Kind property is DateTimeKind.Utc,
// the call to the constructor succeeds

// Instantiate a DateTimeOffset value from a UTC time with a non-zero offset.
try
{
 targetTime = new DateTimeOffset(utcTime, new TimeSpan(-2, 0, 0));
 Console.WriteLine(targetTime);
}
catch (ArgumentException)
{
 Console.WriteLine("Attempt to create DateTimeOffset value from {0} failed.",
 utcTime);
}
// Throws exception and displays the following to the console:
// Attempt to create DateTimeOffset value from 5/1/2008 8:30:00 AM failed.

// Instantiate a DateTimeOffset value from a local time with
// the offset of the local time zone
DateTime localTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Local);
targetTime = new DateTimeOffset(localTime,
 TimeZoneInfo.Local.GetUtcOffset(localTime));
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -07:00
// Because the Kind property is DateTimeKind.Local and the offset matches
// that of the local time zone, the call to the constructor succeeds.

// Instantiate a DateTimeOffset value from a local time with a zero offset.
try
{
 targetTime = new DateTimeOffset(localTime, TimeSpan.Zero);
 Console.WriteLine(targetTime);
}
catch (ArgumentException)
{
 Console.WriteLine("Attempt to create DateTimeOffset value from {0} failed.",
 localTime);
}
// Throws exception and displays the following to the console:
// Attempt to create DateTimeOffset value from 5/1/2008 8:30:00 AM failed.

// Instantiate a DateTimeOffset value with an arbitary time zone.
string timeZoneName = "Central Standard Time";
TimeSpan offset = TimeZoneInfo.FindSystemTimeZoneById(timeZoneName).
 GetUtcOffset(sourceDate);
targetTime = new DateTimeOffset(sourceDate, offset);
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -05:00

Dim sourceDate As Date = #5/1/2008 8:30 AM#
Dim targetTime As DateTimeOffset

' Instantiate a DateTimeOffset value from a UTC time with a zero offset.
Dim utcTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Utc)
targetTime = New DateTimeOffset(utcTime, TimeSpan.Zero)
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM +00:00
' Because the Kind property is DateTimeKind.Utc,
' the call to the constructor succeeds.

' Instantiate a DateTimeOffset value from a UTC time with a non-zero offset.
Try
 targetTime = New DateTimeOffset(utcTime, New TimeSpan(-2, 0, 0))
 Console.WriteLine(targetTime)
Catch e As ArgumentException
 Console.WriteLine("Attempt to create DateTimeOffset value from {0} failed.", _
 utcTime)
End Try
' Throws exception and displays the following to the console:
' Attempt to create DateTimeOffset value from 5/1/2008 8:30:00 AM failed.

' Instantiate a DateTimeOffset value from a local time with
' the offset of the local time zone.
Dim localTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Local)
targetTime = New DateTimeOffset(localTime, _
 TimeZoneInfo.Local.GetUtcOffset(localTime))
Console.WriteLine(targetTime)
' Because the Kind property is DateTimeKind.Local and the offset matches
' that of the local time zone, the call to the constructor succeeds.

' Instantiate a DateTimeOffset value from a local time with a zero offset.
Try
 targetTime = New DateTimeOffset(localTime, TimeSpan.Zero)
 Console.WriteLine(targetTime)
Catch e As ArgumentException
 Console.WriteLine("Attempt to create DateTimeOffset value from {0} failed.", _
 localTime)
End Try
' Throws exception and displays the following to the console:
' Attempt to create DateTimeOffset value from 5/1/2008 8:30:00 AM failed.

' Instantiate a DateTimeOffset value with an arbitary time zone.
Dim timeZoneName As String = "Central Standard Time"
Dim offset As TimeSpan = TimeZoneInfo.FindSystemTimeZoneById(timeZoneName). _
 GetUtcOffset(sourceDate)
targetTime = New DateTimeOffset(sourceDate, offset)
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM -05:00

Implicit Type Conversion

The System.DateTimeOffset type supports one implicit type conversion: from a System.DateTime value to a DateTimeOffset value. (An implicit type conversion is a conversion from one type to another that does not require an explicit cast (in C#) or conversion (in Visual Basic) and that does not lose information. It makes code like the following possible.

DateTimeOffset targetTime;

// The Kind property of sourceDate is DateTimeKind.Unspecified
DateTime sourceDate = new DateTime(2008, 5, 1, 8, 30, 0);
targetTime = sourceDate;
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -07:00

// define a UTC time (Kind property is DateTimeKind.Utc)
DateTime utcTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Utc);
targetTime = utcTime;
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM +00:00

// Define a local time (Kind property is DateTimeKind.Local)
DateTime localTime = DateTime.SpecifyKind(sourceDate, DateTimeKind.Local);
targetTime = localTime;
Console.WriteLine(targetTime);
// Displays 5/1/2008 8:30:00 AM -07:00

Dim targetTime As DateTimeOffset

' The Kind property of sourceDate is DateTimeKind.Unspecified
Dim sourceDate As Date = #5/1/2008 8:30 AM#
targetTime = sourceDate
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM -07:00

' define a UTC time (Kind property is DateTimeKind.Utc)
Dim utcTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Utc)
targetTime = utcTime
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM +00:00

' Define a local time (Kind property is DateTimeKind.Local)
Dim localTime As Date = Date.SpecifyKind(sourceDate, DateTimeKind.Local)
targetTime = localTime
Console.WriteLine(targetTime)
' Displays 5/1/2008 8:30:00 AM -07:00

The offset of the resulting DateTimeOffset value depends on the DateTime.Kind](xref:System.DateTime.Kind) property value. If its value is DateTimeKind.Utc, the offset is set equal to TimeSpan.Zero. If its value is either DateTimeKind.Local or DateTimeKind.Unspecified, the offset is set equal to that of the local time zone.

Parsing the String Representation of a Date and Time

The System.DateTimeOffset type supports four methods that allow you to convert the string representation of a date and time into a DateTimeOffset value:

		Parse, which tries to convert the string representation of a date and time to a DateTimeOffset value and throws an exception if the conversion fails.

		TryParse, which tries to convert the string representation of a date and time to a DateTimeOffset value and returns false if the conversion fails.

		ParseExact, which tries to convert the string representation of a date and time in a specified format to a DateTimeOffset value. The method throws an exception if the conversion fails.

		TryParseExact, which tries to convert the string representation of a date and time in a specified format to a DateTimeOffset value. The method returns false if the conversion fails.

The following example illustrates calls to each of these four string conversion methods to instantiate a DateTimeOffset value.

string timeString;
DateTimeOffset targetTime;

timeString = "05/01/2008 8:30 AM +01:00";
try
{
 targetTime = DateTimeOffset.Parse(timeString);
 Console.WriteLine(targetTime);
}
catch (FormatException)
{
 Console.WriteLine("Unable to parse {0}.", timeString);
}

timeString = "05/01/2008 8:30 AM";
if (DateTimeOffset.TryParse(timeString, out targetTime))
 Console.WriteLine(targetTime);
else
 Console.WriteLine("Unable to parse {0}.", timeString);

timeString = "Thursday, 01 May 2008 08:30";
try
{
 targetTime = DateTimeOffset.ParseExact(timeString, "f",
 CultureInfo.InvariantCulture);
 Console.WriteLine(targetTime);
}
catch (FormatException)
{
 Console.WriteLine("Unable to parse {0}.", timeString);
}

timeString = "Thursday, 01 May 2008 08:30 +02:00";
string formatString;
formatString = CultureInfo.InvariantCulture.DateTimeFormat.LongDatePattern +
 " " +
 CultureInfo.InvariantCulture.DateTimeFormat.ShortTimePattern +
 " zzz";
if (DateTimeOffset.TryParseExact(timeString,
 formatString,
 CultureInfo.InvariantCulture,
 DateTimeStyles.AllowLeadingWhite,
 out targetTime))
 Console.WriteLine(targetTime);
else
 Console.WriteLine("Unable to parse {0}.", timeString);
// The example displays the following output to the console:
// 5/1/2008 8:30:00 AM +01:00
// 5/1/2008 8:30:00 AM -07:00
// 5/1/2008 8:30:00 AM -07:00
// 5/1/2008 8:30:00 AM +02:00

Dim timeString As String
Dim targetTime As DateTimeOffset

timeString = "05/01/2008 8:30 AM +01:00"
Try
 targetTime = DateTimeOffset.Parse(timeString)
 Console.WriteLine(targetTime)
Catch e As FormatException
 Console.WriteLine("Unable to parse {0}.", timeString)
End Try

timeString = "05/01/2008 8:30 AM"
If DateTimeOffset.TryParse(timeString, targetTime) Then
 Console.WriteLine(targetTime)
Else
 Console.WriteLine("Unable to parse {0}.", timeString)
End If

timeString = "Thursday, 01 May 2008 08:30"
Try
 targetTime = DateTimeOffset.ParseExact(timeString, "f", _
 CultureInfo.InvariantCulture)
 Console.WriteLine(targetTime)
Catch e As FormatException
 Console.WriteLine("Unable to parse {0}.", timeString)
End Try

timeString = "Thursday, 01 May 2008 08:30 +02:00"
Dim formatString As String
formatString = CultureInfo.InvariantCulture.DateTimeFormat.LongDatePattern & _
 " " & _
 CultureInfo.InvariantCulture.DateTimeFormat.ShortTimePattern & _
 " zzz"
If DateTimeOffset.TryParseExact(timeString, _
 formatString, _
 CultureInfo.InvariantCulture, _
 DateTimeStyles.AllowLeadingWhite, _
 targetTime) Then
 Console.WriteLine(targetTime)
Else
 Console.WriteLine("Unable to parse {0}.", timeString)
End If
' The example displays the following output to the console:
' 5/1/2008 8:30:00 AM +01:00
' 5/1/2008 8:30:00 AM -07:00
' 5/1/2008 8:30:00 AM -07:00
' 5/1/2008 8:30:00 AM +02:00

See Also

Dates, times, and time zones

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/structs.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Structs | C# Guide
description: Learn about the struct type and how you create them
keywords: .NET, .NET Core, C#
author: dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: a7094b8c-7229-4b6f-82fc-824d0ea0ec40

🔧 Structs

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/966] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/datetime/converting-between-datetime-and-offset.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Converting between DateTime and DateTimeOffset
description: Converting between DateTime and DateTimeOffset
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fab3af5b-5d0f-4384-a40a-1b5d99b30dd1

Converting between DateTime and DateTimeOffset

Although the System.DateTimeOffset structure provides a greater degree of time zone awareness than the System.DateTime structure, DateTime parameters are used more commonly in method calls. Because of this, the ability to convert DateTimeOffset values to DateTime values and vice versa is particularly important. This article shows how to perform these conversions in a way that preserves as much time zone information as possible.

[!NOTE]
Both the DateTime and the DateTimeOffset types have some limitations when representing times in time zones. With its Kind property, DateTime is able to reflect only Coordinated Universal Time (UTC) and the system’s local time zone. DateTimeOffset reflects a time’s offset from UTC, but it does not reflect the actual time zone to which that offset belongs. For details about time values and support for time zones, see Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo.

Conversions from DateTime to DateTimeOffset

The DateTimeOffset structure provides two equivalent ways to perform DateTime to DateTimeOffset conversion that are suitable for most conversions:

		The DateTimeOffset(DateTime) constructor, which creates a new DateTimeOffset object based on a DateTime value.

		The implicit conversion operator, which allows you to assign a DateTime value to a DateTimeOffset object.

For UTC and local DateTime values, the DateTimeOffset.Offset property of the resulting DateTimeOffset value accurately reflects the UTC or local time zone offset. For example, the following code converts a UTC time to its equivalent DateTimeOffset value.

DateTime utcTime1 = new DateTime(2008, 6, 19, 7, 0, 0);
utcTime1 = DateTime.SpecifyKind(utcTime1, DateTimeKind.Utc);
DateTimeOffset utcTime2 = utcTime1;
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}",
 utcTime1,
 utcTime1.Kind.ToString(),
 utcTime2);
// This example displays the following output to the console:
// Converted 6/19/2008 7:00:00 AM Utc to a DateTimeOffset value of 6/19/2008 7:00:00 AM +00:00

Dim utcTime1 As Date = Date.SpecifyKind(#06/19/2008 7:00AM#, _
 DateTimeKind.Utc)
Dim utcTime2 As DateTimeOffset = utcTime1
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}", _
 utcTime1, _
 utcTime1.Kind.ToString(), _
 utcTime2)
' This example displays the following output to the console:
' Converted 6/19/2008 7:00:00 AM Utc to a DateTimeOffset value of 6/19/2008 7:00:00 AM +00:00

In this case, the offset of the utcTime2 variable is 00:00. Similarly, the following code converts a local time to its equivalent DateTimeOffset value.

DateTime localTime1 = new DateTime(2008, 6, 19, 7, 0, 0);
localTime1 = DateTime.SpecifyKind(localTime1, DateTimeKind.Local);
DateTimeOffset localTime2 = localTime1;
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}",
 localTime1,
 localTime1.Kind.ToString(),
 localTime2);
// This example displays the following output to the console:
// Converted 6/19/2008 7:00:00 AM Local to a DateTimeOffset value of 6/19/2008 7:00:00 AM -07:00

Dim localTime1 As Date = Date.SpecifyKind(#06/19/2008 7:00AM#, DateTimeKind.Local)
Dim localTime2 As DateTimeOffset = localTime1
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}", _
 localTime1, _
 localTime1.Kind.ToString(), _
 localTime2)
' This example displays the following output to the console:
' Converted 6/19/2008 7:00:00 AM Local to a DateTimeOffset value of 6/19/2008 7:00:00 AM -07:00

However, for DateTime values whose Kind property is DateTimeKind.Unspecified, these two conversion methods produce a DateTimeOffset value whose offset is that of the local time zone. This is shown in the following example, which is run in the U.S. Pacific Standard Time zone.

DateTime time1 = new DateTime(2008, 6, 19, 7, 0, 0); // Kind is DateTimeKind.Unspecified
DateTimeOffset time2 = time1;
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}",
 time1,
 time1.Kind.ToString(),
 time2);
// This example displays the following output to the console:
// Converted 6/19/2008 7:00:00 AM Unspecified to a DateTimeOffset value of 6/19/2008 7:00:00 AM -07:00

Dim time1 As Date = #06/19/2008 7:00AM# ' Kind is DateTimeKind.Unspecified
Dim time2 As DateTimeOffset = time1
Console.WriteLine("Converted {0} {1} to a DateTimeOffset value of {2}", _
 time1, _
 time1.Kind.ToString(), _
 time2)
' This example displays the following output to the console:
' Converted 6/19/2008 7:00:00 AM Unspecified to a DateTimeOffset value of 6/19/2008 7:00:00 AM -07:00

If the DateTime value reflects the date and time in something other than the local time zone or UTC, you can convert it to a DateTimeOffset value and preserve its time zone information by calling the overloaded DateTimeOffset(DateTime, TimeSpan) constructor. For example, the following example instantiates a DateTimeOffset object that reflects Central Standard Time.

DateTime time1 = new DateTime(2008, 6, 19, 7, 0, 0); // Kind is DateTimeKind.Unspecified
try
{
 DateTimeOffset time2 = new DateTimeOffset(time1,
 TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(time1));
 Console.WriteLine("Converted {0} {1} to a DateTime value of {2}",
 time1,
 time1.Kind.ToString(),
 time2);
}
// Handle exception if time zone is not defined in registry
catch (TimeZoneNotFoundException)
{
 Console.WriteLine("Unable to identify target time zone for conversion.");
}
// This example displays the following output to the console:
// Converted 6/19/2008 7:00:00 AM Unspecified to a DateTime value of 6/19/2008 7:00:00 AM -05:00

Dim time1 As Date = #06/19/2008 7:00AM# ' Kind is DateTimeKind.Unspecified
Try
 Dim time2 As New DateTimeOffset(time1, _
 TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(time1))
 Console.WriteLine("Converted {0} {1} to a DateTime value of {2}", _
 time1, _
 time1.Kind.ToString(), _
 time2)
' Handle exception if time zone is not defined in registry
Catch e As TimeZoneNotFoundException
 Console.WriteLine("Unable to identify target time zone for conversion.")
End Try
' This example displays the following output to the console:
' Converted 6/19/2008 7:00:00 AM Unspecified to a DateTime value of 6/19/2008 7:00:00 AM -05:00

The second parameter to this constructor overload, a System.TimeSpan object that represents the time’s offset from UTC, should be retrieved by calling the TimeZoneInfo.GetUtcOffset(DateTime) method of the time’s corresponding time zone. The method’s single parameter is the DateTime value that represents the date and time to be converted. If the time zone supports daylight saving time, this parameter allows the method to determine the appropriate offset for that particular date and time.

Conversions from DateTimeOffset to DateTime

The DateTime property is most commonly used to perform DateTimeOffset to DateTime conversion. However, it returns a DateTime value whose Kind property is DateTimeKind.Unspecified, as the following example illustrates.

DateTime baseTime = new DateTime(2008, 6, 19, 7, 0, 0);
DateTimeOffset sourceTime;
DateTime targetTime;

// Convert UTC to DateTime value
sourceTime = new DateTimeOffset(baseTime, TimeSpan.Zero);
targetTime = sourceTime.DateTime;
Console.WriteLine("{0} converts to {1} {2}",
 sourceTime,
 targetTime,
 targetTime.Kind.ToString());

// Convert local time to DateTime value
sourceTime = new DateTimeOffset(baseTime,
 TimeZoneInfo.Local.GetUtcOffset(baseTime));
targetTime = sourceTime.DateTime;
Console.WriteLine("{0} converts to {1} {2}",
 sourceTime,
 targetTime,
 targetTime.Kind.ToString());

// Convert Central Standard Time to a DateTime value
try
{
 TimeSpan offset = TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(baseTime);
 sourceTime = new DateTimeOffset(baseTime, offset);
 targetTime = sourceTime.DateTime;
 Console.WriteLine("{0} converts to {1} {2}",
 sourceTime,
 targetTime,
 targetTime.Kind.ToString());
}
catch (TimeZoneNotFoundException)
{
 Console.WriteLine("Unable to create DateTimeOffset based on U.S. Central Standard Time.");
}
// This example displays the following output to the console:
// 6/19/2008 7:00:00 AM +00:00 converts to 6/19/2008 7:00:00 AM Unspecified
// 6/19/2008 7:00:00 AM -07:00 converts to 6/19/2008 7:00:00 AM Unspecified
// 6/19/2008 7:00:00 AM -05:00 converts to 6/19/2008 7:00:00 AM Unspecified

Const baseTime As Date = #06/19/2008 7:00AM#
Dim sourceTime As DateTimeOffset
Dim targetTime As Date

' Convert UTC to DateTime value
sourceTime = New DateTimeOffset(baseTime, TimeSpan.Zero)
targetTime = sourceTime.DateTime
Console.WriteLine("{0} converts to {1} {2}", _
 sourceTime, _
 targetTime, _
 targetTime.Kind.ToString())

' Convert local time to DateTime value
sourceTime = New DateTimeOffset(baseTime, _
 TimeZoneInfo.Local.GetUtcOffset(baseTime))
targetTime = sourceTime.DateTime
Console.WriteLine("{0} converts to {1} {2}", _
 sourceTime, _
 targetTime, _
 targetTime.Kind.ToString())

' Convert Central Standard Time to a DateTime value
Try
 Dim offset As TimeSpan = TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(baseTime)
 sourceTime = New DateTimeOffset(baseTime, offset)
 targetTime = sourceTime.DateTime
Console.WriteLine("{0} converts to {1} {2}", _
 sourceTime, _
 targetTime, _
 targetTime.Kind.ToString())
Catch e As TimeZoneNotFoundException
 Console.WriteLine("Unable to create DateTimeOffset based on U.S. Central Standard Time.")
End Try
' This example displays the following output to the console:
' 6/19/2008 7:00:00 AM +00:00 converts to 6/19/2008 7:00:00 AM Unspecified
' 6/19/2008 7:00:00 AM -07:00 converts to 6/19/2008 7:00:00 AM Unspecified
' 6/19/2008 7:00:00 AM -05:00 converts to 6/19/2008 7:00:00 AM Unspecified

This means that any information about the DateTimeOffset value’s relationship to UTC is lost by the conversion when the DateTime property is used. This affects DateTimeOffset values that correspond to UTC time or to the system’s local time because the DateTime structure reflects only those two time zones in its Kind property.

To preserve as much time zone information as possible when converting a DateTimeOffset to a DateTime value, you can use the DateTimeOffset.UtcDateTime and DateTimeOffset.LocalDateTime properties.

Converting a UTC Time

To indicate that a converted DateTime value is the UTC time, you can retrieve the value of the DateTimeOffset.UtcDateTime property. It differs from the DateTimeOffset.DateTime property in two ways:

		It returns a DateTime value whose Kind property is DateTimeKind.Utc.

		If the DateTimeOffset.Offset property value does not equal TimeSpan.Zero, it converts the time to UTC.

[!NOTE]
If your application requires that converted DateTime values unambiguously identify a single point in time, you should consider using the DateTimeOffset.UtcDateTime property to handle all DateTimeOffset to DateTime conversions.

The following code uses the UtcDateTime property to convert a DateTimeOffset value whose offset equals TimeSpan.Zero to a DateTime value.

DateTimeOffset utcTime1 = new DateTimeOffset(2008, 6, 19, 7, 0, 0, TimeSpan.Zero);
DateTime utcTime2 = utcTime1.UtcDateTime;
Console.WriteLine("{0} converted to {1} {2}",
 utcTime1,
 utcTime2,
 utcTime2.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM +00:00 converted to 6/19/2008 7:00:00 AM Utc

Dim utcTime1 As New DateTimeOffset(#06/19/2008 7:00AM#, TimeSpan.Zero)
Dim utcTime2 As Date = utcTime1.UtcDateTime
Console.WriteLine("{0} converted to {1} {2}", _
 utcTime1, _
 utcTime2, _
 utcTime2.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM +00:00 converted to 6/19/2008 7:00:00 AM Utc

The following code uses the UtcDateTime property to perform both a time zone conversion and a type conversion on a DateTimeOffset value.

DateTimeOffset originalTime = new DateTimeOffset(2008, 6, 19, 7, 0, 0, new TimeSpan(5, 0, 0));
DateTime utcTime = originalTime.UtcDateTime;
Console.WriteLine("{0} converted to {1} {2}",
 originalTime,
 utcTime,
 utcTime.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM +05:00 converted to 6/19/2008 2:00:00 AM Utc

Dim originalTime As New DateTimeOffset(#6/19/2008 7:00AM#, _
 New TimeSpan(5, 0, 0))
Dim utcTime As Date = originalTime.UtcDateTime
Console.WriteLine("{0} converted to {1} {2}", _
 originalTime, _
 utcTime, _
 utcTime.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM +05:00 converted to 6/19/2008 2:00:00 AM Utc

Converting a Local Time

To indicate that a DateTimeOffset value represents the local time, you can pass the DateTime value returned by the DateTimeOffset.DateTime property to the static DateTime.SpecifyKind(DateTime, DateTimeKind) method. The method returns the date and time passed to it as its first parameter, but sets the Kind property to the value specified by its second parameter. The following code uses the SpecifyKind(DateTime, DateTimeKind) method when converting a DateTimeOffset value whose offset corresponds to that of the local time zone.

DateTime sourceDate = new DateTime(2008, 6, 19, 7, 0, 0);
DateTimeOffset utcTime1 = new DateTimeOffset(sourceDate,
 TimeZoneInfo.Local.GetUtcOffset(sourceDate));
DateTime utcTime2 = utcTime1.DateTime;
if (utcTime1.Offset.Equals(TimeZoneInfo.Local.GetUtcOffset(utcTime1.DateTime)))
 utcTime2 = DateTime.SpecifyKind(utcTime2, DateTimeKind.Local);

Console.WriteLine("{0} converted to {1} {2}",
 utcTime1,
 utcTime2,
 utcTime2.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local

Dim sourceDate As Date = #06/19/2008 7:00AM#
Dim utcTime1 As New DateTimeOffset(sourceDate, _
 TimeZoneInfo.Local.GetUtcOffset(sourceDate))
Dim utcTime2 As Date = utcTime1.DateTime
If utcTime1.Offset.Equals(TimeZoneInfo.Local.GetUtcOffset(utcTime1.DateTime)) Then
 utcTime2 = DateTime.SpecifyKind(utcTime2, DateTimeKind.Local)
End If
Console.WriteLine("{0} converted to {1} {2}", _
 utcTime1, _
 utcTime2, _
 utcTime2.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local

You can also use the DateTimeOffset.LocalDateTime property to convert a DateTimeOffset value to a local DateTime value. The Kind property of the returned DateTime value is DateTimeKind.Local. The following code uses the DateTimeOffset.LocalDateTime property when converting a DateTimeOffset value whose offset corresponds to that of the local time zone.

DateTime sourceDate = new DateTime(2008, 6, 19, 7, 0, 0);
DateTimeOffset localTime1 = new DateTimeOffset(sourceDate,
 TimeZoneInfo.Local.GetUtcOffset(sourceDate));
DateTime localTime2 = localTime1.LocalDateTime;

Console.WriteLine("{0} converted to {1} {2}",
 localTime1,
 localTime2,
 localTime2.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local

Dim sourceDate As Date = #06/19/2008 7:00AM#
Dim localTime1 As New DateTimeOffset(sourceDate, _
 TimeZoneInfo.Local.GetUtcOffset(sourceDate))
Dim localTime2 As Date = localTime1.LocalDateTime
Console.WriteLine("{0} converted to {1} {2}", _
 localTime1, _
 localTime2, _
 localTime2.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local

When you retrieve a DateTime value using the DateTimeOffset.LocalDateTime property, the property’s get accessor first converts the DateTimeOffset value to UTC, then converts it to local time by calling the DateTimeOffset.ToLocalTime method. This means that you can retrieve a value from the DateTimeOffset.LocalDateTime property to perform a time zone conversion at the same time that you perform a type conversion. It also means that the local time zone’s adjustment rules are applied in performing the conversion. The following code illustrates the use of the DateTimeOffset.LocalDateTime property to perform both a type and a time zone conversion.

DateTimeOffset originalDate;
DateTime localDate;

// Convert time originating in a different time zone
originalDate = new DateTimeOffset(2008, 6, 18, 7, 0, 0,
 new TimeSpan(-5, 0, 0));
localDate = originalDate.LocalDateTime;
Console.WriteLine("{0} converted to {1} {2}",
 originalDate,
 localDate,
 localDate.Kind.ToString());
// Convert time originating in a different time zone
// so local time zone's adjustment rules are applied
originalDate = new DateTimeOffset(2007, 11, 4, 4, 0, 0,
 new TimeSpan(-5, 0, 0));
localDate = originalDate.LocalDateTime;
Console.WriteLine("{0} converted to {1} {2}",
 originalDate,
 localDate,
 localDate.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM -05:00 converted to 6/19/2008 5:00:00 AM Local
// 11/4/2007 4:00:00 AM -05:00 converted to 11/4/2007 1:00:00 AM Local

Dim originalDate As DateTimeOffset
Dim localDate As Date

' Convert time originating in a different time zone
originalDate = New DateTimeOffset(#06/19/2008 7:00AM#, _
 New TimeSpan(-5, 0, 0))
localDate = originalDate.LocalDateTime
Console.WriteLine("{0} converted to {1} {2}", _
 originalDate, _
 localDate, _
 localDate.Kind.ToString())
' Convert time originating in a different time zone
' so local time zone's adjustment rules are applied
originalDate = New DateTimeOffset(#11/04/2007 4:00AM#, _
 New TimeSpan(-5, 0, 0))
localDate = originalDate.LocalDateTime
Console.WriteLine("{0} converted to {1} {2}", _
 originalDate, _
 localDate, _
 localDate.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM -05:00 converted to 6/19/2008 5:00:00 AM Local
' 11/4/2007 4:00:00 AM -05:00 converted to 11/4/2007 1:00:00 AM Local

A General-Purpose Conversion Method

The following example defines a method named ConvertFromDateTimeOffset that converts DateTimeOffset values to DateTime values. Based on its offset, it determines whether the DateTimeOffset value is a UTC time, a local time, or some other time, and defines the returned date and time value’s Kind property accordingly.

static DateTime ConvertFromDateTimeOffset(DateTimeOffset dateTime)
{
 if (dateTime.Offset.Equals(TimeSpan.Zero))
 return dateTime.UtcDateTime;
 else if (dateTime.Offset.Equals(TimeZoneInfo.Local.GetUtcOffset(dateTime.DateTime)))
 return DateTime.SpecifyKind(dateTime.DateTime, DateTimeKind.Local);
 else
 return dateTime.DateTime;
}

Function ConvertFromDateTimeOffset(dateTime As DateTimeOffset) As Date
 If dateTime.Offset.Equals(TimeSpan.Zero) Then
 Return dateTime.UtcDateTime
 ElseIf dateTime.Offset.Equals(TimeZoneInfo.Local.GetUtcOffset(dateTime.DateTime))
 Return Date.SpecifyKind(dateTime.DateTime, DateTimeKind.Local)
 Else
 Return dateTime.DateTime
 End If

The follow example calls the ConvertFromDateTimeOffset method to convert DateTimeOffset values that represent a UTC time, a local time, and a time in the U.S. Central Standard Time zone.

DateTime timeComponent = new DateTime(2008, 6, 19, 7, 0, 0);
DateTime returnedDate;

// Convert UTC time
DateTimeOffset utcTime = new DateTimeOffset(timeComponent, TimeSpan.Zero);
returnedDate = ConvertFromDateTimeOffset(utcTime);
Console.WriteLine("{0} converted to {1} {2}",
 utcTime,
 returnedDate,
 returnedDate.Kind.ToString());

// Convert local time
DateTimeOffset localTime = new DateTimeOffset(timeComponent,
 TimeZoneInfo.Local.GetUtcOffset(timeComponent));
returnedDate = ConvertFromDateTimeOffset(localTime);
Console.WriteLine("{0} converted to {1} {2}",
 localTime,
 returnedDate,
 returnedDate.Kind.ToString());

// Convert Central Standard Time
DateTimeOffset cstTime = new DateTimeOffset(timeComponent,
 TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(timeComponent));
returnedDate = ConvertFromDateTimeOffset(cstTime);
Console.WriteLine("{0} converted to {1} {2}",
 cstTime,
 returnedDate,
 returnedDate.Kind.ToString());
// The example displays the following output to the console:
// 6/19/2008 7:00:00 AM +00:00 converted to 6/19/2008 7:00:00 AM Utc
// 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local
// 6/19/2008 7:00:00 AM -05:00 converted to 6/19/2008 7:00:00 AM Unspecified

Dim timeComponent As Date = #06/19/2008 7:00AM#
Dim returnedDate As Date

' Convert UTC time
Dim utcTime As New DateTimeOffset(timeComponent, TimeSpan.Zero)
returnedDate = ConvertFromDateTimeOffset(utcTime)
Console.WriteLine("{0} converted to {1} {2}", _
 utcTime, _
 returnedDate, _
 returnedDate.Kind.ToString())

' Convert local time
Dim localTime As New DateTimeOffset(timeComponent, _
 TimeZoneInfo.Local.GetUtcOffset(timeComponent))
returnedDate = ConvertFromDateTimeOffset(localTime)
Console.WriteLine("{0} converted to {1} {2}", _
 localTime, _
 returnedDate, _
 returnedDate.Kind.ToString())

' Convert Central Standard Time
Dim cstTime As New DateTimeOffset(timeComponent, _
 TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time").GetUtcOffset(timeComponent))
returnedDate = ConvertFromDateTimeOffset(cstTime)
Console.WriteLine("{0} converted to {1} {2}", _
 cstTime, _
 returnedDate, _
 returnedDate.Kind.ToString())
' The example displays the following output to the console:
' 6/19/2008 7:00:00 AM +00:00 converted to 6/19/2008 7:00:00 AM Utc
' 6/19/2008 7:00:00 AM -07:00 converted to 6/19/2008 7:00:00 AM Local
' 6/19/2008 7:00:00 AM -05:00 converted to 6/19/2008 7:00:00 AM Unspecified

Note that this code makes two assumptions that, depending on the application and the source of its date and time values, may not always be valid:

		It assumes that a date and time value whose offset is TimeSpan.Zero represents UTC. In fact, UTC is not a time in a particular time zone, but the time in relation to which the times in the world’s time zones are standardized. Time zones can also have an offset of Zero.

		It assumes that a date and time whose offset equals that of the local time zone represents the local time zone. Because date and time values are disassociated from their original time zone, this may not be the case; the date and time can have originated in another time zone with the same offset.

See Also

Dates, times, and time zones

 © Copyright 2016.
 Created using Sphinx 1.3.5.

csharp/syntax.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Syntax
description: Syntax
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 901184ac-1370-40b0-ad57-1f674890befe

🔧 Syntax

Note

This topic hasn’t been written yet!

We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/485] at GitHub.

If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.

Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/garbagecollection/unmanaged.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Cleaning up unmanaged resources
description: Cleaning up unmanaged resources
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8c97c3e2-8619-47ce-ae29-d6a3140bfa83

Cleaning up unmanaged resources

For the majority of the objects that your app creates, you can rely on the .NET garbage collector to handle memory management. However, when you create objects that include unmanaged resources, you must explicitly release those resources when you finish using them in your app. The most common types of unmanaged resource are objects that wrap operating system resources, such as files, windows, network connections, or database connections. Although the garbage collector is able to track the lifetime of an object that encapsulates an unmanaged resource, it doesn’t know how to release and clean up the unmanaged resource.

If your types use unmanaged resources, you should do the following:

		Implement the dispose pattern. This requires that you provide an IDisposable.Dispose implementation to enable the deterministic release of unmanaged resources. A consumer of your type calls Dispose when the object (and the resources it uses) is no longer needed. The Dispose method immediately releases the unmanaged resources.

		Provide for your unmanaged resources to be released in the event that a consumer of your type forgets to call Dispose. There are two ways to do this:

		Use a safe handle to wrap your unmanaged resource. This is the recommended technique. Safe handles are derived from the System.Runtime.InteropServices.SafeHandle class and include a robust Finalize method. When you use a safe handle, you simply implement the IDisposable interface and call your safe handle’s Dispose method in your IDisposable.Dispose implementation. The safe handle’s finalizer is called automatically by the garbage collector if its Dispose method is not called.

—or—

		Override the Object.Finalize method. Finalization enables the non-deterministic release of unmanaged resources when the consumer of a type fails to call IDisposable.Dispose to dispose of them deterministically. However, because object finalization can be a complex and error-prone operation, we recommend that you use a safe handle instead of providing your own finalizer.

Consumers of your type can then call your IDisposable.Dispose implementation directly to free memory used by unmanaged resources. When you properly implement a Dispose method, either your safe handle’s Finalize method or your own override of the Object.Finalize method becomes a safeguard to clean up resources in the event that the Dispose method is not called.

In This Section

Implementing a dispose method - Describes how to implement the dispose pattern for releasing unmanaged resources.

Using objects that implement IDisposable - Describes how consumers of a type ensure that its Dispose implementation is called. We recommend using the C# using statement or the Visual Basic Using statement to do this.

Reference

System.IDisposable - Defines the Dispose method for releasing unmanaged resources.

Object.Finalize - Provides for object finalization if unmanaged resources are not released by the Dispose method.

GC.SuppressFinalize - Suppresses finalization. This method is customarily called from a Dispose method to prevent a finalizer from executing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

standard/garbagecollection/gc.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Automatic memory management and garbage collection
description: Automatic memory management and garbage collection
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 07/22/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d095b0b6-2454-4e23-80b4-c9e8a447116c

Automatic memory management and garbage collection

Automatic memory management is one of the services that the Common Language Runtime provides during managed nxecution. The Common Language Runtime’s garbage collector manages the allocation and release of memory for an application. For developers, this means that you do not have to write code to perform memory management tasks when you develop managed applications. Automatic memory management can eliminate common problems, such as forgetting to free an object and causing a memory leak, or attempting to access memory for an object that has already been freed. This section describes how the garbage collector allocates and releases memory.

Allocating Memory

When you initialize a new process, the runtime reserves a contiguous region of address space for the process. This reserved address space is called the managed heap. The managed heap maintains a pointer to the address where the next object in the heap will be allocated. Initially, this pointer is set to the managed heap’s base address. All reference types are allocated on the managed heap. When an application creates the first reference type, memory is allocated for the type at the base address of the managed heap. When the application creates the next object, the garbage collector allocates memory for it in the address space immediately following the first object. As long as address space is available, the garbage collector continues to allocate space for new objects in this manner.

Allocating memory from the managed heap is faster than unmanaged memory allocation. Because the runtime allocates memory for an object by adding a value to a pointer, it is almost as fast as allocating memory from the stack. In addition, because new objects that are allocated consecutively are stored contiguously in the managed heap, an application can access the objects very quickly.

Releasing Memory

The garbage collector’s optimizing engine determines the best time to perform a collection based on the allocations being made. When the garbage collector performs a collection, it releases the memory for objects that are no longer being used by the application. It determines which objects are no longer being used by examining the application’s roots. Every application has a set of roots. Each root either refers to an object on the managed heap or is set to null. An application’s roots include static fields, local variables and parameters on a thread’s stack, and CPU registers. The garbage collector has access to the list of active roots that the just-in-time (JIT) compiler and the runtime maintain. Using this list, it examines an application’s roots, and in the process creates a graph that contains all the objects that are reachable from the roots.

Objects that are not in the graph are unreachable from the application’s roots. The garbage collector considers unreachable objects garbage and will release the memory allocated for them. During a collection, the garbage collector examines the managed heap, looking for the blocks of address space occupied by unreachable objects. As it discovers each unreachable object, it uses a memory-copying function to compact the reachable objects in memory, freeing up the blocks of address spaces allocated to unreachable objects. Once the memory for the reachable objects has been compacted, the garbage collector makes the necessary pointer corrections so that the application’s roots point to the objects in their new locations. It also positions the managed heap’s pointer after the last reachable object. Note that memory is compacted only if a collection discovers a significant number of unreachable objects. If all the objects in the managed heap survive a collection, then there is no need for memory compaction.

To improve performance, the runtime allocates memory for large objects in a separate heap. The garbage collector automatically releases the memory for large objects. However, to avoid moving large objects in memory, this memory is not compacted.

Generations and Performance

To optimize the performance of the garbage collector, the managed heap is divided into three generations: 0, 1, and 2. The runtime’s garbage collection algorithm is based on several generalizations that the computer software industry has discovered to be true by experimenting with garbage collection schemes. First, it is faster to compact the memory for a portion of the managed heap than for the entire managed heap. Secondly, newer objects will have shorter lifetimes and older objects will have longer lifetimes. Lastly, newer objects tend to be related to each other and accessed by the application around the same time.

The runtime’s garbage collector stores new objects in generation 0. Objects created early in the application’s lifetime that survive collections are promoted and stored in generations 1 and 2. The process of object promotion is described later in this topic. Because it is faster to compact a portion of the managed heap than the entire heap, this scheme allows the garbage collector to release the memory in a specific generation rather than release the memory for the entire managed heap each time it performs a collection.

In reality, the garbage collector performs a collection when generation 0 is full. If an application attempts to create a new object when generation 0 is full, the garbage collector discovers that there is no address space remaining in generation 0 to allocate for the object. The garbage collector performs a collection in an attempt to free address space in generation 0 for the object. The garbage collector starts by examining the objects in generation 0 rather than all objects in the managed heap. This is the most efficient approach, because new objects tend to have short lifetimes, and it is expected that many of the objects in generation 0 will no longer be in use by the application when a collection is performed. In addition, a collection of generation 0 alone often reclaims enough memory to allow the application to continue creating new objects.

After the garbage collector performs a collection of generation 0, it compacts the memory for the reachable objects as explained in Releasing Memory earlier in this topic. The garbage collector then promotes these objects and considers this portion of the managed heap generation 1. Because objects that survive collections tend to have longer lifetimes, it makes sense to promote them to a higher generation. As a result, the garbage collector does not have to reexamine the objects in generations 1 and 2 each time it performs a collection of generation 0.

After the garbage collector performs its first collection of generation 0 and promotes the reachable objects to generation 1, it considers the remainder of the managed heap generation 0. It continues to allocate memory for new objects in generation 0 until generation 0 is full and it is necessary to perform another collection. At this point, the garbage collector’s optimizing engine determines whether it is necessary to examine the objects in older generations. For example, if a collection of generation 0 does not reclaim enough memory for the application to successfully complete its attempt to create a new object, the garbage collector can perform a collection of generation 1, then generation 2. If this does not reclaim enough memory, the garbage collector can perform a collection of generations 2, 1, and 0. After each collection, the garbage collector compacts the reachable objects in generation 0 and promotes them to generation 1. Objects in generation 1 that survive collections are promoted to generation 2. Because the garbage collector supports only three generations, objects in generation 2 that survive a collection remain in generation 2 until they are determined to be unreachable in a future collection.

Releasing Memory for Unmanaged Resources

For the majority of the objects that your application creates, you can rely on the garbage collector to automatically perform the necessary memory management tasks. However, unmanaged resources require explicit cleanup. The most common type of unmanaged resource is an object that wraps an operating system resource, such as a file handle, window handle, or network connection. Although the garbage collector is able to track the lifetime of a managed object that encapsulates an unmanaged resource, it does not have specific knowledge about how to clean up the resource. When you create an object that encapsulates an unmanaged resource, it is recommended that you provide the necessary code to clean up the unmanaged resource in a public Dispose method. By providing a Dispose method, you enable users of your object to explicitly free its memory when they are finished with the object. When you use an object that encapsulates an unmanaged resource, you should be aware of Dispose and call it as necessary. For more information about cleaning up unmanaged resources and an example of a design pattern for implementing Dispose, see Garbage Collection in .NET.

See Also

System.GC

Garbage collection in .NET

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

fsharp/language-reference/symbol-and-operator-reference/index.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Symbol and Operator Reference (F#)
description: Symbol and Operator Reference (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: ab453800-d4d0-4a11-9d55-2b358d56af27

Symbol and Operator Reference

[!NOTE]
The API reference links in this article will take you to MSDN. The docs.microsoft.com API reference is not complete.

This topic includes a table of symbols and operators that are used in the F# language.

Table of Symbols and Operators

The following table describes symbols used in the F# language, provides links to topics that provide more information, and provides a brief description of some of the uses of the symbol. Symbols are ordered according to the ASCII character set ordering.

|Symbol or operator|Links|Description|
|——————|—–|———–|
|!|Reference Cells

Computation Expressions|

		Dereferences a reference cell.

		After a keyword, indicates a modified version of the keyword’s behavior as controlled by a workflow.

|
|!=|Not applicable.|		Not used in F#. Use <> for inequality operations.

|
|"|Literals

Strings|		Delimits a text string.

|
|"""|Strings|Delimits a verbatim text string. Differs from @"..." in that a you can indicate a quotation mark character by using a single quote in the string.|
|#|Compiler Directives

Flexible Types|		Prefixes a preprocessor or compiler directive, such as #light.

		When used with a type, indicates a flexible type, which refers to a type or any one of its derived types.

|
|$|No more information available.|		Used internally for certain compiler-generated variable and function names.

|
|%|Arithmetic Operators

Code Quotations|		Computes the integer modulus.

		Used for splicing expressions into typed code quotations.

|
|%%|Code Quotations|		Used for splicing expressions into untyped code quotations.

|
|%?|Nullable Operators|		Computes the integer modulus, when the right side is a nullable type.

|
|&|Match Expressions|		Computes the address of a mutable value, for use when interoperating with other languages.

		Used in AND patterns.

|
|&&|Boolean Operators|		Computes the Boolean AND operation.

|
|&&&|Bitwise Operators|		Computes the bitwise AND operation.

|
|'|Literals

Automatic Generalization|		Delimits a single-character literal.

		Indicates a generic type parameter.

|
|`

`

...`

`

|No more information available.|		Delimits an identifier that would otherwise not be a legal identifier, such as a language keyword.

|
|()|Unit Type|		Represents the single value of the unit type.

|
|(...)|Tuples

Operator Overloading|		Indicates the order in which expressions are evaluated.

		Delimits a tuple.

		Used in operator definitions.

|
|(*...*)||		Delimits a comment that could span multiple lines.

|
|(|

...|

)|Active Patterns|		Delimits an active pattern. Also called banana clips.

|
|*|Arithmetic Operators

Tuples

Units of Measure|		When used as a binary operator, multiplies the left and right sides.

		In types, indicates pairing in a tuple.

		Used in units of measure types.

|
|*?|Nullable Operators|		Multiplies the left and right sides, when the right side is a nullable type.

|
|**|Arithmetic Operators|		Computes the exponentiation operation (x ** y means x to the power of y).

|
|+|Arithmetic Operators|		When used as a binary operator, adds the left and right sides.

		When used as a unary operator, indicates a positive quantity. (Formally, it produces the same value with the sign unchanged.)

|
|+?|Nullable Operators|		Adds the left and right sides, when the right side is a nullable type.

|
|,|Tuples|		Separates the elements of a tuple, or type parameters.

|
|-|Arithmetic Operators|		When used as a binary operator, subtracts the right side from the left side.

		When used as a unary operator, performs a negation operation.

|
|-|Nullable Operators|		Subtracts the right side from the left side, when the right side is a nullable type.

|
|->|Functions

Match Expressions|		In function types, delimits arguments and return values.

		Yields an expression (in sequence expressions); equivalent to the yield keyword.

		Used in match expressions

|
|.|Members

Primitive Types|		Accesses a member, and separates individual names in a fully qualified name.

		Specifies a decimal point in floating point numbers.

|
|..|Loops: for...in Expression|		Specifies a range.

|
|.. ..|Loops: for...in Expression|		Specifies a range together with an increment.

|
|.[...]|Arrays|		Accesses an array element.

|
|/|Arithmetic Operators

Units of Measure|		Divides the left side (numerator) by the right side (denominator).

		Used in units of measure types.

|
|/?|Nullable Operators|		Divides the left side by the right side, when the right side is a nullable type.

|
|//||		Indicates the beginning of a single-line comment.

|
|///|XML Documentation|		Indicates an XML comment.

|
|:|Functions|		In a type annotation, separates a parameter or member name from its type.

|
|::|Lists

Match Expressions|		Creates a list. The element on the left side is prepended to the list on the right side.

		Used in pattern matching to separate the parts of a list.

|
|:=|Reference Cells|		Assigns a value to a reference cell.

|
|:>|Casting and Conversions|		Converts a type to type that is higher in the hierarchy.

|
|:?|Match Expressions|		Returns true if the value matches the specified type; otherwise, returns false (type test operator).

|
|:?>|Casting and Conversions|		Converts a type to a type that is lower in the hierarchy.

|
|;|Verbose Syntax

Lists

Records|		Separates expressions (used mostly in verbose syntax).

		Separates elements of a list.

		Separates fields of a record.

|
|<|Arithmetic Operators|		Computes the less-than operation.

|
|<?|Nullable Operators|Computes the less than operation, when the right side is a nullable type.|
|<<|Functions|		Composes two functions in reverse order; the second one is executed first (backward composition operator).

|
|<<<|Bitwise Operators|		Shifts bits in the quantity on the left side to the left by the number of bits specified on the right side.

|
|<-|Values|		Assigns a value to a variable.

|
|<...>|Automatic Generalization|		Delimits type parameters.

|
|<>|Arithmetic Operators|		Returns true if the left side is not equal to the right side; otherwise, returns false.

|
|<>?|Nullable Operators|		Computes the “not equal” operation when the right side is a nullable type.

|
|<=|Arithmetic Operators|		Returns true if the left side is less than or equal to the right side; otherwise, returns false.

|
|<=?|Nullable Operators|		Computes the “less than or equal to” operation when the right side is a nullable type.

|
|<

|

|Functions|		Passes the result of the expression on the right side to the function on left side (backward pipe operator).

|
|<

|

|

|Operators.(

 <

|

|

)

<

‘T1,’T2,’U>

 Function [https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-%5bhh-%5d%5b%27t1%2c%27t2%2c%27u%5d-function-%5bfsharp%5d]|		Passes the tuple of two arguments on the right side to the function on left side.

|
|<

|

|

|

|Operators.(

 <

|

|

|

)

<

‘T1,’T2,’T3,’U>

 Function [https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-%5bhhh-%5d%5b%27t1%2c%27t2%2c%27t3%2c%27u%5d-function-%5bfsharp%5d]|		Passes the tuple of three arguments on the right side to the function on left side.

|
|<@...@>|Code Quotations|		Delimits a typed code quotation.

|
|<@@...@@>|Code Quotations|		Delimits an untyped code quotation.

|
|=|Arithmetic Operators|		Returns true if the left side is equal to the right side; otherwise, returns false.

|
|=?|Nullable Operators|		Computes the “equal” operation when the right side is a nullable type.

|
|==|Not applicable.|		Not used in F#. Use = for equality operations.

|
|>|Arithmetic Operators|		Returns true if the left side is greater than the right side; otherwise, returns false.

|
|>?|Nullable Operators|		Computes the “greather than” operation when the right side is a nullable type.

|
|>>|Functions|		Composes two functions (forward composition operator).

|
|>>>|Bitwise Operators|		Shifts bits in the quantity on the left side to the right by the number of places specified on the right side.

|
|>=|Arithmetic Operators|		Returns true if the right side is greater than or equal to the left side; otherwise, returns false.

|
|>=?|Nullable Operators|		Computes the “greater than or equal” operation when the right side is a nullable type.

|
|?|Parameters and Arguments|		Specifies an optional argument.

		Used as an operator for dynamic method and property calls. You must provide your own implementation.

|
|? ... <- ...|No more information available.|		Used as an operator for setting dynamic properties. You must provide your own implementation.

|
|?>=, ?>, ?<=, ?<, ?=, ?<>, ?+, ?-, ?*, ?/|Nullable Operators|		Equivalent to the corresponding operators without the ? prefix, where a nullable type is on the left.

|
|>=?, >?, <=?, <?, =?, <>?, +?, -?, *?, /?|Nullable Operators|		Equivalent to the corresponding operators without the ? suffix, where a nullable type is on the right.

|
|?>=?, ?>?, ?<=?, ?<?, ?=?, ?<>?, ?+?, ?-?, ?*?, ?/?|Nullable Operators|		Equivalent to the corresponding operators without the surrounding question marks, where both sides are nullable types.

|
|@|Lists

Strings|		Concatenates two lists.

		When placed before a string literal, indicates that the string is to be interpreted verbatim, with no interpretation of escape characters.

|
|[...]|Lists|		Delimits the elements of a list.

|
|[|

...|

]|Arrays|		Delimits the elements of an array.

|
|[<...>]|Attributes|		Delimits an attribute.

|
|\|Strings|		Escapes the next character; used in character and string literals.

|
|^|Statically Resolved Type Parameters

Strings|		Specifies type parameters that must be resolved at compile time, not at runtime.

		Concatenates strings.

|
|^^^|Bitwise Operators|		Computes the bitwise exclusive OR operation.

|
|_|Match Expressions

Generics|		Indicates a wildcard pattern.

		Specifies an anonymous generic parameter.

|
|`

|Automatic Generalization|		Used internally to indicate a generic type parameter.

|
|{...}|Sequences

Records|		Delimits sequence expressions and computation expressions.

		Used in record definitions.

|
||

|Match Expressions|		Delimits individual match cases, individual discriminated union cases, and enumeration values.

|
||

|

|Boolean Operators|		Computes the Boolean OR operation.

|
||

|

|

|Bitwise Operators|		Computes the bitwise OR operation.

|
||

>|Functions|		Passes the result of the left side to the function on the right side (forward pipe operator).

|
||

|

>|Operators.(

 |

|

>

)

<

‘T1,’T2,’U>

 Function [https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-hh%5d-%5d%5b%27t1%2c%27t2%2c%27u%5d-function-%5bfsharp%5d]|		Passes the tuple of two arguments on the left side to the function on the right side.

|
||

|

|

>|Operators.(

 |

|

|

>

)

<

‘T1,’T2,’T3,’U>

 Function [https://msdn.microsoft.com/visualfsharpdocs/conceptual/operators.%5b-hhh%5d-%5d%5b%27t1%2c%27t2%2c%27t3%2c%27u%5d-function-%5bfsharp%5d]|		Passes the tuple of three arguments on the left side to the function on the right side.

|
|~~|Operator Overloading|		Used to declare an overload for the unary negation operator.

|
|~~~|Bitwise Operators|		Computes the bitwise NOT operation.

|
|~-|Operator Overloading|		Used to declare an overload for the unary minus operator.

|
|~+|Operator Overloading|		Used to declare an overload for the unary plus operator.

|

Operator Precedence

The following table shows the order of precedence of operators and other expression keywords in the F# language, in order from lowest precedence to the highest precedence. Also listed is the associativity, if applicable.

Operator	Associativity
——–	————-
as	Right
when	Right

|

 (pipe)|Left|
;	Right
let	Nonassociative
function, fun, match, try	Nonassociative
if	Nonassociative
->	Right
:=	Right
,	Nonassociative
or,	

|

|Left|
|&, &&|Left|
|:>;, :?>;|Right|
|!=op, <op, >op, =, |

op, &op, &

(including <<<, >>>, |

|

|

, &&&)|Left|
|^op

(including ^^^)|Right|
::	Right
:?	Not associative
-op, +op	Applies to infix uses of these symbols
*op, /op, %op	Left
**op	Right
f x (function application)	Left

 (pattern match)|Right|
prefix operators (+op, -op, %, %%, &, &&, !op, ~op)	Left
.	Left
f(x)	Left
f<types>	Left
F# supports custom operator overloading. This means that you can define your own operators. In the previous table, op can be any valid (possibly empty) sequence of operator characters, either built-in or user-defined. Thus, you can use this table to determine what sequence of characters to use for a custom operator to achieve the desired level of precedence. Leading . characters are ignored when the compiler determines precedence.

See Also

F# Language Reference

Operator Overloading

 © Copyright 2016.
 Created using Sphinx 1.3.5.

fsharp/language-reference/symbol-and-operator-reference/bitwise-operators.html

 Navigation

 		
 index

 		DotnetCore stable documentation »

title: Bitwise Operators (F#)
description: Bitwise Operators (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 8a2c87f5-b4c7-47fe-8580-82c956f605e5

Bitwise Operators

This topic describes bitwise operators that are available in the F# language.

Summary of Bitwise Operators

The following table describes the bitwise operators that are supported for unboxed integral types in the F# language.

Operator	Notes
——–	—–
&&&	Bitwise AND operator. Bits in the result have the value 1 if and only if the corresponding bits in both source operands are 1.

|

|

|

|Bitwise OR operator. Bits in the result have the value 1 if either of the corresponding bits in the source operands are 1.|
^^^	Bitwise exclusive OR operator. Bits in the result have the value 1 if and only if bits in the source operands have unequal values.
~~~	Bitwise negation operator. This is a unary operator and produces a result in which all 0 bits in the source operand are converted to 1 bits and all 1 bits are converted to 0 bits.
<<<	Bitwise left-shift operator. The result is the first operand with bits shifted left by the number of bits in the second operand. Bits shifted off the most significant position are not rotated into the least significant position. The least significant bits are padded with zeros. The type of the second argument is int32.
>>>	Bitwise right-shift operator. The result is the first operand with bits shifted right by the number of bits in the second operand. Bits shifted off the least significant position are not rotated into the most significant position. For unsigned types, the most significant bits are padded with zeros. For signed types, the most significant bits are padded with ones. The type of the second argument is int32.


The following types can be used with bitwise operators: byte, sbyte, int16, uint16, int32 (int), uint32, int64, uint64, nativeint, and unativeint.





See Also


Symbol and Operator Reference


Arithmetic Operators


Boolean Operators








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/symbol-and-operator-reference/boolean-operators.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Boolean Operators (F#)
description: Boolean Operators (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: f79370b8-4bc2-4704-b514-d392c80942bd





Boolean Operators


This topic describes the support for Boolean operators in the F# language.



Summary of Boolean Operators


The following table summarizes the Boolean operators that are available in the F# language. The only type supported by these operators is the bool type.


Operator	Description
——–	———–
not	Boolean negation

|


|


|Boolean OR|
|&&|Boolean AND|


The Boolean AND and OR operators perform short-circuit evaluation, that is, they evaluate the expression on the right of the operator only when it is necessary to determine the overall result of the expression. The second expression of the && operator is evaluated only if the first expression evaluates to true; the second expression of the || operator is evaluated only if the first expression evaluates to false.





See Also


Bitwise Operators


Arithmetic Operators


Symbol and Operator Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/symbol-and-operator-reference/arithmetic-operators.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Arithmetic Operators (F#)
description: Arithmetic Operators (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 75ddcfa3-564e-4382-80a3-f9da73d0f0ea





Arithmetic Operators


This topic describes arithmetic operators that are available in the F# language.



Summary of Binary Arithmetic Operators


The following table summarizes the binary arithmetic operators that are available for unboxed integral and floating-point types.


Binary operator	Notes
—————	—–
+ (addition, plus)	Unchecked. Possible overflow condition when numbers are added together and the sum exceeds the maximum absolute value supported by the type.
- (subtraction, minus)	Unchecked. Possible underflow condition when unsigned types are subtracted, or when floating-point values are too small to be represented by the type.
* (multiplication, times)	Unchecked. Possible overflow condition when numbers are multiplied and the product exceeds the maximum absolute value supported by the type.
/ (division, divided by)	Division by zero causes a DivideByZeroException [https://msdn.microsoft.com/library/system.dividebyzeroexception.aspx] for integral types. For floating-point types, division by zero gives you the special floating-point values +Infinity or -Infinity. There is also a possible underflow condition when a floating-point number is too small to be represented by the type.
% (modulus, mod)	Returns the remainder of a division operation. The sign of the result is the same as the sign of the first operand.
** (exponentiation, to the power of)	Possible overflow condition when the result exceeds the maximum absolute value for the type.

The exponentiation operator works only with floating-point types.|





Summary of Unary Arithmetic Operators


The following table summarizes the unary arithmetic operators that are available for integral and floating-point types.


Unary operator	Notes
————–	—–
+ (positive)	Can be applied to any arithmetic expression. Does not change the sign of the value.
- (negation, negative)	Can be applied to any arithmetic expression. Changes the sign of the value.
The behavior at overflow or underflow for integral types is to wrap around. This causes an incorrect result. Integer overflow is a potentially serious problem that can contribute to security issues when software is not written to account for it. If this is a concern for your application, consider using the checked operators in Microsoft.FSharp.Core.Operators.Checked.





Summary of Binary Comparison Operators


The following table shows the binary comparison operators that are available for integral and floating-point types. These operators return values of type bool.


Floating-point numbers should never be directly compared for equality, because the IEEE floating-point representation does not support an exact equality operation. Two numbers that you can easily verify to be equal by inspecting the code might actually have different bit representations.


Operator	Notes
——–	—–
= (equality, equals)	This is not an assignment operator. It is used only for comparison. This is a generic operator.
> (greater than)	This is a generic operator.
< (less than)	This is a generic operator.
>= (greater than or equals)	This is a generic operator.
<= (less than or equals)	This is a generic operator.
<> (not equal)	This is a generic operator.





Overloaded and Generic Operators


All of the operators discussed in this topic are defined in the Microsoft.FSharp.Core.Operators namespace. Some of the operators are defined by using statically resolved type parameters. This means that there are individual definitions for each specific type that works with that operator. All of the unary and binary arithmetic and bitwise operators are in this category. The comparison operators are generic and therefore work with any type, not just primitive arithmetic types. Discriminated union and record types have their own custom implementations that are generated by the F# compiler. Class types use the method Equals [https://msdn.microsoft.com/library/bsc2ak47.aspx].


The generic operators are customizable. To customize the comparison functions, override Equals [https://msdn.microsoft.com/library/bsc2ak47.aspx] to provide your own custom equality comparison, and then implement IComparable [https://msdn.microsoft.com/library/system.icomparable.aspx]. The System.IComparable [https://msdn.microsoft.com/library/system.icomparable.aspx] interface has a single method, the CompareTo [https://msdn.microsoft.com/library/system.icomparable.compareto.aspx] method.





Operators and Type Inference


The use of an operator in an expression constrains type inference on that operator. Also, the use of operators prevents automatic generalization, because the use of operators implies an arithmetic type. In the absence of any other information, the F# compiler infers int as the type of arithmetic expressions. You can override this behavior by specifying another type. Thus the argument types and return type of function1 in the following code are inferred to be int, but the types for function2 are inferred to be float.


[!code-fsharpMain]





See Also


Symbol and Operator Reference


Operator Overloading


Bitwise Operators


Boolean Operators








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/class-libraries.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Class Libraries
description: .NET Class Libraries
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a67484c3-fe92-44d8-8fa3-36fa2071d880





.NET Class Libraries


Class libraries are the shared library [http://en.wikipedia.org/wiki/Library_%28computing%29#Shared_libraries] concept for .NET. They enable you to componentize useful functionality into modules that can be used by multiple applications. They can also be used as a means of loading functionality that is not needed or not known at application startup. Class libraries are described using the .NET Assembly file format.


There are three types of class libraries that you can use:



		Platform-specific class libraries have access to all the APIs in a given platform (for example, .NET Framework, Xamarin iOS), but can only be used by apps and libraries that target that platform.


		Portable class libraries have access to a subset of APIs, and can be used by apps and libraries that target multiple platforms.


		.NET Core class libraries are a merger of the platform-specific and portable library concept into a single model that provides the best of both.






Platform-specific Class Libraries


Platform-specific libraries are bound to a single .NET platform (for example, .NET Framework on Windows) and can therefore take significant dependencies on a known execution environment. Such an environment will expose a known set of APIs (.NET and OS APIs) and will maintain and expose expected state (for example, Windows registry).


Developers who create platform specific libraries can fully exploit the underlying platform. The libraries will only ever run on that given platform, making platform checks or other forms of conditional code unnecessary (modulo single sourcing code for multiple platforms).


Platform-specific libraries have been the primary class library type for the .NET Framework. Even as other .NET platforms emerged, platform-specific libraries remained the dominant library type.





Portable Class Libraries


Portable libraries are supported on multiple .NET platforms. They can still take dependencies on a known execution environment, however, the environment is a synthetic one that is generated by the intersection of a set of concrete .NET platforms. This means that exposed APIs and platform assumptions are a subset of what would be available to a platform-specific library.


You choose a platform configuration when you create a portable library. These are the set of platforms that you need to support (for example, .NET Framework 4.5+, Windows Phone 8.0+). The more platforms you opt to support, the fewer APIs and fewer platform assumptions you can make, the lowest common denominator. This characteristic can be confusing at first, since people often think “more is better”, but find that more supported platforms results in fewer available APIs.


Many library developers have switched from producing multiple platform-specific libraries from one source (using conditional compilation directives) to portable libraries. There are several approaches [http://blog.stephencleary.com/2012/11/portable-class-library-enlightenment.html] for accessing platform-specific functionality within portable libraries, with bait-and-switch [http://log.paulbetts.org/the-bait-and-switch-pcl-trick/] being the most widely accepted technique at this point.



.NET Core Class Libraries


.NET Core libraries are a replacement of the platform-specific and portable libraries concepts. They are platform-specific in the sense that they expose all functionality from the underlying platform (no synthetic platforms or platform intersections). They are portable in the sense that they work on all supporting platforms.


.NET Core exposes a set of library contracts. .NET platforms must support each contract fully or not at all. Each platform, therefore, supports a set of .NET Core contracts. The corollary is that each .NET Core class library is supported on the platforms that support it’s contract dependencies.


.NET Core contracts do not expose the entire functionality of the .NET Framework (nor is that a goal), however, they do expose many more APIs than Portable Class Libraries. More APIs will be added over time.


The following platforms support .NET Core class libraries:



		.NET Core


		ASP.NET Core


		.NET Framework 4.5+


		Windows Store Apps


		Windows Phone 8+








Mono Class Libraries


Class libraries are supported on Mono, including the three types of libraries described above. Mono has often been seen (correctly) as a cross-platform implementation of the Microsoft .NET Framework. In part, this was because platform-specific .NET Framework libraries could run on the Mono runtime without modification or recompilation. This characteristic was in place before the creation of portable class libraries, so was an obvious choice to enable binary portability between the .NET Framework and Mono (although it only worked in one direction).










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-bright.png





standard/using-linq.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: LINQ (Language Integrated Query)
description: LINQ (Language Integrated Query)
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c00939e1-59e3-4e61-8fe9-08ad6b3f1295





LINQ (Language Integrated Query)



What is it?


LINQ provides language-level querying capabilities and a higher-order function [https://en.wikipedia.org/wiki/Higher-order_function] API to C# and VB as a way to write expressive, declarative code.


Language-level query syntax:


var linqExperts = from p in programmers
                  where p.IsNewToLINQ
                  select new LINQExpert(p);






Same example using the IEnumerable<T> API:


var linqExperts = programmers.Where(p => IsNewToLINQ)
                             .Select(p => new LINQExpert(p));









LINQ is Expressive


Imagine you have a list of pets, but want to convert it into a dictionary where you can access a pet directly by its RFID value.


Traditional imperative code:


var petLookup = new Dictionary<int, Pet>();

foreach (var pet in pets)
{
    petLookup.Add(pet.RFID, pet);
}






The intention behind the code is not to create a new Dictionary<int, Pet> and add to it via a loop, it is to convert an existing list into a dictionary! LINQ preserves the intention whereas the imperative code does not.


Equivalent LINQ expression:


var petLookup = pets.ToDictionary(pet => pet.RFID);






The code using LINQ is valuable because it evens the playing field between intent and code when reasoning as a programmer. Another bonus is code brevity. Imagine reducing large portions of a codebase by 1/3 as done above. Pretty sweet deal, right?





LINQ Providers Simplify Data Access


For a significant chunk of software out in the wild, everything revolves around dealing with data from some source (Databases, JSON, XML, etc). Often this involves learning a new API for each data source, which can be annoying. LINQ simplifies this by abstracting common elements of data access into a query syntax which looks the same no matter which data source you pick.


Consider the following: finding all XML elements with a specific attribute value.


public static IEnumerable<XElement> FindAllElementsWithAttribute(XElement documentRoot, string elementName,
                                           string attributeName, string value)
{
    return from el in documentRoot.Elements(elementName)
           where (string)el.Element(attributeName) == value
           select el;
}






Writing code to manually traverse the XML document to perform this task would be far more challenging.


Interacting with XML isn’t the only thing you can do with LINQ Providers. Linq to SQL [https://msdn.microsoft.com/library/bb386976.aspx] is a fairly bare-bones Object-Relational Mapper (ORM) for an MSSQL Server Database. The JSON.NET [http://www.newtonsoft.com/json/help/html/LINQtoJSON.htm] library provides efficient JSON Document traversal via LINQ. Furthermore, if there isn’t a library which does what you need, you can also write your own LINQ Provider [https://msdn.microsoft.com/library/Bb546158.aspx]!





Why Use the Query Syntax?


This is a question which often comes up. After all, this,


var filteredItems = myItems.Where(item => item.Foo);






is a lot more concise than this:


var filteredItems = from item in myItems
                    where item.Foo
                    select item;






Isn’t the API syntax just a more concise way to do the query syntax?


No. The query syntax allows for the use the let clause, which allows you to introduce and bind a variable within the scope of the expression, using it in subsequent pieces of the expression. Reproducing the same code with only the API syntax can be done, but will most likely lead to code which is hard to read.


So this begs the question, should you just use the query syntax?


The answer to this question is yes if...



		Your existing codebase already uses the query syntax


		You need to scope variables within your queries due to complexity


		You prefer the query syntax and it won’t distract from your codebase





The answer to this question is no if...



		Your existing codebase already uses the API syntax


		You have no need to scope variables within your queries


		You prefer the API syntax and it won’t distract from your codebase








Essential Samples


For a truly comprehensive list of LINQ samples, visit 101 LINQ Samples [https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b].


The following is a quick demonstration of some of the essential pieces of LINQ. This is in no way comprehensive, as LINQ provides significantly more functionality than what is showcased here.



		The bread and butter - Where, Select, and Aggregate:





// Filtering a list
var germanShepards = dogs.Where(dog => dog.Breed == DogBreed.GermanShepard);

// Using the query syntax
var queryGermanShepards = from dog in dogs
                          where dog.Breed == DogBreed.GermanShepard
                          select dog;

// Mapping a list from type A to type B
var cats = dogs.Select(dog => dog.TurnIntoACat());

// Using the query syntax
var queryCats = from dog in dogs
                select dog.TurnIntoACat();

// Summing then lengths of a set of strings
int seed = 0;
int sumOfStrings = strings.Aggregate(seed, (s1, s2) => s1.Length + s2.Length);







		Flattening a list of lists:





// Transforms the list of kennels into a list of all their dogs.
var allDogsFromKennels = kennels.SelectMany(kennel => kennel.Dogs);







		Union between two sets (with custom comparator):





public class DogHairLengthComparer : IEqualityComparer<Dog>
{
    public bool Equals(Dog a, Dog b)
    {
        if (a == null && b == null)
        {
            return true;
        }
        else if ((a == null && b != null) ||
                 (a != null && b == null))
        {
            return false;
        }
        else
        {
            return a.HairLengthType == b.HairLengthType;
        }
    }

    public int GetHashCode(Dog d)
    {
        // default hashcode is enough here, as these are simple objects.
        return b.GetHashCode();
    }
}

...

// Gets all the short-haired dogs between two different kennels
var allShortHairedDogs = kennel1.Dogs.Union(kennel2.Dogs, new DogHairLengthComparer());







		Intersection between two sets:





// Gets the volunteers who spend share time with two humane societies.
var volunteers = humaneSociety1.Volunteers.Intersect(humaneSociety2.Volunteers,
                                                     new VolunteerTimeComparer());







		Ordering:





// Get driving directions, ordering by if it's toll-free before estimated driving time.
var results = DirectionsProcessor.GetDirections(start, end)
              .OrderBy(direction => direction.HasNoTolls)
              .ThenBy(direction => direction.EstimatedTime);







		Finally, a more advanced sample: determining if the values of the properties of two instances of the same type are equal (Borrowed and modified from this StackOverflow post [http://stackoverflow.com/a/844855]):





public static bool PublicInstancePropertiesEqual<T>(this T self, T to, params string[] ignore) where T : class
{
    if (self != null && to != null)
    {
        var type = typeof(T);
        var ignoreList = new List<string>(ignore);

        // Selects the properties which have unequal values into a sequence of those properties.
        var unequalProperties = from pi in type.GetProperties(BindingFlags.Public | BindingFlags.Instance)
                                where !ignoreList.Contains(pi.Name)
                                let selfValue = type.GetProperty(pi.Name).GetValue(self, null)
                                let toValue = type.GetProperty(pi.Name).GetValue(to, null)
                                where selfValue != toValue && (selfValue == null || !selfValue.Equals(toValue))
                                select new { Prop = pi.Name, selfValue, toValue };
        return !unequalProperties.Any();
    }

    return self == to;
}









PLINQ


PLINQ, or Parallel LINQ, is a parallel execution engine for LINQ expressions. In other words, a regular LINQ expressions can be trivially parallelized across any number of threads. This is accomplished via a call to AsParallel() preceding the expression.


Consider the following:


public static string GetAllFacebookUserLikesMessage(IEnumerable<FacebookUser> facebookUsers)
{
    var seed = default(UInt64);

    Func<UInt64, UInt64, UInt64> threadAccumulator = (t1, t2) => t1 + t2;
    Func<UInt64, UInt64, UInt64> threadResultAccumulator = (t1, t2) => t1 + t2;
    Func<Uint64, string> resultSelector = total => $"Facebook has {total} likes!";

    return facebookUsers.AsParallel()
                        .Aggregate(seed, threadAccumulator, threadResultAccumulator, resultSelector);
}






This code will partition facebookUsers across system threads as necessary, sum up the total likes on each thread in parallel, sum the results computed by each thread, and project that result into a nice string.


In diagram form:


[image: PLINQ diagram]


Parallelizable CPU-bound jobs which can be easily expressed via LINQ (in other words, are pure functions and have no side effects) are a great candidate for PLINQ. For jobs which do have a side effect, consider using the Task Parallel Library [https://msdn.microsoft.com/library/dd460717.aspx].





Further Resources:



		101 LINQ Samples [https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b]


		Linqpad [https://www.linqpad.net/], a playground environment and Database querying engine for C#/F#/VB


		EduLinq [http://codeblog.jonskeet.uk/2011/02/23/reimplementing-linq-to-objects-part-45-conclusion-and-list-of-posts/], an e-book for learning how LINQ-to-objects is implemented











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment-close.png





standard/language-independence.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Language independence and language-independent components
description: Language independence and language-independent components
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 07/22/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2dbed1bc-86f5-43cd-9a57-adbb1c5efba4





Language independence and language-independent components


The .NET platform is language independent. This means that, as a developer, you can develop in one of the many languages that target the .NET platform, such as C#, F#, and Visual Basic. You can access the types and members of class libraries developed for the .NET platform without having to know the language in which they were originally written and without having to follow any of the original language’s conventions. If you are a component developer, your component can be accessed by any .NET app regardless of its language.



[!NOTE]
This first part of this article discusses creating language-independent components - that is, components that can be consumed by apps that are written in any language. You can also create a single component or app from source code written in multiple languages; see Cross-Language Interoperability in the second part of this article.



To fully interact with other objects written in any language, objects must expose to callers only those features that are common to all languages. This common set of features is defined by the Common Language Specification (CLS), which is a set of rules that apply to generated assemblies. The Common Language Specification is defined in Partition I, Clauses 7 through 11 of the ECMA-335 Standard: Common Language Infrastructure [http://www.ecma-international.org/publications/standards/Ecma-335.htm].


If your component conforms to the Common Language Specification, it is guaranteed to be CLS-compliant and can be accessed from code in assemblies written in any programming language that supports the CLS. You can determine whether your component conforms to the Common Language Specification at compile time by applying the CLSCompliantAttribute attribute to your source code. For more information, see The CLSCompliantAttribute attribute.


In this article:



		CLS compliance rules
		Types and type member signatures


		Naming conventions


		Type conversion


		Arrays


		Interfaces


		Enumerations


		Type members in general


		Member accessibility


		Generic types and members


		Constructors


		Properties


		Events


		Overloads


		Exceptions


		Attributes








		CLSCompliantAttribute attribute


		Cross-Language Interoperability






CLS compliance rules


This section discusses the rules for creating a CLS-compliant component. For a complete list of rules, see Partition I, Clause 11 of the ECMA-335 Standard: Common Language Infrastructure [http://www.ecma-international.org/publications/standards/Ecma-335.htm].



[!NOTE]
The Common Language Specification discusses each rule for CLS compliance as it applies to consumers (developers who are programmatically accessing a component that is CLS-compliant), frameworks (developers who are using a language compiler to create CLS-compliant libraries), and extenders (developers who are creating a tool such as a language compiler or a code parser that creates CLS-compliant components). This article focuses on the rules as they apply to frameworks. Note, though, that some of the rules that apply to extenders may also apply to assemblies that are created using Reflection.Emit.



To design a component that is language independent, you only need to apply the rules for CLS compliance to your component’s public interface. Your private implementation does not have to conform to the specification.



[!IMPORTANT]
The rules for CLS compliance apply only to a component’s public interface, not to its private implementation.



For example, unsigned integers other than Byte are not CLS-compliant. Because the Person class in the following example exposes an Age property of type UInt16, the following code displays a compiler warning.


using System;

[assembly: CLSCompliant(true)]

public class Person
{
   private UInt16 personAge = 0;

   public UInt16 Age 
   { get { return personAge; } }
}
// The attempt to compile the example displays the following compiler warning:
//    Public1.cs(10,18): warning CS3003: Type of 'Person.Age' is not CLS-compliant






<Assembly: CLSCompliant(True)> 

Public Class Person
   Private personAge As UInt16

   Public ReadOnly Property Age As UInt16
      Get
         Return personAge      
      End Get   
   End Property
End Class
' The attempt to compile the example displays the following compiler warning:
'    Public1.vb(9) : warning BC40027: Return type of function 'Age' is not CLS-compliant.
'    
'       Public ReadOnly Property Age As UInt16
'                                ~~~






You can make the Person class CLS-compliant by changing the type of Age property from UInt16 to Int16, which is a CLS-compliant, 16-bit signed integer. You do not have to change the type of the private personAge field.


using System;

[assembly: CLSCompliant(true)]

public class Person
{
   private Int16 personAge = 0;

   public Int16 Age 
   { get { return personAge; } }
}






<Assembly: CLSCompliant(True)> 

Public Class Person
   Private personAge As UInt16

   Public ReadOnly Property Age As Int16
      Get
         Return CType(personAge, Int16)      
      End Get   
   End Property
End Class






A library’s public interface consists of the following:



		Definitions of public classes.


		Definitions of the public members of public classes, and definitions of members accessible to derived classes (that is, protected members).


		Parameters and return types of public methods of public classes, and parameters and return types of methods accessible to derived classes.





The rules for CLS compliance are listed in the following table. The text of the rules is taken verbatim from the ECMA-335 Standard: Common Language Infrastructure [http://www.ecma-international.org/publications/standards/Ecma-335.htm], which is Copyright 2012 by Ecma International. More detailed information about these rules is found in the following sections.


Category | See | Rule | Rule Number
——– | — | —- | ———–
Accessibility | Member accessibility | Accessibility shall not be changed when overriding inherited methods, except when overriding a method inherited from a different assembly with accessibility family-or-assembly. In this case, the override shall have accessibility family. | 10
Accessibility | Member accessibility | The visibility and accessibility of types and members shall be such that types in the signature of any member shall be visible and accessible whenever the member itself is visible and accessible. For example, a public method that is visible outside its assembly shall not have an argument whose type is visible only within the assembly. The visibility and accessibility of types composing an instantiated generic type used in the signature of any member shall be visible and accessible whenever the member itself is visible and accessible. For example, an instantiated generic type present in the signature of a member that is visible outside its assembly shall not have a generic argument whose type is visible only within the assembly. | 12
Arrays | Arrays | Arrays shall have elements with a CLS-compliant type, and all dimensions of the array shall have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be required to distinguish between overloads. When overloading is based on two or more array types the element types shall be named types. | 16
Attributes | Attributes | Attributes shall be of type System.Attribute, or a type inheriting from it. | 41
Attributes | Attributes | The CLS only allows a subset of the encodings of custom attributes. The only types that shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char, System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single, System.Double, and any enumeration type based on a CLS-compliant base integer type. | 34
Attributes | Attributes | The CLS does not allow publicly visible required modifiers (modreq, see Partition II), but does allow optional modifiers (modopt, see Partition II) it does not understand. | 35
Constructors | Constructors | An object constructor shall call some instance constructor of its base class before any access occurs to inherited instance data. (This does not apply to value types, which need not have constructors.)  | 21
Constructors | Constructors | An object constructor shall not be called except as part of the creation of an object, and an object shall not be initialized twice. | 22
Enumerations | Enumerations | The underlying type of an enum shall be a built-in CLS integer type, the name of the field shall be “value__”, and that field shall be marked RTSpecialName. |  7
Enumerations | Enumerations | There are two distinct kinds of enums, indicated by the presence or absence of the System.FlagsAttribute (see Partition IV Library) custom attribute. One represents named integer values; the other represents named bit flags that can be combined to generate an unnamed value. The value of an enum is not limited to the specified values. |  8
Enumerations | Enumerations | Literal static fields of an enum shall have the type of the enum itself. |  9
Events | Events | The methods that implement an event shall be marked SpecialName in the metadata. |29
Events | Events | The accessibility of an event and of its accessors shall be identical. |30
Events | Events | The add and remove methods for an event shall both either be present or absent. |31
Events | Events | The addand remove methods for an event shall each take one parameter whose type defines the type of the event and that shall be derived from System.Delegate. |32
Events | Events | Events shall adhere to a specific naming pattern. The SpecialName attribute referred to in CLS rule 29 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.  |33
Exceptions | Exceptions | Objects that are thrown shall be of type System.Exception or a type inheriting from it. Nonetheless, CLS-compliant methods are not required to block the propagation of other types of exceptions. | 40
General | CLS compliance rules | CLS rules apply only to those parts of a type that are accessible or visible outsideof the defining assembly. | 1
General | CLS compliance rules | Members of non-CLS compliant types shall not be marked CLS-compliant. | 2
Generics | Generic types and members | Nested types shall have at least as many generic parameters as the enclosing type. Generic parameters in a nested type correspond by position to the generic parameters in its enclosing type.  | 42
Generics | Generic types and members | The name of a generic type shall encode the number of type parameters declared on the non-nested type, or newly introduced to the type if nested, according to the rules defined above. | 43
Generics | Generic types and members | A generic type shall redeclare sufficient constraints to guarantee that any constraints on the base type, or interfaces would be satisfied by the generic type constraints. | 44
Generics | Generic types and members | Types used as constraints on generic parameters shall themselves be CLS-compliant. | 45
Generics | Generic types and members | The visibility and accessibility of members (including nested types) in an instantiated generic type shall be considered to be scoped to the specific instantiation rather than the generic type declaration as a whole. Assuming this, the visibility and accessibility rules of CLS rule 12 still apply. | 46
Generics | Generic types and members | For each abstract or virtual generic method, there shall be a default concrete (nonabstract) implementation | 47
Interfaces | Interfaces | CLS-compliant interfaces shall not require the definition of non-CLS compliantmethods in order to implement them. | 18
Interfaces | Interfaces | CLS-compliant interfaces shall not define static methods, nor shall they define fields. | 19
Members | Type members in general | Global static fields and methods are not CLS-compliant. | 36
Members | – | The value of a literal static is specified through the use of field initialization metadata. A CLS-compliant literal must have a value specified in field initialization metadata that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum). | 13
Members | Type members in general | The vararg constraint is not part of the CLS, and the only calling convention supported by the CLS is the standard managed calling convention. | 15
Naming conventions | Naming conventions | Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard3.0 governing the set of characters permitted to start and be included in identifiers, available online at Unicode Normalization Forms [http://www.unicode.org/unicode/reports/tr15/tr15-18.html]. Identifiers shall be in the canonical format defined by Unicode Normalization Form C. For CLS purposes, two identifiersare the same if their lowercase mappings (as specified by the Unicode locale-insensitive, one-to-one lowercase mappings) are the same. That is, for two identifiers to be considered different under the CLS they shall differ in more than simply their case. However, in order to override an inherited definition the CLI requires the precise encoding of the original declaration be used. | 4
Overloading | Naming conventions | All names introduced in a CLS-compliant scope shall be distinct independent of kind, except where the names are identical and resolved via overloading. That is, while the CTS allows a single type to use the same name for a method and a field, the CLS does not. | 5
Overloading | Naming conventions | Fields and nested types shall be distinct by identifier comparison alone, eventhough the CTS allows distinct signatures to be distinguished. Methods, properties, and events that have the same name (by identifier comparison) shall differ by more than just the return type,except as specified in CLS Rule 39 | 6
Overloading | Overloads | Only properties and methods can be overloaded. | 37
Overloading | Overloads |Properties and methods can be overloaded based only on the number and types of their parameters, except the conversion operators named op_Implicit and op_Explicit, which can also be overloaded based on their return type. | 38
Overloading | – | If two or more CLS-compliant methods declared in a type have the same nameand, for a specific set of type instantiations, they have the same parameter and return types, then all these methods shall be semantically equivalent at those type instantiations. | 48
Properties | Properties | The methods that implement the getter and setter methods of a property shall be marked SpecialName in the metadata. | 24
Properties | Properties | A property’s accessors shall all be static, all be virtual, or all be instance. | 26
Properties | Properties | The type of a property shall be the return type of the getter and the type of the last argument of the setter. The types of the parameters of the property shall be the types of the parameters to the getter and the types of all but the final parameter of the setter. All of these types shall be CLS-compliant, and shall not be managed pointers (i.e., shall not be passed by reference). | 27
Properties | Properties | Properties shall adhere to a specific naming pattern. The SpecialName attribute referred to in CLS rule 24 shall be ignored in appropriate name comparisons and shall adhere to identifier rules. A property shall have a getter method, a setter method, or both. | 28
Type conversion | Type conversion | If either op_Implicit or op_Explicit is provided, an alternate means of providing the coercion shall be provided. | 39
Types | Types and type member signatures | Boxed value types are not CLS-compliant. | 3
Types | Types and type member signatures | All types appearing in a signature shall be CLS-compliant. All types composing an instantiated generic type shall be CLS-compliant. | 11
Types | Types and type member signatures | Typed references are not CLS-compliant. | 14
Types | Types and type member signatures | Unmanaged pointer types are not CLS-compliant. | 17
Types | Types and type member signatures | CLS-compliant classes, value types, and interfaces shall not require the implementation of non-CLS-compliant members | 20
Types | Types and type member signatures | System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-compliant class. | 23



Types and type member signatures


The System.Object type is CLS-compliant and is the base type of all object types in the .NET Framework type system. Inheritance in the .NET Framework is either implicit (for example, the String class implicitly inherits from the Object class) or explicit (for example, the CultureNotFoundException class explicitly inherits from the ArgumentException class, which explicitly inherits from the Exception class. For a derived type to be CLS compliant, its base type must also be CLS-compliant.


The following example shows a derived type whose base type is not CLS-compliant. It defines a base Counter class that uses an unsigned 32-bit integer as a counter. Because the class provides counter functionality by wrapping an unsigned integer, the class is marked as non-CLS-compliant. As a result, a derived class, NonZeroCounter, is also not CLS-compliant.


using System;

[assembly: CLSCompliant(true)]

[CLSCompliant(false)] 
public class Counter
{
   UInt32 ctr;

   public Counter()
   {
      ctr = 0;
   }

   protected Counter(UInt32 ctr)
   {
      this.ctr = ctr;
   }

   public override string ToString()
   {
      return String.Format("{0}). ", ctr);
   }

   public UInt32 Value
   {
      get { return ctr; }
   }

   public void Increment() 
   {
      ctr += (uint) 1;
   }
}

public class NonZeroCounter : Counter
{
   public NonZeroCounter(int startIndex) : this((uint) startIndex)
   {
   }

   private NonZeroCounter(UInt32 startIndex) : base(startIndex)
   {
   }
}
// Compilation produces a compiler warning like the following:
//    Type3.cs(37,14): warning CS3009: 'NonZeroCounter': base type 'Counter' is not
//            CLS-compliant
//    Type3.cs(7,14): (Location of symbol related to previous warning)






<Assembly: CLSCompliant(True)>

<CLSCompliant(False)> _ 
Public Class Counter
   Dim ctr As UInt32

   Public Sub New
      ctr = 0
   End Sub

   Protected Sub New(ctr As UInt32)
      ctr = ctr
   End Sub

   Public Overrides Function ToString() As String
      Return String.Format("{0}). ", ctr)
   End Function

   Public ReadOnly Property Value As UInt32
      Get
         Return ctr
      End Get
   End Property

   Public Sub Increment()
      ctr += CType(1, UInt32)
   End Sub
End Class

Public Class NonZeroCounter : Inherits Counter
   Public Sub New(startIndex As Integer)
      MyClass.New(CType(startIndex, UInt32))
   End Sub

   Private Sub New(startIndex As UInt32)
      MyBase.New(CType(startIndex, UInt32))
   End Sub
End Class
' Compilation produces a compiler warning like the following:
'    Type3.vb(34) : warning BC40026: 'NonZeroCounter' is not CLS-compliant 
'    because it derives from 'Counter', which is not CLS-compliant.
'    
'    Public Class NonZeroCounter : Inherits Counter
'                 ~~~~~~~~~~~~~~






All types that appear in member signatures, including a method’s return type or a property type, must be CLS-compliant. In addition, for generic types:



		All types that compose an instantiated generic type must be CLS-compliant.


		All types used as constraints on generic parameters must be CLS-compliant.





The .NET common type system includes a number of built-in types that are supported directly by the common language runtime and are specially encoded in an assembly’s metadata. Of these intrinsic types, the types listed in the following table are CLS-compliant.


CLS-compliant type | Description
—————— | ———–
Byte | 8-bit unsigned integer
Int16 | 16-bit signed integer
Int32 | 32-bit signed integer
Int64 | 64-bit signed integer
Single | Single-precision floating-point value
Double | Double-precision floating-point value
Boolean | true or false value type
Char | UTF-16 encoded code unit
Decimal | Non-floating-point decimal number
IntPtr | Pointer or handle of a platform-defined size
String | Collection of zero, one, or more Char objects


The intrinsic types listed in the following table are not CLS-Compliant.


Non-compliant type | Description | CLS-compliant alternative
—————— | ———– | ————————-
SByte | 8-bit signed integer data type | Int16
UInt16 | 16-bit unsigned integer | Int32
UInt32 | 32-bit unsigned integer | Int64
UInt64 | 64-bit unsigned integer | Int64 (may overflow), BigInteger, or Double
UIntPtr | Unsigned pointer or handle | IntPtr


The .NET Framework Class Library or any other class library may include other types that aren’t CLS-compliant; for example:



		Boxed value types. The following C# example creates a class that has a public property of type int* named Value. Because an int* is a boxed value type, the compiler flags it as non-CLS-compliant.





using System;

[assembly:CLSCompliant(true)]

public unsafe class TestClass
{
   private int* val;

   public TestClass(int number)
   {
      val = (int*) number;
   }

   public int* Value {
      get { return val; }        
   }
}
// The compiler generates the following output when compiling this example:
//        warning CS3003: Type of 'TestClass.Value' is not CLS-compliant







		Typed references, which are special constructs that contain a reference to an object and a reference to a type.





If a type is not CLS-compliant, you should apply the CLSCompliantAttribute attribute with an isCompliant parameter with a value of false to it. For more information, see the CLSCompliantAttribute attribute section.


The following example illustrates the problem of CLS compliance in a method signature and in generic type instantiation. It defines an InvoiceItem class with a property of type UInt32, a property of type Nullable(Of UInt32), and a constructor with parameters of type UInt32 and Nullable(Of UInt32). You get four compiler warnings when you try to compile this example.


using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
   private uint invId = 0;
   private uint itemId = 0;
   private Nullable<uint> qty;

   public InvoiceItem(uint sku, Nullable<uint> quantity)
   {
      itemId = sku;
      qty = quantity;
   }

   public Nullable<uint> Quantity
   {
      get { return qty; }
      set { qty = value; }
   }

   public uint InvoiceId
   {
      get { return invId; }
      set { invId = value; }
   }
}
// The attempt to compile the example displays the following output:
//    Type1.cs(13,23): warning CS3001: Argument type 'uint' is not CLS-compliant
//    Type1.cs(13,33): warning CS3001: Argument type 'uint?' is not CLS-compliant
//    Type1.cs(19,26): warning CS3003: Type of 'InvoiceItem.Quantity' is not CLS-compliant
//    Type1.cs(25,16): warning CS3003: Type of 'InvoiceItem.InvoiceId' is not CLS-compliant






<Assembly: CLSCompliant(True)>

Public Class InvoiceItem

   Private invId As UInteger = 0
   Private itemId As UInteger = 0
   Private qty AS Nullable(Of UInteger)

   Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
      itemId = sku
      qty = quantity
   End Sub

   Public Property Quantity As Nullable(Of UInteger)
      Get
         Return qty
      End Get   
      Set 
         qty = value
      End Set   
   End Property

   Public Property InvoiceId As UInteger
      Get   
         Return invId
      End Get
      Set 
         invId = value
      End Set   
   End Property
End Class
' The attempt to compile the example displays output similar to the following:
'    Type1.vb(13) : warning BC40028: Type of parameter 'sku' is not CLS-compliant.
'    
'       Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
'                      ~~~
'    Type1.vb(13) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'    
'       Public Sub New(sku As UInteger, quantity As Nullable(Of UInteger))
'                                                               ~~~~~~~~
'    Type1.vb(18) : warning BC40041: Type 'UInteger' is not CLS-compliant.
'    
'       Public Property Quantity As Nullable(Of UInteger)
'                                               ~~~~~~~~
'    Type1.vb(27) : warning BC40027: Return type of function 'InvoiceId' is not CLS-compliant.
'    
'       Public Property InvoiceId As UInteger






To eliminate the compiler warnings, replace the non-CLS-compliant types in the InvoiceItem public interface with compliant types:


using System;

[assembly: CLSCompliant(true)]

public class InvoiceItem
{
   private uint invId = 0;
   private uint itemId = 0;
   private Nullable<int> qty;

   public InvoiceItem(int sku, Nullable<int> quantity)
   {
      if (sku <= 0)
         throw new ArgumentOutOfRangeException("The item number is zero or negative.");
      itemId = (uint) sku;

      qty = quantity;
   }

   public Nullable<int> Quantity
   {
      get { return qty; }
      set { qty = value; }
   }

   public int InvoiceId
   {
      get { return (int) invId; }
      set { 
         if (value <= 0)
            throw new ArgumentOutOfRangeException("The invoice number is zero or negative.");
         invId = (uint) value; }
   }
}






Assembly: CLSCompliant(True)>

Public Class InvoiceItem

   Private invId As UInteger = 0
   Private itemId As UInteger = 0
   Private qty AS Nullable(Of Integer)

   Public Sub New(sku As Integer, quantity As Nullable(Of Integer))
      If sku <= 0 Then
         Throw New ArgumentOutOfRangeException("The item number is zero or negative.")
      End If
      itemId = CUInt(sku)
      qty = quantity
   End Sub

   Public Property Quantity As Nullable(Of Integer)
      Get
         Return qty
      End Get   
      Set 
         qty = value
      End Set   
   End Property

   Public Property InvoiceId As Integer
      Get   
         Return CInt(invId)
      End Get
      Set 
         invId = CUInt(value)
      End Set   
   End Property
End Class






In addition to the specific types listed, some categories of types are not CLS compliant. These include unmanaged pointer types and function pointer types. The following example generates a compiler warning because it uses a pointer to an integer to create an array of integers.


using System;

[assembly: CLSCompliant(true)]

public class ArrayHelper
{
   unsafe public static Array CreateInstance(Type type, int* ptr, int items)
   {
      Array arr = Array.CreateInstance(type, items);
      int* addr = ptr;
      for (int ctr = 0; ctr < items; ctr++) {
          int value = *addr;
          arr.SetValue(value, ctr);
          addr++;
      }
      return arr;
   }
}   
// The attempt to compile this example displays the following output:
//    UnmanagedPtr1.cs(8,57): warning CS3001: Argument type 'int*' is not CLS-compliant






using System;

[assembly: CLSCompliant(true)]

public class ArrayHelper
{
   unsafe public static Array CreateInstance(Type type, int* ptr, int items)
   {
      Array arr = Array.CreateInstance(type, items);
      int* addr = ptr;
      for (int ctr = 0; ctr < items; ctr++) {
          int value = *addr;
          arr.SetValue(value, ctr);
          addr++;
      }
      return arr;
   }
}   
// The attempt to compile this example displays the following output:
//    UnmanagedPtr1.cs(8,57): warning CS3001: Argument type 'int*' is not CLS-compliant






For CLS-compliant abstract classes (that is, classes marked as abstract in C#), all members of the class must also be CLS-compliant.





Naming conventions


Because some programming languages are case-insensitive, identifiers (such as the names of namespaces, types, and members) must differ by more than case. Two identifiers are considered equivalent if their lowercase mappings are the same. The following C# example defines two public classes, Person and person. Because they differ only by case, the C# compiler flags them as not CLS-compliant.


using System;

[assembly: CLSCompliant(true)]

public class Person : person
{

}

public class person
{

}
// Compilation produces a compiler warning like the following:
//    Naming1.cs(11,14): warning CS3005: Identifier 'person' differing 
//                       only in case is not CLS-compliant
//    Naming1.cs(6,14): (Location of symbol related to previous warning)






Programming language identifiers, such as the names of namespaces, types, and members, must conform to the Unicode Standard 3.0, Technical Report 15, Annex 7 [http://www.unicode.org/reports/tr15/tr15-18.html]. This means that:



		The first character of an identifier can be any Unicode uppercase letter, lowercase letter, title case letter, modifier letter, other letter, or letter number. For information on Unicode character categories, see the System.Globalization.UnicodeCategory enumeration.


		Subsequent characters can be from any of the categories as the first character, and can also include non-spacing marks, spacing combining marks, decimal numbers, connector punctuations, and formatting codes.





Before you compare identifiers, you should filter out formatting codes and convert the identifiers to Unicode Normalization Form C, because a single character can be represented by multiple UTF-16-encoded code units. Character sequences that produce the same code units in Unicode Normalization Form C are not CLS-compliant. The following example defines a property named Å, which consists of the character ANGSTROM SIGN (U+212B), and a second property named Å which consists of the character LATIN CAPITAL LETTER A WITH RING ABOVE (U+00C5). The C# compiler flags the source code as non-CLS-compliant.


public class Size
{
   private double a1;
   private double a2;

   public double Å
   {
       get { return a1; }
       set { a1 = value; }
   }         

   public double Å
   {
       get { return a2; }
       set { a2 = value; }
   }
}
// Compilation produces a compiler warning like the following:
//    Naming2a.cs(16,18): warning CS3005: Identifier 'Size.Å' differing only in case is not
//            CLS-compliant
//    Naming2a.cs(10,18): (Location of symbol related to previous warning)
//    Naming2a.cs(18,8): warning CS3005: Identifier 'Size.Å.get' differing only in case is not
//            CLS-compliant
//    Naming2a.cs(12,8): (Location of symbol related to previous warning)
//    Naming2a.cs(19,8): warning CS3005: Identifier 'Size.Å.set' differing only in case is not
//            CLS-compliant
//    Naming2a.cs(13,8): (Location of symbol related to previous warning)






<Assembly: CLSCompliant(True)>
Public Class Size
   Private a1 As Double
   Private a2 As Double

   Public Property Å As Double
       Get
          Return a1
       End Get
       Set 
          a1 = value
       End Set
   End Property         

   Public Property Å As Double
       Get
          Return a2
       End Get
       Set
          a2 = value
       End Set   
   End Property
End Class
' Compilation produces a compiler warning like the following:
'    Naming1.vb(9) : error BC30269: 'Public Property Å As Double' has multiple definitions
'     with identical signatures.
'    
'       Public Property Å As Double
'                       ~






Member names within a particular scope (such as the namespaces within an assembly, the types within a namespace, or the members within a type) must be unique except for names that are resolved through overloading. This requirement is more stringent than that of the common type system, which allows multiple members within a scope to have identical names as long as they are different kinds of members (for example, one is a method and one is a field). In particular, for type members:



		Fields and nested types are distinguished by name alone.


		Methods, properties, and events that have the same name must differ by more than just return type.





The following example illustrates the requirement that member names must be unique within their scope. It defines a class named Converter that includes four members named Conversion. Three are methods, and one is a property. The method that includes an Int64 parameter is uniquely named, but the two methods with an Int32 parameter are not, because return value is not considered a part of a member’s signature. The Conversion property also violates this requirement, because properties cannot have the same name as overloaded methods.


using System;

[assembly: CLSCompliant(true)]

public class Converter
{
   public double Conversion(int number)
   {
      return (double) number;
   }

   public float Conversion(int number)
   {
      return (float) number;
   }

   public double Conversion(long number)
   {
      return (double) number;
   }

   public bool Conversion
   {
      get { return true; }
   }     
}  
// Compilation produces a compiler error like the following:
//    Naming3.cs(13,17): error CS0111: Type 'Converter' already defines a member called
//            'Conversion' with the same parameter types
//    Naming3.cs(8,18): (Location of symbol related to previous error)
//    Naming3.cs(23,16): error CS0102: The type 'Converter' already contains a definition for
//            'Conversion'
//    Naming3.cs(8,18): (Location of symbol related to previous error)






<Assembly: CLSCompliant(True)>

Public Class Converter
   Public Function Conversion(number As Integer) As Double
      Return CDbl(number)
   End Function

   Public Function Conversion(number As Integer) As Single
      Return CSng(number)
   End Function

   Public Function Conversion(number As Long) As Double
      Return CDbl(number)
   End Function

   Public ReadOnly Property Conversion As Boolean
      Get
         Return True
      End Get   
   End Property     
End Class
' Compilation produces a compiler error like the following:
'    Naming3.vb(8) : error BC30301: 'Public Function Conversion(number As Integer) As Double' 
'                    and 'Public Function Conversion(number As Integer) As Single' cannot 
'                    overload each other because they differ only by return types.
'    
'       Public Function Conversion(number As Integer) As Double
'                       ~~~~~~~~~~
'    Naming3.vb(20) : error BC30260: 'Conversion' is already declared as 'Public Function 
'                     Conversion(number As Integer) As Single' in this class.
'    
'       Public ReadOnly Property Conversion As Boolean
'                                ~~~~~~~~~~






Individual languages include unique keywords, so languages that target the common language runtime must also provide some mechanism for referencing identifiers (such as type names) that coincide with keywords. For example, case is a keyword in both C# and Visual Basic. However, the following Visual Basic example is able to disambiguate a class named case from the case keyword by using opening and closing braces. Otherwise, the example would produce the error message, “Keyword is not valid as an identifier,” and fail to compile.


Public Class [case]
   Private _id As Guid
   Private name As String  

   Public Sub New(name As String)
      _id = Guid.NewGuid()
      Me.name = name 
   End Sub   

   Public ReadOnly Property ClientName As String
      Get
         Return name
      End Get
   End Property
End Class






The following C# example is able to instantiate the case class by using the @ symbol to disambiguate the identifier from the language keyword. Without it, the C# compiler would display two error messages, “Type expected” and “Invalid expression term ‘case’.”


using System;

public class Example
{
   public static void Main()
   {
      @case c = new @case("John");
      Console.WriteLine(c.ClientName);
   }
}









Type conversion


The Common Language Specification defines two conversion operators:



		op_Implicit, which is used for widening conversions that do not result in loss of data or precision. For example, the Decimal structure includes an overloaded op_Implicit operator to convert values of integral types and Char values to Decimal values.


		op_Explicit, which is used for narrowing conversions that can result in loss of magnitude (a value is converted to a value that has a smaller range) or precision. For example, the Decimal structure includes an overloaded op_Explicit operator to convert Double and Single values to Decimal and to convert Decimal values to integral values, Double, Single, and Char.





However, not all languages support operator overloading or the definition of custom operators. If you choose to implement these conversion operators, you should also provide an alternate way to perform the conversion. We recommend that you provide FromXxx and ToXxx methods.


The following example defines CLS-compliant implicit and explicit conversions. It creates a UDoubleclass that represents an signed double-precision, floating-point number. It provides for implicit conversions from UDouble to Double and for explicit conversions from UDouble to Single, Double to UDouble, and Single to UDouble. It also defines a ToDouble method as an alternative to the implicit conversion operator and the ToSingle, FromDouble, and FromSingle methods as alternatives to the explicit conversion operators.


using System;

public struct UDouble
{
   private double number;

   public UDouble(double value)
   {
      if (value < 0)
         throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

      number = value;
   }

   public UDouble(float value)
   {
      if (value < 0)
         throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

      number = value;
   }

   public static readonly UDouble MinValue = (UDouble) 0.0;
   public static readonly UDouble MaxValue = (UDouble) Double.MaxValue;

   public static explicit operator Double(UDouble value)
   {
      return value.number;
   }

   public static implicit operator Single(UDouble value)
   {
      if (value.number > (double) Single.MaxValue) 
         throw new InvalidCastException("A UDouble value is out of range of the Single type.");

      return (float) value.number;         
   }

   public static explicit operator UDouble(double value)
   {
      if (value < 0)
         throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

      return new UDouble(value);
   } 

   public static implicit operator UDouble(float value)
   {
      if (value < 0)
         throw new InvalidCastException("A negative value cannot be converted to a UDouble.");

      return new UDouble(value);
   } 

   public static Double ToDouble(UDouble value)
   {
      return (Double) value;
   }   

   public static float ToSingle(UDouble value)
   {
      return (float) value;
   }   

   public static UDouble FromDouble(double value)
   {
      return new UDouble(value);
   }

   public static UDouble FromSingle(float value)
   {
      return new UDouble(value);
   }   
}






Public Structure UDouble
   Private number As Double

   Public Sub New(value As Double)
      If value < 0 Then
         Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
      End If
      number = value
   End Sub

   Public Sub New(value As Single)
      If value < 0 Then
         Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
      End If
      number = value
   End Sub

   Public Shared ReadOnly MinValue As UDouble = CType(0.0, UDouble)
   Public Shared ReadOnly MaxValue As UDouble = Double.MaxValue

   Public Shared Widening Operator CType(value As UDouble) As Double
      Return value.number
   End Operator

   Public Shared Narrowing Operator CType(value As UDouble) As Single
      If value.number > CDbl(Single.MaxValue) Then
         Throw New InvalidCastException("A UDouble value is out of range of the Single type.")
      End If
      Return CSng(value.number)         
   End Operator

   Public Shared Narrowing Operator CType(value As Double) As UDouble
      If value < 0 Then
         Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
      End If
      Return New UDouble(value)
   End Operator 

   Public Shared Narrowing Operator CType(value As Single) As UDouble
      If value < 0 Then
         Throw New InvalidCastException("A negative value cannot be converted to a UDouble.")
      End If
      Return New UDouble(value)
   End Operator 

   Public Shared Function ToDouble(value As UDouble) As Double
      Return CType(value, Double)
   End Function   

   Public Shared Function ToSingle(value As UDouble) As Single
      Return CType(value, Single)
   End Function   

   Public Shared Function FromDouble(value As Double) As UDouble
      Return New UDouble(value)
   End Function

   Public Shared Function FromSingle(value As Single) As UDouble
      Return New UDouble(value)
   End Function   
End Structure









Arrays


CLS-compliant arrays conform to the following rules:



		All dimensions of an array must have a lower bound of zero. The following example creates a non-CLS-compliant array with a lower bound of one. Note that, despite the presence of the CLSCompliantAttribute attribute, the compiler does not detect that the array returned by the Numbers.GetTenPrimes method is not CLS-compliant.


[assembly: CLSCompliant(true)]

public class Numbers
{
  public static Array GetTenPrimes()
  {
      Array arr = Array.CreateInstance(typeof(Int32), new int[] {10}, new int[] {1});
      arr.SetValue(1, 1);
      arr.SetValue(2, 2);
      arr.SetValue(3, 3);
      arr.SetValue(5, 4);
      arr.SetValue(7, 5);
      arr.SetValue(11, 6); 
      arr.SetValue(13, 7);
      arr.SetValue(17, 8);
      arr.SetValue(19, 9);
      arr.SetValue(23, 10);

      return arr; 
  }
}






<Assembly: CLSCompliant(True)>

Public Class Numbers
   Public Shared Function GetTenPrimes() As Array
      Dim arr As Array = Array.CreateInstance(GetType(Int32), {10}, {1})
      arr.SetValue(1, 1)
      arr.SetValue(2, 2)
      arr.SetValue(3, 3)
      arr.SetValue(5, 4)
      arr.SetValue(7, 5)
      arr.SetValue(11, 6)
      arr.SetValue(13, 7)
      arr.SetValue(17, 8)
      arr.SetValue(19, 9)
      arr.SetValue(23, 10)
      Return arr
   End Function
End Class









		All array elements must consist of CLS-compliant types. The following example defines two methods that return non-CLS-compliant arrays. The first returns an array of UInt32 values. The second returns an Object array that includes Int32 and UInt32 values. Although the compiler identifies the first array as non-compliant because of its UInt32 type, it fails to recognize that the second array includes non-CLS-compliant elements.


using System;

[assembly: CLSCompliant(true)]

public class Numbers
{
  public static UInt32[] GetTenPrimes()
  {
      uint[] arr = { 1u, 2u, 3u, 5u, 7u, 11u, 13u, 17u, 19u };
      return arr;
  }

  public static Object[] GetFivePrimes()
  {
      Object[] arr = { 1, 2, 3, 5u, 7u };
      return arr;
  }
}
// Compilation produces a compiler warning like the following:
//    Array2.cs(8,27): warning CS3002: Return type of 'Numbers.GetTenPrimes()' is not
//            CLS-compliant






<Assembly: CLSCompliant(True)>

Public Class Numbers
   Public Shared Function GetTenPrimes() As UInt32()
      Return { 1ui, 2ui, 3ui, 5ui, 7ui, 11ui, 13ui, 17ui, 19ui }
   End Function
   Public Shared Function GetFivePrimes() As Object()
      Dim arr() As Object = { 1, 2, 3, 5ui, 7ui }
      Return arr
   End Function
End Class
' Compilation produces a compiler warning like the following:
'    warning BC40027: Return type of function 'GetTenPrimes' is not CLS-compliant.









		Overload resolution for methods that have array parameters is based on the fact that they are arrays and on their element type. For this reason, the following definition of an overloaded GetSquares method is CLS-compliant.


using System;
using System.Numerics;

[assembly: CLSCompliant(true)]

public class Numbers
{
  public static byte[] GetSquares(byte[] numbers)
  {
      byte[] numbersOut = new byte[numbers.Length];
      for (int ctr = 0; ctr < numbers.Length; ctr++) {
          int square = ((int) numbers[ctr]) * ((int) numbers[ctr]); 
          if (square <= Byte.MaxValue)
              numbersOut[ctr] = (byte) square;
          // If there's an overflow, assign MaxValue to the corresponding 
          // element.
          else
              numbersOut[ctr] = Byte.MaxValue;

      }
      return numbersOut;
  }

  public static BigInteger[] GetSquares(BigInteger[] numbers)
{
      BigInteger[] numbersOut = new BigInteger[numbers.Length];
      for (int ctr = 0; ctr < numbers.Length; ctr++)
          numbersOut[ctr] = numbers[ctr] * numbers[ctr]; 

     return numbersOut;
  }
}






Imports System.Numerics

<Assembly: CLSCompliant(True)>

Public Module Numbers
   Public Function GetSquares(numbers As Byte()) As Byte()
      Dim numbersOut(numbers.Length - 1) As Byte
      For ctr As Integer = 0 To numbers.Length - 1
         Dim square As Integer = (CInt(numbers(ctr)) * CInt(numbers(ctr))) 
         If square <= Byte.MaxValue Then
            numbersOut(ctr) = CByte(square)
         ' If there's an overflow, assign MaxValue to the corresponding 
         ' element.
         Else
            numbersOut(ctr) = Byte.MaxValue
         End If   
      Next
      Return numbersOut
   End Function

   Public Function GetSquares(numbers As BigInteger()) As BigInteger()
       Dim numbersOut(numbers.Length - 1) As BigInteger
       For ctr As Integer = 0 To numbers.Length - 1
          numbersOut(ctr) = numbers(ctr) * numbers(ctr) 
       Next
       Return numbersOut
   End Function
End Module















Interfaces


CLS-compliant interfaces can define properties, events, and virtual methods (methods with no implementation). A CLS-compliant interface cannot have any of the following:



		Static methods or static fields. The C# compiler generatse compiler errors if you define a static member in an interface.





		Fields. The C# acompiler generates compiler errors if you define a field in an interface.





		Methods that are not CLS-compliant. For example, the following interface definition includes a method, INumber.GetUnsigned, that is marked as non-CLS-compliant. This example generates a compiler warning.


using System;

[assembly:CLSCompliant(true)]

public interface INumber
{
    int Length();
    [CLSCompliant(false)] ulong GetUnsigned();
}
// Attempting to compile the example displays output like the following:
//    Interface2.cs(8,32): warning CS3010: 'INumber.GetUnsigned()': CLS-compliant interfaces
//            must have only CLS-compliant members






<Assembly: CLSCompliant(True)>

Public Interface INumber
  Function Length As Integer
    <CLSCompliant(False)> Function GetUnsigned As ULong   
  End Interface
  ' Attempting to compile the example displays output like the following:
  '    Interface2.vb(9) : warning BC40033: Non CLS-compliant 'function' is not allowed in a 
  '    CLS-compliant interface.
  '    
  '       <CLSCompliant(False)> Function GetUnsigned As ULong
  '                                      ~~~~~~~~~~~






Because of this rule, CLS-compliant types are not required to implement non-CLS-compliant members. If a CLS-compliant framework does expose a class that implements a non-CLS compliant interface, it should also provide concrete implementations of all non-CLS-compliant members.








CLS-compliant language compilers must also allow a class to provide separate implementations of members that have the same name and signature in multiple interfaces. C# supports explicit interface implementations to provide different implementations of identically named methods. The following example illustrates this scenario by defining a Temperature class that implements the ICelsius and IFahrenheit interfaces as explicit interface implementations.


using System;

[assembly: CLSCompliant(true)]

public interface IFahrenheit
{
   decimal GetTemperature();
}

public interface ICelsius
{
   decimal GetTemperature();
}

public class Temperature : ICelsius, IFahrenheit
{
   private decimal _value;

   public Temperature(decimal value)
   {
      // We assume that this is the Celsius value.
      _value = value;
   } 

   decimal IFahrenheit.GetTemperature()
   {
      return _value * 9 / 5 + 32;
   }

   decimal ICelsius.GetTemperature()
   {
      return _value;
   } 
}
public class Example
{
   public static void Main()
   {
      Temperature temp = new Temperature(100.0m);
      ICelsius cTemp = temp;
      IFahrenheit fTemp = temp;
      Console.WriteLine("Temperature in Celsius: {0} degrees", 
                        cTemp.GetTemperature());
      Console.WriteLine("Temperature in Fahrenheit: {0} degrees", 
                        fTemp.GetTemperature());
   }
}
// The example displays the following output:
//       Temperature in Celsius: 100.0 degrees
//       Temperature in Fahrenheit: 212.0 degrees






Assembly: CLSCompliant(True)>

Public Interface IFahrenheit
   Function GetTemperature() As Decimal
End Interface

Public Interface ICelsius
   Function GetTemperature() As Decimal
End Interface

Public Class Temperature : Implements ICelsius, IFahrenheit
   Private _value As Decimal

   Public Sub New(value As Decimal)
      ' We assume that this is the Celsius value.
      _value = value
   End Sub 

   Public Function GetFahrenheit() As Decimal _
          Implements IFahrenheit.GetTemperature
      Return _value * 9 / 5 + 32
   End Function

   Public Function GetCelsius() As Decimal _
          Implements ICelsius.GetTemperature
      Return _value
   End Function 
End Class

Module Example
   Public Sub Main()
      Dim temp As New Temperature(100.0d)
      Console.WriteLine("Temperature in Celsius: {0} degrees", 
                        temp.GetCelsius())
      Console.WriteLine("Temperature in Fahrenheit: {0} degrees", 
                        temp.GetFahrenheit())
   End Sub
End Module
' The example displays the following output:
'       Temperature in Celsius: 100.0 degrees
'       Temperature in Fahrenheit: 212.0 degrees









Enumerations


CLS-compliant enumerations must follow these rules:



		The underlying type of the enumeration must be an intrinsic CLS-compliant integer (Byte, Int16, Int32, or Int64). For example, the following code tries to define an enumeration whose underlying type is UInt32 and generates a compiler warning.


using System;

[assembly: CLSCompliant(true)]

public enum Size : uint { 
    Unspecified = 0, 
    XSmall = 1, 
    Small = 2, 
    Medium = 3, 
    Large = 4, 
    XLarge = 5 
};

public class Clothing
{
    public string Name; 
    public string Type;
    public string Size;
}
// The attempt to compile the example displays a compiler warning like the following:
//    Enum3.cs(6,13): warning CS3009: 'Size': base type 'uint' is not CLS-compliant






<Assembly: CLSCompliant(True)>

Public Enum Size As UInt32
   Unspecified = 0
   XSmall = 1
   Small = 2
   Medium = 3
   Large = 4
   XLarge = 5
End Enum

Public Class Clothing
   Public Name As String
   Public Type As String
   Public Size As Size
End Class
' The attempt to compile the example displays a compiler warning like the following:
'    Enum3.vb(6) : warning BC40032: Underlying type 'UInt32' of Enum is not CLS-compliant.
'    
'    Public Enum Size As UInt32
'                ~~~~









		An enumeration type must have a single instance field named Value__ that is marked with the FieldAttributes.RTSpecialName attribute. This enables you to reference the field value implicitly.





		An enumeration includes literal static fields whose types match the type of the enumeration itself. For example, if you define a State enumeration with values of State.On and State.Off, State.On and State.Off are both literal static fields whose type is State.





		There are two kinds of enumerations:



		An enumeration that represents a set of mutually exclusive, named integer values. This type of enumeration is indicated by the absence of the System.FlagsAttribute custom attribute.


		An enumeration that represents a set of bit flags that can combine to generate an unnamed value. This type of enumeration is indicated by the presence of the System.FlagsAttribute custom attribute.











For more information, see the documentation for the Enum structure.



		The value of an enumeration is not limited to the range of its specified values. In other words, the range of values in an enumeration is the range of its underlying value. You can use the Enum.IsDefined method to determine whether a specified value is a member of an enumeration.








Type members in general


The Common Language Specification requires all fields and methods to be accessed as members of a particular class. Therefore, global static fields and methods (that is, static fields or methods that are defined apart from a type) are not CLS-compliant. If you try to include a global field or method in your source code, the C# compiler generates a compiler error.


The Common Language Specification supports only the standard managed calling convention. It doesn’t support unmanaged calling conventions and methods with variable argument lists marked with the varargs keyword. For variable argument lists that are compatible with the standard managed calling convention, use the ParamArrayAttribute attribute or the individual language’s implementation, such as the params keyword in C# and the ParamArray keyword in Visual Basic.





Member accessibility


Overriding an inherited member cannot change the accessibility of that member. For example, a public method in a base class cannot be overridden by a private method in a derived class. There is one exception: a protected internal (in C#) or Protected Friend (in Visual Basic) member in one assembly that is overridden by a type in a different assembly.  In that case, the accessibility of the override is Protected.


The following example illustrates the error that is generated when the CLSCompliantAttribute attribute is set to true, and Person, which is a class derived from Animal, tries to change the accessibility of the Species property from public to private. The example compiles successfully if its accessibility is changed to public.


using System;

[assembly: CLSCompliant(true)]

public class Animal
{
   private string _species;

   public Animal(string species)
   {
      _species = species;
   }

   public virtual string Species 
   {    
      get { return _species; }
   }

   public override string ToString()
   {
      return _species;   
   } 
}

public class Human : Animal
{
   private string _name;

   public Human(string name) : base("Homo Sapiens")
   {
      _name = name;
   }

   public string Name
   {
      get { return _name; }
   }

   private override string Species 
   {
      get { return base.Species; }
   }

   public override string ToString() 
   {
      return _name;
   }
}

public class Example
{
   public static void Main()
   {
      Human p = new Human("John");
      Console.WriteLine(p.Species);
      Console.WriteLine(p.ToString());
   }
}
// The example displays the following output:
//    error CS0621: 'Human.Species': virtual or abstract members cannot be private






<Assembly: CLSCompliant(True)>

Public Class Animal
   Private _species As String

   Public Sub New(species As String)
      _species = species
   End Sub

   Public Overridable ReadOnly Property Species As String
      Get
         Return _species
      End Get
   End Property

   Public Overrides Function ToString() As String
      Return _species   
   End Function 
End Class

Public Class Human : Inherits Animal
   Private _name As String

   Public Sub New(name As String)
      MyBase.New("Homo Sapiens")
      _name = name
   End Sub

   Public ReadOnly Property Name As String
      Get
         Return _name
      End Get
   End Property

   Private Overrides ReadOnly Property Species As String
      Get
         Return MyBase.Species
      End Get   
   End Property

   Public Overrides Function ToString() As String
      Return _name
   End Function
End Class

Public Module Example
   Public Sub Main()
      Dim p As New Human("John")
      Console.WriteLine(p.Species)
      Console.WriteLine(p.ToString())
   End Sub
End Module
' The example displays the following output:
'     'Private Overrides ReadOnly Property Species As String' cannot override 
'     'Public Overridable ReadOnly Property Species As String' because
'      they have different access levels.
' 
'         Private Overrides ReadOnly Property Species As String






Types in the signature of a member must be accessible whenever that member is accessible. For example, this means that a public member cannot include a parameter whose type is private, protected, or internal. The following example illustrates the compiler error that results when a StringWrapper class constructor exposes an internal StringOperationType enumeration value that determines how a string value should be wrapped.


using System;
using System.Text;

public class StringWrapper
{
   string internalString;
   StringBuilder internalSB = null;
   bool useSB = false;

   public StringWrapper(StringOperationType type)
   {   
      if (type == StringOperationType.Normal) {
         useSB = false;
      }   
      else {
         useSB = true;
         internalSB = new StringBuilder();
      }    
   }

   // The remaining source code...
}

internal enum StringOperationType { Normal, Dynamic }
// The attempt to compile the example displays the following output:
//    error CS0051: Inconsistent accessibility: parameter type
//            'StringOperationType' is less accessible than method
//            'StringWrapper.StringWrapper(StringOperationType)'






Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class StringWrapper

   Dim internalString As String
   Dim internalSB As StringBuilder = Nothing
   Dim useSB As Boolean = False

   Public Sub New(type As StringOperationType)   
      If type = StringOperationType.Normal Then
         useSB = False
      Else
         internalSB = New StringBuilder() 
         useSB = True
      End If    
   End Sub

   ' The remaining source code...
End Class

Friend Enum StringOperationType As Integer
   Normal = 0
   Dynamic = 1
End Enum
' The attempt to compile the example displays the following output:
'    error BC30909: 'type' cannot expose type 'StringOperationType'
'     outside the project through class 'StringWrapper'.
'    
'       Public Sub New(type As StringOperationType)
'                              ~~~~~~~~~~~~~~~~~~~









Generic types and members


Nested types always have at least as many generic parameters as their enclosing type. These correspond by position to the generic parameters in the enclosing type. The generic type can also include new generic parameters.


The relationship between the generic type parameters of a containing type and its nested types may be hidden by the syntax of individual languages. In the following example, a generic type Outer<T> contains two nested classes, Inner1A and Inner1B<U>. The calls to the ToString method, which each class inherits from Object.ToString, show that each nested class includes the type parameters of its containing class.


using System;

[assembly:CLSCompliant(true)]

public class Outer<T>
{
   T value;

   public Outer(T value)
   {
      this.value = value;
   }

   public class Inner1A : Outer<T>
   {
      public Inner1A(T value) : base(value)
      {  }
   }

   public class Inner1B<U> : Outer<T>
   {
      U value2;

      public Inner1B(T value1, U value2) : base(value1)
      {
         this.value2 = value2;
      }
   }
}

public class Example
{
   public static void Main()
   {
      var inst1 = new Outer<String>("This");
      Console.WriteLine(inst1);

      var inst2 = new Outer<String>.Inner1A("Another");
      Console.WriteLine(inst2);

      var inst3 = new Outer<String>.Inner1B<int>("That", 2);
      Console.WriteLine(inst3);
   }
}
// The example displays the following output:
//       Outer`1[System.String]
//       Outer`1+Inner1A[System.String]
//       Outer`1+Inner1B`1[System.String,System.Int32]






<Assembly:CLSCompliant(True)>

Public Class Outer(Of T)
   Dim value As T

   Public Sub New(value As T)
      Me.value = value
   End Sub

   Public Class Inner1A : Inherits Outer(Of T)
      Public Sub New(value As T)
         MyBase.New(value)
      End Sub
   End Class

   Public Class Inner1B(Of U) : Inherits Outer(Of T)
      Dim value2 As U

      Public Sub New(value1 As T, value2 As U)
         MyBase.New(value1)
         Me.value2 = value2
      End Sub
   End Class
End Class

Public Module Example
   Public Sub Main()
      Dim inst1 As New Outer(Of String)("This")
      Console.WriteLine(inst1)

      Dim inst2 As New Outer(Of String).Inner1A("Another")
      Console.WriteLine(inst2)

      Dim inst3 As New Outer(Of String).Inner1B(Of Integer)("That", 2)
      Console.WriteLine(inst3)
   End Sub
End Module
' The example displays the following output:
'       Outer`1[System.String]
'       Outer`1+Inner1A[System.String]
'       Outer`1+Inner1B`1[System.String,System.Int32]






Generic type names are encoded in the form name‘n, where name is the type name, ` is a character literal, and n is the number of parameters declared on the type, or, for nested generic types, the number of newly introduced type parameters. This encoding of generic type names is primarily of interest to developers who use reflection to access CLS-complaint generic types in a library.


If constraints are applied to a generic type, any types used as constraints must also be CLS-compliant. The following example defines a class named BaseClass that is not CLS-compliant and a generic class named BaseCollection whose type parameter must derive from BaseClass. But because BaseClassis not CLS-compliant, the compiler emits a warning.


using System;

[assembly:CLSCompliant(true)]

[CLSCompliant(false)] public class BaseClass
{}


public class BaseCollection<T> where T : BaseClass
{}
// Attempting to compile the example displays the following output:
//    warning CS3024: Constraint type 'BaseClass' is not CLS-compliant






Assembly: CLSCompliant(True)>

<CLSCompliant(False)> Public Class BaseClass
End Class


Public Class BaseCollection(Of T As BaseClass)
End Class
' Attempting to compile the example displays the following output:
'    warning BC40040: Generic parameter constraint type 'BaseClass' is not 
'    CLS-compliant.
'    
'    Public Class BaseCollection(Of T As BaseClass)
'                                        ~~~~~~~~~






If a generic type is derived from a generic base type, it must redeclare any constraints so that it can guarantee that constraints on the base type are also satisfied. The following example defines a Number<T> that can represent any numeric type. It also defines a FloatingPoint<T> class that represents a floating point value. However, the source code fails to compile, because it does not apply the constraint on Number<T> (that T must be a value type) to FloatingPoint<T>.


using System;

[assembly:CLSCompliant(true)]

public class Number<T> where T : struct
{
   // use Double as the underlying type, since its range is a superset of
   // the ranges of all numeric types except BigInteger.
   protected double number;

   public Number(T value)
   {
      try {
         this.number = Convert.ToDouble(value);
      }  
      catch (OverflowException e) {
         throw new ArgumentException("value is too large.", e);
      }
      catch (InvalidCastException e) {
         throw new ArgumentException("The value parameter is not numeric.", e);
      }
   }

   public T Add(T value)
   {
      return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
   }

   public T Subtract(T value)
   {
      return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
   }
}

public class FloatingPoint<T> : Number<T> 
{
   public FloatingPoint(T number) : base(number) 
   {
      if (typeof(float) == number.GetType() ||
          typeof(double) == number.GetType() || 
          typeof(decimal) == number.GetType())
         this.number = Convert.ToDouble(number);
      else   
         throw new ArgumentException("The number parameter is not a floating-point number.");
   }       
}           
// The attempt to comple the example displays the following output:
//       error CS0453: The type 'T' must be a non-nullable value type in
//               order to use it as parameter 'T' in the generic type or method 'Number<T>'






<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
   ' Use Double as the underlying type, since its range is a superset of
   ' the ranges of all numeric types except BigInteger.
   Protected number As Double

   Public Sub New(value As T)
      Try
         Me.number = Convert.ToDouble(value)
      Catch e As OverflowException
         Throw New ArgumentException("value is too large.", e)
      Catch e As InvalidCastException
         Throw New ArgumentException("The value parameter is not numeric.", e)
      End Try
   End Sub

   Public Function Add(value As T) As T
      Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
   End Function

   Public Function Subtract(value As T) As T
      Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
   End Function
End Class

Public Class FloatingPoint(Of T) : Inherits Number(Of T) 
   Public Sub New(number As T)
      MyBase.New(number) 
      If TypeOf number Is Single Or
               TypeOf number Is Double Or
               TypeOf number Is Decimal Then 
         Me.number = Convert.ToDouble(number)
      Else   
         throw new ArgumentException("The number parameter is not a floating-point number.")
      End If   
   End Sub       
End Class           
' The attempt to comple the example displays the following output:
'    error BC32105: Type argument 'T' does not satisfy the 'Structure'
'    constraint for type parameter 'T'.
'    
'    Public Class FloatingPoint(Of T) : Inherits Number(Of T)
'                                                          ~






The example compiles successfully if the constraint is added to the FloatingPoint<T> class.


using System;

[assembly:CLSCompliant(true)]


public class Number<T> where T : struct
{
   // use Double as the underlying type, since its range is a superset of
   // the ranges of all numeric types except BigInteger.
   protected double number;

   public Number(T value)
   {
      try {
         this.number = Convert.ToDouble(value);
      }  
      catch (OverflowException e) {
         throw new ArgumentException("value is too large.", e);
      }
      catch (InvalidCastException e) {
         throw new ArgumentException("The value parameter is not numeric.", e);
      }
   }

   public T Add(T value)
   {
      return (T) Convert.ChangeType(number + Convert.ToDouble(value), typeof(T));
   }

   public T Subtract(T value)
   {
      return (T) Convert.ChangeType(number - Convert.ToDouble(value), typeof(T));
   }
}

public class FloatingPoint<T> : Number<T> where T : struct 
{
   public FloatingPoint(T number) : base(number) 
   {
      if (typeof(float) == number.GetType() ||
          typeof(double) == number.GetType() || 
          typeof(decimal) == number.GetType())
         this.number = Convert.ToDouble(number);
      else   
         throw new ArgumentException("The number parameter is not a floating-point number.");
   }       
}      






<Assembly:CLSCompliant(True)>

Public Class Number(Of T As Structure)
   ' Use Double as the underlying type, since its range is a superset of
   ' the ranges of all numeric types except BigInteger.
   Protected number As Double

   Public Sub New(value As T)
      Try
         Me.number = Convert.ToDouble(value)
      Catch e As OverflowException
         Throw New ArgumentException("value is too large.", e)
      Catch e As InvalidCastException
         Throw New ArgumentException("The value parameter is not numeric.", e)
      End Try
   End Sub

   Public Function Add(value As T) As T
      Return CType(Convert.ChangeType(number + Convert.ToDouble(value), GetType(T)), T)
   End Function

   Public Function Subtract(value As T) As T
      Return CType(Convert.ChangeType(number - Convert.ToDouble(value), GetType(T)), T)
   End Function
End Class

Public Class FloatingPoint(Of T As Structure) : Inherits Number(Of T) 
   Public Sub New(number As T)
      MyBase.New(number) 
      If TypeOf number Is Single Or
               TypeOf number Is Double Or
               TypeOf number Is Decimal Then 
         Me.number = Convert.ToDouble(number)
      Else   
         throw new ArgumentException("The number parameter is not a floating-point number.")
      End If   
   End Sub       
End Class






The Common Language Specification imposes a conservative per-instantiation model for nested types and protected members. Open generic types cannot expose fields or members with signatures that contain a specific instantiation of a nested, protected generic type. Non-generic types that extend a specific instantiation of a generic base class or interface cannot expose fields or members with signatures that contain a different instantiation of a nested, protected generic type.


The following example defines a generic type, C1<T>, and a protected class, C1<T>.N. C1<T> has two methods, M1 and M2. However, M1 is not CLS-compliant because it tries to return a C1<int>.N object from C1<T>. A second class, C2, is derived from C1<long>. It has two methods, M3 and M4. M3 is not CLS-compliant because it tries to return a C1<int>.N object from a subclass of C1<long>. Note that language compilers can be even more restrictive. In this example, Visual Basic displays an error when it tries to compile M4.


using System;

[assembly:CLSCompliant(true)]

public class C1<T> 
{
   protected class N { }

   protected void M1(C1<int>.N n) { } // Not CLS-compliant - C1<int>.N not
                                      // accessible from within C1<T> in all
                                      // languages
   protected void M2(C1<T>.N n) { }   // CLS-compliant – C1<T>.N accessible
                                      // inside C1<T>
}

public class C2 : C1<long> 
{
   protected void M3(C1<int>.N n) { }  // Not CLS-compliant – C1<int>.N is not
                                       // accessible in C2 (extends C1<long>)

   protected void M4(C1<long>.N n) { } // CLS-compliant, C1<long>.N is
                                       // accessible in C2 (extends C1<long>)
}
// Attempting to compile the example displays output like the following:
//       Generics4.cs(9,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant
//       Generics4.cs(18,22): warning CS3001: Argument type 'C1<int>.N' is not CLS-compliant






<Assembly:CLSCompliant(True)>

Public Class C1(Of T) 
   Protected Class N
   End Class

   Protected Sub M1(n As C1(Of Integer).N)   ' Not CLS-compliant - C1<int>.N not
                                             ' accessible from within C1(Of T) in all
   End Sub                                   ' languages


   Protected Sub M2(n As C1(Of T).N)     ' CLS-compliant – C1(Of T).N accessible
   End Sub                               ' inside C1(Of T)
End Class

Public Class C2 : Inherits C1(Of Long) 
   Protected Sub M3(n As C1(Of Integer).N)   ' Not CLS-compliant – C1(Of Integer).N is not
   End Sub                                   ' accessible in C2 (extends C1(Of Long))

   Protected Sub M4(n As C1(Of Long).N)   
   End Sub                                
End Class
' Attempting to compile the example displays output like the following:
'    error BC30508: 'n' cannot expose type 'C1(Of Integer).N' in namespace 
'    '<Default>' through class 'C1'.
'    
'       Protected Sub M1(n As C1(Of Integer).N)   ' Not CLS-compliant - C1<int>.N not
'                             ~~~~~~~~~~~~~~~~
'    error BC30389: 'C1(Of T).N' is not accessible in this context because 
'    it is 'Protected'.
'    
'       Protected Sub M3(n As C1(Of Integer).N)   ' Not CLS-compliant - C1(Of Integer).N is not
'    
'                             ~~~~~~~~~~~~~~~~
'    
'    error BC30389: 'C1(Of T).N' is not accessible in this context because it is 'Protected'.
'    
'       Protected Sub M4(n As C1(Of Long).N)  
'                             ~~~~~~~~~~~~~









Constructors


Constructors in CLS-compliant classes and structures must follow these rules:



		A constructor of a derived class must call the instance constructor of its base class before it accesses inherited instance data. This requirement is due to the fact that base class constructors are not inherited by their derived classes. This rule does not apply to structures, which do not support direct inheritance.


Typically, compilers enforce this rule independently of CLS compliance, as the following example shows. It creates a Doctor class that is derived from a Person class, but the Doctorclass fails to call the Person class constructor to initialize inherited instance fields.


using System;

[assembly: CLSCompliant(true)]

public class Person
{
private string fName, lName, _id;

public Person(string firstName, string lastName, string id)
{
    if (String.IsNullOrEmpty(firstName + lastName))
        throw new ArgumentNullException("Either a first name or a last name must be provided.");    

    fName = firstName;
    lName = lastName;
    _id = id;
}

public string FirstName 
{
    get { return fName; }
}

public string LastName 
{
    get { return lName; }
}

public string Id 
{
    get { return _id; }
}

public override string ToString()
{
    return String.Format("{0}{1}{2}", fName, 
                        String.IsNullOrEmpty(fName) ?  "" : " ",
                        lName);
}
}

public class Doctor : Person
{
public Doctor(string firstName, string lastName, string id)
{
}

public override string ToString()
{
    return "Dr. " + base.ToString();
}
}
// Attempting to compile the example displays output like the following:
//    ctor1.cs(45,11): error CS1729: 'Person' does not contain a constructor that takes 0
//            arguments
//    ctor1.cs(10,11): (Location of symbol related to previous error)






<Assembly: CLSCompliant(True)> 

Public Class Person
   Private fName, lName, _id As String

   Public Sub New(firstName As String, lastName As String, id As String)
      If String.IsNullOrEmpty(firstName + lastName) Then
         Throw New ArgumentNullException("Either a first name or a last name must be provided.")    
      End If

      fName = firstName
      lName = lastName
      _id = id
   End Sub

   Public ReadOnly Property FirstName As String
      Get
         Return fName
      End Get
   End Property

   Public ReadOnly Property LastName As String
      Get
         Return lName
      End Get
   End Property

   Public ReadOnly Property Id As String
      Get
         Return _id
      End Get
   End Property

   Public Overrides Function ToString() As String
      Return String.Format("{0}{1}{2}", fName, 
                           If(String.IsNullOrEmpty(fName), "", " "),
                           lName)
   End Function
End Class

Public Class Doctor : Inherits Person
   Public Sub New(firstName As String, lastName As String, id As String)
   End Sub

   Public Overrides Function ToString() As String
      Return "Dr. " + MyBase.ToString()
   End Function
End Class
' Attempting to compile the example displays output like the following:
'    Ctor1.vb(46) : error BC30148: First statement of this 'Sub New' must be a call 
'    to 'MyBase.New' or 'MyClass.New' because base class 'Person' of 'Doctor' does 
'    not have an accessible 'Sub New' that can be called with no arguments.
'    
'       Public Sub New()
'                  ~~~









		An object constructor cannot be called except to create an object. In addition, an object cannot be initialized twice. For example, this means that Object.MemberwiseClone must not call constructors.











Properties


Properties in CLS-compliant types must follow these rules:



		A property must have a setter, a getter, or both. In an assembly, these are implemented as special methods, which means that they will appear as separate methods (the getter is named get_propertyname and the setter is set*_*propertyname*) marked asSpecialName` in the assembly’s metadata. The C# compiler enforces this rule automatically without the need to apply the CLSCompliantAttribute attribute.


		A property’s type is the return type of the property getter and the last argument of the setter. These types must be CLS compliant, and arguments cannot be assigned to the property by reference (that is, they cannot be managed pointers).


		If a property has both a getter and a setter, they must both be virtual, both static, or both instance. The C# compiler automatically enforces this rule through property definition syntax.








Events


An event is defined by its name and its type. The event type is a delegate that is used to indicate the event. For example, the DbConnection.StateChange event is of type StateChangeEventHandler. In addition to the event itself, three methods with names based on the event name provide the event’s implementation and are marked as SpecialName in the assembly’s metadata:



		A method for adding an event handler, named add_EventName. For example, the event subscription method for the DbConnection.StateChange event is named add_StateChange.


		A method for removing an event handler, named remove_EventName. For example, the removal method for the DbConnection.StateChange event is named remove_StateChange.


		A method for indicating that the event has occurred, named raise_EventName.






[!NOTE]
Most of the Common Language Specification’s rules regarding events are implemented by language compilers and are transparent to component developers.



The methods for adding, removing, and raising the event must have the same accessibility. They must also all be static, instance, or virtual. The methods for adding and removing an event have one parameter whose type is the event delegate type. The add and remove methods must both be present or both be absent.


The following example defines a CLS-compliant class named Temperature that raises a TemperatureChanged event if the change in temperature between two readings equals or exceeds a threshold value. The Temperature class explicitly defines a raise_TemperatureChanged method so that it can selectively execute event handlers.


using System;
using System.Collections;
using System.Collections.Generic;

[assembly: CLSCompliant(true)]

public class TemperatureChangedEventArgs : EventArgs
{
   private Decimal originalTemp;
   private Decimal newTemp; 
   private DateTimeOffset when;

   public TemperatureChangedEventArgs(Decimal original, Decimal @new, DateTimeOffset time)
   {
      originalTemp = original;
      newTemp = @new;
      when = time;
   }   

   public Decimal OldTemperature
   {
      get { return originalTemp; }
   } 

   public Decimal CurrentTemperature
   {
      get { return newTemp; }
   } 

   public DateTimeOffset Time
   {
      get { return when; }
   }
}

public delegate void TemperatureChanged(Object sender, TemperatureChangedEventArgs e);

public class Temperature
{
   private struct TemperatureInfo
   {
      public Decimal Temperature;
      public DateTimeOffset Recorded;
   }

   public event TemperatureChanged TemperatureChanged;

   private Decimal previous;
   private Decimal current;
   private Decimal tolerance;
   private List<TemperatureInfo> tis = new List<TemperatureInfo>();

   public Temperature(Decimal temperature, Decimal tolerance)
   {
      current = temperature;
      TemperatureInfo ti = new TemperatureInfo();
      ti.Temperature = temperature;
      tis.Add(ti);
      ti.Recorded = DateTimeOffset.UtcNow;
      this.tolerance = tolerance;
   }

   public Decimal CurrentTemperature
   {
      get { return current; }
      set {
         TemperatureInfo ti = new TemperatureInfo();
         ti.Temperature = value;
         ti.Recorded = DateTimeOffset.UtcNow;
         previous = current;
         current = value;
         if (Math.Abs(current - previous) >= tolerance) 
            raise_TemperatureChanged(new TemperatureChangedEventArgs(previous, current, ti.Recorded));
      }
   }

   public void raise_TemperatureChanged(TemperatureChangedEventArgs eventArgs)
   {
      if (TemperatureChanged == null)
         return; 

      foreach (TemperatureChanged d in TemperatureChanged.GetInvocationList()) {
         if (d.Method.Name.Contains("Duplicate"))
            Console.WriteLine("Duplicate event handler; event handler not executed.");
         else
            d.Invoke(this, eventArgs);
      }
   }
}

public class Example
{
   public Temperature temp;

   public static void Main()
   {
      Example ex = new Example();
   }

   public Example()
   {
      temp = new Temperature(65, 3);
      temp.TemperatureChanged += this.TemperatureNotification;
      RecordTemperatures();
      Example ex = new Example(temp);
      ex.RecordTemperatures();
   }

   public Example(Temperature t)
   {
      temp = t;
      RecordTemperatures();
   }

   public void RecordTemperatures()
   {
      temp.TemperatureChanged += this.DuplicateTemperatureNotification;
      temp.CurrentTemperature = 66;
      temp.CurrentTemperature = 63;
   }

   internal void TemperatureNotification(Object sender, TemperatureChangedEventArgs e) 
   {
      Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);   
   }

   public void DuplicateTemperatureNotification(Object sender, TemperatureChangedEventArgs e)
   { 
      Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature);   
   }
}






Imports System.Collections
Imports System.Collections.Generic

<Assembly: CLSCompliant(True)>

Public Class TemperatureChangedEventArgs   : Inherits EventArgs
   Private originalTemp As Decimal
   Private newTemp As Decimal 
   Private [when] As DateTimeOffset

   Public Sub New(original As Decimal, [new] As Decimal, [time] As DateTimeOffset)
      originalTemp = original
      newTemp = [new]
      [when] = [time]
   End Sub   

   Public ReadOnly Property OldTemperature As Decimal
      Get
         Return originalTemp
      End Get
   End Property 

   Public ReadOnly Property CurrentTemperature As Decimal
      Get
         Return newTemp
      End Get
   End Property 

   Public ReadOnly Property [Time] As DateTimeOffset
      Get
         Return [when]
      End Get
   End Property
End Class

Public Delegate Sub TemperatureChanged(sender As Object, e As TemperatureChangedEventArgs)

Public Class Temperature
   Private Structure TemperatureInfo
      Dim Temperature As Decimal
      Dim Recorded As DateTimeOffset
   End Structure

   Public Event TemperatureChanged As TemperatureChanged

   Private previous As Decimal
   Private current As Decimal
   Private tolerance As Decimal
   Private tis As New List(Of TemperatureInfo)

   Public Sub New(temperature As Decimal, tolerance As Decimal)
      current = temperature
      Dim ti As New TemperatureInfo()
      ti.Temperature = temperature
      ti.Recorded = DateTimeOffset.UtcNow
      tis.Add(ti)
      Me.tolerance = tolerance
   End Sub

   Public Property CurrentTemperature As Decimal
      Get
         Return current
      End Get
      Set
         Dim ti As New TemperatureInfo
         ti.Temperature = value
         ti.Recorded = DateTimeOffset.UtcNow
         previous = current
         current = value
         If Math.Abs(current - previous) >= tolerance Then
            raise_TemperatureChanged(New TemperatureChangedEventArgs(previous, current, ti.Recorded))
         End If
      End Set
   End Property

   Public Sub raise_TemperatureChanged(eventArgs As TemperatureChangedEventArgs)
      If TemperatureChangedEvent Is Nothing Then Exit Sub

      Dim ListenerList() As System.Delegate = TemperatureChangedEvent.GetInvocationList()
      For Each d As TemperatureChanged In TemperatureChangedEvent.GetInvocationList()
         If d.Method.Name.Contains("Duplicate") Then
            Console.WriteLine("Duplicate event handler; event handler not executed.")
         Else
            d.Invoke(Me, eventArgs)
         End If
      Next
   End Sub
End Class

Public Class Example
   Public WithEvents temp As Temperature

   Public Shared Sub Main()
      Dim ex As New Example()
   End Sub

   Public Sub New()
      temp = New Temperature(65, 3)
      RecordTemperatures()
      Dim ex As New Example(temp)
      ex.RecordTemperatures()
   End Sub

   Public Sub New(t As Temperature)
      temp = t
      RecordTemperatures()
   End Sub

   Public Sub RecordTemperatures()
      temp.CurrentTemperature = 66
      temp.CurrentTemperature = 63

   End Sub

   Friend Shared Sub TemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
          Handles temp.TemperatureChanged
      Console.WriteLine("Notification 1: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)   
   End Sub

   Friend Shared Sub DuplicateTemperatureNotification(sender As Object, e As TemperatureChangedEventArgs) _
          Handles temp.TemperatureChanged
      Console.WriteLine("Notification 2: The temperature changed from {0} to {1}", e.OldTemperature, e.CurrentTemperature)   
   End Sub
End Class









Overloads


The Common Language Specification imposes the following requirements on overloaded members:



		Members can be overloaded based on the number of parameters and the type of any parameter. Calling convention, return type, custom modifiers applied to the method or its parameter, and whether parameters are passed by value or by reference are not considered when differentiating between overloads. For an example, see the code for the requirement that names must be unique within a scope in the Naming conventions section.


		Only properties and methods can be overloaded. Fields and events cannot be overloaded.


		Generic methods can be overloaded based on the number of their generic parameters.






[!NOTE]
The op_Explicit and op_Implicit operators are exceptions to the rule that return value is not considered part of a method signature for overload resolution. These two operators can be overloaded based on both their parameters and their return value.






Exceptions


Exception objects must derive from System.Exception or from another type derived from System.Exception. The following example illustrates the compiler error that results when a custom class named ErrorClass is used for exception handling.


using System;

[assembly: CLSCompliant(true)]

public class ErrorClass
{ 
   string msg;

   public ErrorClass(string errorMessage)
   {
      msg = errorMessage;
   }

   public string Message
   {
      get { return msg; }
   }
}

public static class StringUtilities
{
   public static string[] SplitString(this string value, int index)
   {
      if (index < 0 | index > value.Length) {
         ErrorClass badIndex = new ErrorClass("The index is not within the string.");
         throw badIndex;
      }
      string[] retVal = { value.Substring(0, index - 1), 
                          value.Substring(index) };
      return retVal;
   }
}
// Compilation produces a compiler error like the following:
//    Exceptions1.cs(26,16): error CS0155: The type caught or thrown must be derived from
//            System.Exception






Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass 
   Dim msg As String

   Public Sub New(errorMessage As String)
      msg = errorMessage
   End Sub

   Public ReadOnly Property Message As String
      Get
         Return msg
      End Get   
   End Property
End Class

Public Module StringUtilities
   <Extension()> Public Function SplitString(value As String, index As Integer) As String()
      If index < 0 Or index > value.Length Then
         Dim BadIndex As New ErrorClass("The index is not within the string.")
         Throw BadIndex
      End If
      Dim retVal() As String = { value.Substring(0, index - 1), 
                                 value.Substring(index) }
      Return retVal
   End Function
End Module
' Compilation produces a compiler error like the following:
'    Exceptions1.vb(27) : error BC30665: 'Throw' operand must derive from 'System.Exception'.
'    
'             Throw BadIndex
'             ~~~~~~~~~~~~~~






To correct this error, the ErrorClass class must inherit from System.Exception. In addition, the Message property must be overridden. The following example corrects these errors to define an ErrorClass class that is CLS-compliant.


using System;

[assembly: CLSCompliant(true)]

public class ErrorClass : Exception
{ 
   string msg;

   public ErrorClass(string errorMessage)
   {
      msg = errorMessage;
   }

   public override string Message
   {
      get { return msg; }
   }
}

public static class StringUtilities
{
   public static string[] SplitString(this string value, int index)
   {
      if (index < 0 | index > value.Length) {
         ErrorClass badIndex = new ErrorClass("The index is not within the string.");
         throw badIndex;
      }
      string[] retVal = { value.Substring(0, index - 1), 
                          value.Substring(index) };
      return retVal;
   }
}






Imports System.Runtime.CompilerServices

<Assembly: CLSCompliant(True)>

Public Class ErrorClass : Inherits Exception
   Dim msg As String

   Public Sub New(errorMessage As String)
      msg = errorMessage
   End Sub

   Public Overrides ReadOnly Property Message As String
      Get
         Return msg
      End Get   
   End Property
End Class

Public Module StringUtilities
   <Extension()> Public Function SplitString(value As String, index As Integer) As String()
      If index < 0 Or index > value.Length Then
         Dim BadIndex As New ErrorClass("The index is not within the string.")
         Throw BadIndex
      End If
      Dim retVal() As String = { value.Substring(0, index - 1), 
                                 value.Substring(index) }
      Return retVal
   End Function
End Module









Attributes


In.NET Framework assemblies, custom attributes provide an extensible mechanism for storing custom attributes and retrieving metadata about programming objects, such as assemblies, types, members, and method parameters. Custom attributes must derive from System.Attribute or from a type derived from System.Attribute.


The following example violates this rule. It defines a NumericAttribute class that does not derive from System.Attribute. Note that a compiler error results only when the non-CLS-compliant attribute is applied, not when the class is defined.


using System;

[assembly: CLSCompliant(true)]

[AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct)] 
public class NumericAttribute
{
   private bool _isNumeric;

   public NumericAttribute(bool isNumeric)
   {
      _isNumeric = isNumeric;
   }

   public bool IsNumeric 
   {
      get { return _isNumeric; }
   }
}

[Numeric(true)] public struct UDouble
{
   double Value;
}
// Compilation produces a compiler error like the following:
//    Attribute1.cs(22,2): error CS0616: 'NumericAttribute' is not an attribute class
//    Attribute1.cs(7,14): (Location of symbol related to previous error)






<Assembly: CLSCompliant(True)>

<AttributeUsageAttribute(AttributeTargets.Class Or AttributeTargets.Struct)> _
Public Class NumericAttribute
   Private _isNumeric As Boolean

   Public Sub New(isNumeric As Boolean)
      _isNumeric = isNumeric
   End Sub

   Public ReadOnly Property IsNumeric As Boolean
      Get
         Return _isNumeric
      End Get
   End Property
End Class

<Numeric(True)> Public Structure UDouble
   Dim Value As Double
End Structure
' Compilation produces a compiler error like the following:
'    error BC31504: 'NumericAttribute' cannot be used as an attribute because it 
'    does not inherit from 'System.Attribute'.
'    
'    <Numeric(True)> Public Structure UDouble
'     ~~~~~~~~~~~~~






The constructor or the properties of a CLS-compliant attribute can expose only the following types:



		Boolean


		Byte


		Char


		Double


		Int16


		Int32


		Int64


		Single


		String


		Type


		Any enumeration type whose underlying type is Byte, Int16, Int32, or Int64.





The following example defines a DescriptionAttribute class that derives from Attribute. The class constructor has a parameter of type Descriptor, so the class is not CLS-compliant. Note that the C# compiler emits a warning but compiles successfully.


using System;

[assembly:CLSCompliantAttribute(true)]

public enum DescriptorType { type, member };

public class Descriptor
{
   public DescriptorType Type;
   public String Description; 
}

[AttributeUsage(AttributeTargets.All)]
public class DescriptionAttribute : Attribute
{
   private Descriptor desc;

   public DescriptionAttribute(Descriptor d)
   {
      desc = d; 
   }

   public Descriptor Descriptor
   { get { return desc; } } 
}
// Attempting to compile the example displays output like the following:
//       warning CS3015: 'DescriptionAttribute' has no accessible
//               constructors which use only CLS-compliant types






<Assembly:CLSCompliantAttribute(True)>

Public Enum DescriptorType As Integer
   Type = 0
   Member = 1
End Enum

Public Class Descriptor
   Public Type As DescriptorType 
   Public Description As String 
End Class

<AttributeUsage(AttributeTargets.All)> _
Public Class DescriptionAttribute : Inherits Attribute
   Private desc As Descriptor

   Public Sub New(d As Descriptor)
      desc = d 
   End Sub

   Public ReadOnly Property Descriptor As Descriptor
      Get 
         Return desc
      End Get    
   End Property
End Class











The CLSCompliantAttribute attribute


The CLSCompliantAttribute attribute is used to indicate whether a program element complies with the Common Language Specification. The CLSCompliantAttribute.CLSCompliantAttribute(Boolean) constructor includes a single required parameter, isCompliant, that indicates whether the program element is CLS-compliant.


At compile time, the compiler detects non-compliant elements that are presumed to be CLS-compliant and emits a warning. The compiler does not emit warnings for types or members that are explicitly declared to be non-compliant.


Component developers can use the CLSCompliantAttribute attribute in two ways:



		To define the parts of the public interface exposed by a component that are CLS-compliant and the parts that are not CLS-compliant. When the attribute is used to mark particular program elements as CLS-compliant, its use guarantees that those elements are accessible from all languages and tools that target the .NET Framework.


		To ensure that the component library’s public interface exposes only program elements that are CLS-compliant. If elements are not CLS-compliant, compilers will generally issue a warning.






[!WARNING]
In some cases, language compilers enforce CLS-compliant rules regardless of whether the CLSCompliantAttribute attribute is used. For example, defining a *static member in an interface violates a CLS rule. However, if you define a *static member in an interface, the C# compiler displays an error message and fails to compile the app.



The CLSCompliantAttribute attribute is marked with an AttributeUsageAttribute attribute that has a value of AttributeTargets.All. This value allows you to apply the CLSCompliantAttribute attribute to any program element, including assemblies, modules, types (classes, structures, enumerations, interfaces, and delegates), type members (constructors, methods, properties, fields, and events), parameters, generic parameters, and return values. However, in practice, you should apply the attribute only to assemblies, types, and type members. Otherwise, compilers ignore the attribute and continue to generate compiler warnings whenever they encounter a non-compliant parameter, generic parameter, or return value in your library’s public interface.


The value of the CLSCompliantAttribute attribute is inherited by contained program elements. For example, if an assembly is marked as CLS-compliant, its types are also CLS-compliant. If a type is marked as CLS-compliant, its nested types and members are also CLS-compliant.


You can explicitly override the inherited compliance by applying the CLSCompliantAttribute attribute to a contained program element. For example, you can use the CLSCompliantAttribute attribute with an isCompliant value of false to define a non-compliant type in a compliant assembly, and you can use the attribute with an isComplian value of true to define a compliant type in a non-compliant assembly. You can also define non-compliant members in a compliant type. However, a non-compliant type cannot have compliant members, so you cannot use the attribute with an isCompliant value of true to override inheritance from a non-compliant type.


When you are developing components, you should always use the CLSCompliantAttribute attribute to indicate whether your assembly, its types, and its members are CLS-compliant.


To create CLS-compliant components:



		Use the CLSCompliantAttribute to mark you assembly as CLS-compliant.


		Mark any publicly exposed types in the assembly that are not CLS-compliant as non-compliant.


		Mark any publicly exposed members in CLS-compliant types as non-compliant.


		Provide a CLS-compliant alternative for non-CLS-compliant members.





If you’ve successfully marked all your non-compliant types and members, your compiler should not emit any non-compliance warnings. However, you should indicate which members are not CLS-compliant and list their CLS-compliant alternatives in your product documentation.


The following example uses the CLSCompliantAttribute attribute to define a CLS-compliant assembly and a type, CharacterUtilities, that has two non-CLS-compliant members. Because both members are tagged with the CLSCompliant(false) attribute, the compiler produces no warnings. The class also provides a CLS-compliant alternative for both methods. Ordinarily, we would just add two overloads to the ToUTF16 method to provide CLS-compliant alternatives. However, because methods cannot be overloaded based on return value, the names of the CLS-compliant methods are different from the names of the non-compliant methods.


using System;
using System.Text;

[assembly:CLSCompliant(true)]

public class CharacterUtilities
{
   [CLSCompliant(false)] public static ushort ToUTF16(String s)
   {
      s = s.Normalize(NormalizationForm.FormC);
      return Convert.ToUInt16(s[0]);
   }

   [CLSCompliant(false)] public static ushort ToUTF16(Char ch)
   {
      return Convert.ToUInt16(ch); 
   }

   // CLS-compliant alternative for ToUTF16(String).
   public static int ToUTF16CodeUnit(String s)
   {
      s = s.Normalize(NormalizationForm.FormC);
      return (int) Convert.ToUInt16(s[0]);
   }

   // CLS-compliant alternative for ToUTF16(Char).
   public static int ToUTF16CodeUnit(Char ch)
   {
      return Convert.ToInt32(ch);
   }

   public bool HasMultipleRepresentations(String s)
   {
      String s1 = s.Normalize(NormalizationForm.FormC);
      return s.Equals(s1);   
   }

   public int GetUnicodeCodePoint(Char ch)
   {
      if (Char.IsSurrogate(ch))
         throw new ArgumentException("ch cannot be a high or low surrogate.");

      return Char.ConvertToUtf32(ch.ToString(), 0);   
   }

   public int GetUnicodeCodePoint(Char[] chars)
   {
      if (chars.Length > 2)
         throw new ArgumentException("The array has too many characters.");

      if (chars.Length == 2) {
         if (! Char.IsSurrogatePair(chars[0], chars[1]))
            throw new ArgumentException("The array must contain a low and a high surrogate.");
         else
            return Char.ConvertToUtf32(chars[0], chars[1]);
      }
      else {
         return Char.ConvertToUtf32(chars.ToString(), 0);
      } 
   }
}






Imports System.Text

<Assembly:CLSCompliant(True)>

Public Class CharacterUtilities
   <CLSCompliant(False)> Public Shared Function ToUTF16(s As String) As UShort
      s = s.Normalize(NormalizationForm.FormC)
      Return Convert.ToUInt16(s(0))
   End Function

   <CLSCompliant(False)> Public Shared Function ToUTF16(ch As Char) As UShort
      Return Convert.ToUInt16(ch) 
   End Function

   ' CLS-compliant alternative for ToUTF16(String).
   Public Shared Function ToUTF16CodeUnit(s As String) As Integer
      s = s.Normalize(NormalizationForm.FormC)
      Return CInt(Convert.ToInt16(s(0)))
   End Function

   ' CLS-compliant alternative for ToUTF16(Char).
   Public Shared Function ToUTF16CodeUnit(ch As Char) As Integer
      Return Convert.ToInt32(ch)
   End Function

   Public Function HasMultipleRepresentations(s As String) As Boolean
      Dim s1 As String = s.Normalize(NormalizationForm.FormC)
      Return s.Equals(s1)   
   End Function

   Public Function GetUnicodeCodePoint(ch As Char) As Integer
      If Char.IsSurrogate(ch) Then
         Throw New ArgumentException("ch cannot be a high or low surrogate.")
      End If
      Return Char.ConvertToUtf32(ch.ToString(), 0)   
   End Function

   Public Function GetUnicodeCodePoint(chars() As Char) As Integer
      If chars.Length > 2 Then
         Throw New ArgumentException("The array has too many characters.")
      End If
      If chars.Length = 2 Then
         If Not Char.IsSurrogatePair(chars(0), chars(1)) Then
            Throw New ArgumentException("The array must contain a low and a high surrogate.")
         Else
            Return Char.ConvertToUtf32(chars(0), chars(1))
         End If
      Else
         Return Char.ConvertToUtf32(chars.ToString(), 0)
      End If 
   End Function            
End Class






If you are developing an app rather than a library (that is, if you aren’t exposing types or members that can be consumed by other app developers), the CLS compliance of the program elements that your app consumes are of interest only if your language does not support them. In that case, your language compiler will generate an error when you try to use a non-CLS-compliant element.





Cross-Language Interoperability


Language independence has a number of possible meanings. One meaning involves seamlessly consuming types written in one language from an app written in another language. A second meaning, which is the focus of this article, involves combining code written in multiple languages into a single .NET Framework assembly.


The following example illustrates cross-language interoperability by creating a class library named Utilities.dll that includes two classes, NumericLib and StringLib. The NumericLib class is written in C#, and the StringLib class is written in Visual Basic. Here’s the source code for StringUtil.vb, which includes a single member, ToTitleCase, in its StringLib class.


Imports System.Collections.Generic
Imports System.Runtime.CompilerServices

Public Module StringLib
   Private exclusions As List(Of String) 

   Sub New()
      Dim words() As String = { "a", "an", "and", "of", "the" }
      exclusions = New List(Of String)
      exclusions.AddRange(words)
   End Sub

   <Extension()> _
   Public Function ToTitleCase(title As String) As String
      Dim words() As String = title.Split() 
      Dim result As String = String.Empty

      For ctr As Integer = 0 To words.Length - 1
         Dim word As String = words(ctr)
         If ctr = 0 OrElse Not exclusions.Contains(word.ToLower()) Then
            result += word.Substring(0, 1).ToUpper() + _
                      word.Substring(1).ToLower()
         Else
            result += word.ToLower()
         End If
         If ctr <= words.Length - 1 Then
            result += " "             
         End If   
      Next 
      Return result 
   End Function
End Module






Here’s the source code for NumberUtil.cs, which defines a NumericLib class that has two members, IsEven and NearZero.


using System;

public static class NumericLib 
{
   public static bool IsEven(this IConvertible number)
   {
      if (number is Byte ||
          number is SByte ||
          number is Int16 ||
          number is UInt16 || 
          number is Int32 || 
          number is UInt32 ||
          number is Int64)
         return ((long) number) % 2 == 0;
      else if (number is UInt64)
         return ((ulong) number) %2 == 0;
      else
         throw new NotSupportedException("IsEven called for a non-integer value.");
   }

   public static bool NearZero(double number)
   {
      return number < .00001; 
   }
}






To package the two classes in a single assembly, you must compile them into modules. To compile the Visual Basic source code file into a module, use this command:


vbc /t:module StringUtil.vb 






To compile the C# source code file into a module, use this command:


csc /t:module NumberUtil.cs






You then use the Link tool (Link.exe) to compile the two modules into an assembly:


link numberutil.netmodule stringutil.netmodule /out:UtilityLib.dll /dll






The following example then calls the NumericLib.NearZero and StringLib.ToTitleCase methods. Note that both the Visual Basic code and the C# code are able to access the methods in both classes.


using System;

public class Example
{
   public static void Main()
   {
      Double dbl = 0.0 - Double.Epsilon;
      Console.WriteLine(NumericLib.NearZero(dbl));

      string s = "war and peace";
      Console.WriteLine(s.ToTitleCase());
   }
}
// The example displays the following output:
//       True
//       War and Peace






Module Example
   Public Sub Main()
      Dim dbl As Double = 0.0 - Double.Epsilon
      Console.WriteLine(NumericLib.NearZero(dbl))

      Dim s As String = "war and peace"
      Console.WriteLine(s.ToTitleCase())
   End Sub
End Module
' The example displays the following output:
'       True
'       War and Peace






To compile the Visual Basic code, use this command:


vbc example.vb /r:UtilityLib.dll






To compile with C#, change the name of the compiler from vbc to csc, and change the file extension from .vb to .cs:


csc example.cs /r:UtilityLib.dll












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/minus.png





standard/exceptions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Handling and throwing exceptions in .NET
description: Understand how to use exceptions in .NET
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bf116df6-0042-46bf-be13-b69864816210





Handling and throwing exceptions in .NET


Applications must be able to handle errors that occur during execution in a consistent manner. .NET provides a model for notifying applications of errors in a uniform way: .NET operations indicate failure by throwing exceptions.



Exceptions


An exception is any error condition or unexpected behavior that is encountered by an executing program. Exceptions can be thrown because of a fault in your code or in code that you call (such as a shared library), unavailable operating system resources, unexpected conditions that the runtime encounters (such as code that cannot be verified), and so on. Your application can recover from some of these conditions, but not from others. Although you can recover from most application exceptions, you cannot recover from most runtime exceptions.


In .NET, an exception is an object that inherits from the System.Exception class. An exception is thrown from an area of code where a problem has occurred. The exception is passed up the stack until the application handles it or the program terminates.





Exceptions vs. traditional error-handling methods


Traditionally, a language’s error-handling model relied on either the language’s unique way of detecting errors and locating handlers for them, or on the error-handling mechanism provided by the operating system. The way .NET implements exception handling provides the following advantages:



		Exception throwing and handling works the same for .NET programming languages.


		Does not require any particular language syntax for handling exceptions, but allows each language to define its own syntax.


		Exceptions can be thrown across process and even machine boundaries.


		Exception-handling code can be added to an application to increase program reliability.





Exceptions offer advantages over other methods of error notification, such as return codes. Failures do not go unnoticed because if an exception is thrown and you don’t handle it, the runtime terminates your application. Invalid values do not continue to propagate through the system as a result of code that fails to check for a failure return code.





Exception class and properties


The @System.Exception class is the base class from which exceptions inherit. For example, the @System.InvalidCastException class hierarchy is as follows:


Object
  Exception
    SystemException
       InvalidCastException






The @System.Exception class has the following properties that help make understanding an exception easier.


Property Name	Description
————-	———–
@System.Exception.Data	An @System.Collections.IDictionary that holds arbitrary data in key-value pairs.
@System.Exception.HelpLink	Can hold a URL (or URN) to a help file that provides extensive information about the cause of an exception.
@System.Exception.InnerException	This property can be used to create and preserve a series of exceptions during exception handling. You can use it to create a new exception that contains previously caught exceptions. The original exception can be captured by the second exception in the @System.Exception.InnerException property, allowing code that handles the second exception to examine the additional information. For example, suppose you have a method that receives an argument that’s improperly formatted.  The code tries to read the argument, but an exception is thrown. The method catches the exception and throws a @System.FormatException. To improve the caller’s ability to determine the reason an exception is thrown, it is sometimes desirable for a method to catch an exception thrown by a helper routine and then throw an exception more indicative of the error that has occurred. A new and more meaningful exception can be created, where the inner exception reference can be set to the original exception. This more meaningful exception can then be thrown to the caller. Note that with this functionality, you can create a series of linked exceptions that ends with the exception that was thrown first.
@System.Exception.Message	Provides details about the cause of an exception.
@System.Exception.Source	Gets or sets the name of the application or the object that causes the error.
@System.Exception.StackTrace	Contains a stack trace that can be used to determine where an error occurred. The stack trace includes the source file name and program line number if debugging information is available.


Most of the classes that inherit from @System.Exception do not implement additional members or provide additional functionality; they simply inherit from @System.Exception. Therefore, the most important information for an exception can be found in the hierarchy of exception classes, the exception name, and the information contained in the exception.


It is recommended to throw and catch only objects that derive from @System.Exception, but you can throw any object that derives from the @System.Object class as an exception. Note that not all languages support throwing and catching objects that do not derive from @System.Exception.





Common Exceptions


The following table lists some common exceptions with examples of what can cause them.


Exception type	Base type	Description	Example
————–	———	———–	——-
@System.Exception	@System.Object	Base class for all exceptions.	None (use a derived class of this exception).
@System.IndexOutOfRangeException	@System.Exception	Thrown by the runtime only when an array is indexed improperly.	Indexing an array outside its valid range: arr[arr.Length+1]
@System.NullReferenceException	@System.Exception	Thrown by the runtime only when a null object is referenced.	object o = null; o.ToString();
@System.InvalidOperationException	@System.Exception	Thrown by methods when in an invalid state.	Calling Enumerator.GetNext() after removing an Item from the underlying collection.
@System.ArgumentException	@System.Exception	Base class for all argument exceptions.	None (use a derived class of this exception).
@System.ArgumentNullException	@System.Exception	Thrown by methods that do not allow an argument to be null.	String s = null; "Calculate".IndexOf (s);
@System.ArgumentOutOfRangeException	@System.Exception	Thrown by methods that verify that arguments are in a given range.	String s = "string"; s.Chars[9];





How to use the try/catch block to catch exceptions


Place the sections of code that might throw exceptions in a try block and place code that handles exceptions in a catch block. The catch block is a series of statements beginning with the keyword catch, followed by an exception type and an action to be taken.


The following code example uses a try/catch block to catch a possible exception. The Main method contains a try block with a @System.IO.StreamReader statement that opens a data file called data.txt and writes a string from the file. Following the try block is a catch block that catches any exception that results from the try block.


C#


using System;
using System.IO;

public class ProcessFile
{
    public static void Main()
    {
        try
        {
            StreamReader sr = File.OpenText("data.txt");
            Console.WriteLine("The first line of this file is {0}", sr.ReadLine());
            sr.Dispose();
        }
        catch (Exception e)
        {
            Console.WriteLine("An error occurred: '{0}'", e);
        }
    }
}






The common language runtime catches exceptions that are not caught by a catch block. Depending on how the runtime is configured, a debug dialog box appears, or the program stops executing and a dialog box with exception information appears, or an error is printed out to STDERR.



[!NOTE]
Almost any line of code can cause an exception, particularly exceptions that are thrown by the common language runtime itself, such as @System.OutOfMemoryException. Most applications don’t have to deal with these exceptions, but you should be aware of this possibility when writing libraries to be used by others. For suggestions on when to set code in a Try block, see Best Practices for Exceptions.






How to use specific exceptions in a Catch block


The preceding code example illustrates a basic catch statement that catches any exception. In general, though, it’s good programming practice to catch a specific type of exception rather than use a basic catch statement.


When an exception occurs, it is passed up the stack and each catch block is given the opportunity to handle it. The order of catch statements is important. Put catch blocks targeted to specific exceptions before a general exception catch block or the compiler might issue an error. The proper catch block is determined by matching the type of the exception to the name of the exception specified in the catch block. If there is no specific catch block, the exception is caught by a general catch block, if one exists.


The following code example uses a try/catch block to catch an @System.InvalidCastException. The sample creates a class called Employee with a single property, employee level (Emlevel). A method, PromoteEmployee, takes an object and increments the employee level. An @System.InvalidCastException occurs when a @System.DateTime instance is passed to the PromoteEmployee method.


C#


using System;

public class Employee
{
    //Create employee level property.
    public int Emlevel
    {
        get
        {
            return(emlevel);
        }
        set
        {
            emlevel = value;
        }
    }

    private int emlevel = 0;
}

public class Ex13
{
    public static void PromoteEmployee(Object emp)
    {
        //Cast object to Employee.
        Employee e = (Employee) emp;
        // Increment employee level.
        e.Emlevel = e.Emlevel + 1;
    }

    public static void Main()
    {
        try
        {
            Object o = new Employee();
            DateTime newyears = new DateTime(2001, 1, 1);
            //Promote the new employee.
            PromoteEmployee(o);
            //Promote DateTime; results in InvalidCastException as newyears is not an employee instance.
            PromoteEmployee(newyears);
        }
        catch (InvalidCastException e)
        {
            Console.WriteLine("Error passing data to PromoteEmployee method. " + e.Message);
        }
    }
}









How to use finally blocks


When an exception occurs, execution stops and control is given to the appropriate exception handler. This often means that lines of code you expect to be executed are bypassed. Some resource cleanup, such as closing a file, needs to be done even if an exception is thrown. To do this, you can use a finally block. A finally block always executes, regardless of whether an exception is thrown.


The following code example uses a try/catch block to catch an @System.ArgumentOutOfRangeException. The Main method creates two arrays and attempts to copy one to the other. The action generates an @System.ArgumentOutOfRangeException and the error is written to the console. The finally block executes regardless of the outcome of the copy action.


C#


using System;

class ArgumentOutOfRangeExample
{
    public static void Main()
    {
        int[] array1 = {0, 0};
        int[] array2 = {0, 0};

        try
        {
            Array.Copy(array1, array2, -1);
        }
        catch (ArgumentOutOfRangeException e)
        {
            Console.WriteLine("Error: {0}", e);
        }
        finally
        {
            Console.WriteLine("This statement is always executed.");
        }
    }
}









How to explicitly throw exceptions


You can explicitly throw an exception using the throw statement. You can also throw a caught exception again using the throw statement. It is good coding practice to add information to an exception that is re-thrown to provide more information when debugging.


The following code example uses a try/catch block to catch a possible @System.IO.FileNotFoundException. Following the try block is a catch block that catches the @System.IO.FileNotFoundException and writes a message to the console if the data file is not found. The next statement is the throw statement that throws a new @System.IO.FileNotFoundException and adds text information to the exception.


C#


using System;
using System.IO;

public class ProcessFile
{
   public static void Main()
      {
      FileStream fs = null;
      try   
      {
         //Opens a text tile.
         fs = new FileStream(@"C:\temp\data.txt", FileMode.Open);
         StreamReader sr = new StreamReader(fs);
         string line;

         //A value is read from the file and output to the console.
         line = sr.ReadLine();
         Console.WriteLine(line);
      }
      catch(FileNotFoundException e)
      {
         Console.WriteLine("[Data File Missing] {0}", e);
         throw new FileNotFoundException(@"[data.txt not in c:\temp directory]",e);
      }
      finally
      {
         if (fs != null)
            fs.Dispose();
      }
   }
}









How to create user-defined exceptions


.NET provides a hierarchy of exception classes ultimately derived from the base class @System.Exception. However, if none of the predefined exceptions meets your needs, you can create your own exception classes by deriving from the @System.Exception class.


When creating your own exceptions, end the class name of the user-defined exception with the word “Exception,” and implement the three common constructors, as shown in the following example. The example defines a new exception class named EmployeeListNotFoundException. The class is derived from @System.Exception and includes three constructors.


C#


using System;

public class EmployeeListNotFoundException: Exception
{
    public EmployeeListNotFoundException()
    {
    }

    public EmployeeListNotFoundException(string message)
        : base(message)
    {
    }

    public EmployeeListNotFoundException(string message, Exception inner)
        : base(message, inner)
    {
    }
}







[!NOTE]
In situations where you are using remoting, you must ensure that the metadata for any user-defined exceptions is available at the server (callee) and to the client (the proxy object or caller). For more information, see Best practices for exceptions.






Best practices for exceptions


A well-designed app handles exceptions and errors to prevent app crashes. This section describes best practices for handling and creating exceptions.



Use try/catch/finally blocks


Use try/catch/finally blocks around code that can potentially generate an exception.


In catch blocks, always order exceptions from the most specific to the least specific.


Use a finally block to clean up resources, whether you can recover or not.





Handle common conditions without throwing exceptions


For conditions that are likely to occur but might trigger an exception, consider handling them in a way that will avoid the exception. For example, if you try to close a connection that is already closed, you’ll get an InvalidOperationException. You can avoid that by using an if statement to check the connection state before trying to close it.


C#


if (conn.State != ConnectionState.Closed)
{
    conn.Close();
}






If you don’t check connection state before closing, you can catch the InvalidOperationException exception.


C#


try
{
    conn.Close();
}
catch (InvalidOperationException ex)
{
    Console.WriteLine(ex.GetType().FullName);
    Console.WriteLine(ex.Message);
}






The method to choose depends on how often you expect the event to occur.



		Use exception handling if the event doesn’t occur very often, that is, if the event is truly exceptional and indicates an error (such as an unexpected end-of-file). When you use exception handling, less code is executed in normal conditions.


		Check for error conditions in code if the event happens routinely and could be considered part of normal execution. When you check for common error conditions, less code is executed because you avoid exceptions.








Design classes so that exceptions can be avoided


A class can provide methods or properties that enable you to avoid making a call that would trigger an exception. For example, a @System.IO.FileStream class provides methods that help determine whether the end of the file has been reached. These can be used to avoid the exception that is thrown if you read past the end of the file. The following example shows how to read to the end of a file without triggering an exception.


C#


class FileRead
{
    public void ReadAll(FileStream fileToRead)
    {
        // This if statement is optional
        // as it is very unlikely that
        // the stream would ever be null.
        if (fileToRead == null)
        {
            throw new System.ArgumentNullException();
        }

        int b;

        // Set the stream position to the beginning of the file.
        fileToRead.Seek(0, SeekOrigin.Begin);

        // Read each byte to the end of the file.
        for (int i = 0; i < fileToRead.Length; i++)
        {
            b = fileToRead.ReadByte();
            Console.Write(b.ToString());
            // Or do something else with the byte.
        }
    }
}






Another way to avoid exceptions is to return null for extremely common error cases instead of throwing an exception. An extremely common error case can be considered normal flow of control. By returning null in these cases, you minimize the performance impact to an app.





Throw exceptions instead of returning an error code


Exceptions ensure that failures do not go unnoticed because calling code didn’t check a return code.





Use the predefined .NET exception types


Introduce a new exception class only when a predefined one doesn’t apply. For example:



		Throw an @System.InvalidOperationException exception if a property set or method call is not appropriate given the object’s current state.


		Throw an @System.ArgumentException exception or one of the predefined classes that derive from @System.ArgumentException if invalid parameters are passed.








End exception class names with the word Exception


When a custom exception is necessary, name it appropriately and derive it from the @System.Exception class. For example:


C#


public class MyFileNotFoundException : Exception
{
}









Include three constructors in custom exception classes


Use at least the three common constructors when creating your own exception classes: the default constructor, a constructor that takes a string message, and a constructor that takes a string message and an inner exception.



		@System.Exception.%23ctor, which uses default values.


		@System.Exception.%23ctor(System.String), which accepts a string message.


		@System.Exception.%23ctor(System.String,System.Exception), which accepts a string message and an inner exception.





For an example, see How to: Create User-Defined Exceptions.





Ensure that exception data is available when code executes remotely


When you create user-defined exceptions, ensure that the metadata for the exceptions is available to code that is executing remotely.


For example, on .NET runtimes that implement App Domains, exceptions may occur across App domains. Suppose App Domain A creates App Domain B, which executes code that throws an exception. For App Domain A to properly catch and handle the exception, it must be able to find the assembly that contains the exception thrown by App Domain B. If App Domain B throws an exception that is contained in an assembly under its application base, but not under App Domain A’s application base, App Domain A will not be able to find the exception, and the common language runtime will throw a @System.IO.FileNotFoundException exception. To avoid this situation, you can deploy the assembly that contains the exception information in two ways:



		Put the assembly into a common application base shared by both app domains.


- or -





		If the domains do not share a common application base, sign the assembly that contains the exception information with a strong name and deploy the assembly into the global assembly cache.











Include a localized description string in every exception


The error message that the user sees is derived from the description string of the exception that was thrown, and not from the name of the exception class.





Use grammatically correct error messages


Write clear sentences and include ending punctuation. Each sentence in a description string of an exception should end in a period. For example, “The log table has overflowed.” would be an appropriate description string.





In custom exceptions, provide additional properties as needed


Provide additional properties for an exception (in addition to the description string) only when there’s a programmatic scenario where the additional information is useful. For example, the @System.IO.FileNotFoundException provides the @System.IO.FileNotFoundException.FileName property.





Place throw statements so that the stack trace will be helpful


The stack trace begins at the statement where the exception is thrown and ends at the catch statement that catches the exception.





Use exception builder methods


It is common for a class to throw the same exception from different places in its implementation. To avoid excessive code, use helper methods that create the exception and return it. For example:


C#


class FileReader
{
    private string fileName;

    public FileReader(string path)
    {
        fileName = path;
    }

    public byte[] Read(int bytes)
    {
        byte[] results = FileUtils.ReadFromFile(fileName, bytes);
        if (results == null)
        {
            throw NewFileIOException();
        }
        return results;
    }

    FileReaderException NewFileIOException()
    {
        string description = "My NewFileIOException Description";

        return new FileReaderException(description);
    }
}






In some cases, it’s more appropriate to use the exception’s constructor to build the exception. An example is a global exception class such as @System.ArgumentException,





Clean up intermediate results when throwing an exception


Callers should be able to assume that there are no side effects when an exception is thrown from a method. For example, if you have code that transfers money by withdrawing from one account and depositing in another account, and an exception is thrown while executing the deposit, you don’t want the withdrawal to remain in effect.


C#


public void TransferFunds(Account from, Account to, decimal amount)
{
    from.Withdrawal(amount);
    // If the deposit fails, the withdrawal shouldn't remain in effect. 
    to.Deposit(amount);
}






One way to handle this situation is to catch any exceptions thrown by the deposit transaction and roll back the withdrawal.


C#


private static void TransferFunds(Account from, Account to, decimal amount)
{
    string withdrawalTrxID = from.Withdrawal(amount);
    try
    {
        to.Deposit(amount);
    }
    catch
    {
        from.RollbackTransaction(withdrawalTrxID);
        throw
    }
}






This example illustrates the use of throw to re-throw the original exception, which can make it easier for callers to see the real cause of the problem without having to examine the @System.Exception.InnerException property. An alternative is to throw a new exception and include the original exception as the inner exception:


C#


catch (Exception ex)
{
    from.RollbackTransaction(withdrawalTrxID);
    throw new Exception("Withdrawal failed", ex);
}











See Also


To learn more about how exceptions work in .NET, see What Every Dev needs to Know About Exceptions in the Runtime [https://github.com/dotnet/coreclr/blob/master/Documentation/botr/exceptions.md].








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/native-interop.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Native interoperability
description: Native interoperability
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3c357112-35fb-44ba-a07b-6a1c140370ac





Native Interoperability


In this document, we will dive a little bit deeper into all three ways of doing “native interoperability” that are available on the .NET platform.


There are a few of reasons why you would want to call into native code:



		Operating Systems come with a large volume of APIs that are not present in the managed class libraries. A prime example for this would be access to hardware or operating system management functions.


		Communicating with other components that have or can produce C-style ABIs (native ABIs). This covers, for example, Java code that is exposed via Java Native Interface (JNI) [http://docs.oracle.com/javase/8/docs/technotes/guides/jni/] or any other managed language that could produce a native component.


		On Windows, most of the software that gets installed, such as Microsoft Office suite, registers COM components that represent their programs and allow developers to automate them or use them. This also requires native interoperability.





Of course, the list above does not cover all of the potential situations and scenarios in which the developer would want/like/need to interface with native components. .NET class library, for instance, uses the native interoperability support to implement a fair number of its APIs, like console support and manipulation, file system access and others. However, it is important to note that there is an option, should one need it.



[!NOTE]
Most of the examples in this document will be presented for all three supported platforms for .NET Core (Windows, Linux and macOS). However, for some short and illustrative examples, just one sample is shown that uses Windows filenames and extensions (that is, “dll” for libraries). This does not mean that those features are not available on Linux or macOS, it was done merely for convenience sake.




Platform Invoke (P/Invoke)


P/Invoke is a technology that allows you to access structs, callbacks and functions in unmanaged libraries from your managed code. Most of the P/Invoke API is contained in two namespaces: System and System.Runtime.InteropServices. Using these two namespaces will allow you access to the attributes that describe how you want to communicate with the native component.


Let’s start from the most common example, and that is calling unmanaged functions in your managed code. Let’s show a message box from a command-line application:


using System.Runtime.InteropServices;

public class Program {

    // Import user32.dll (containing the function we need) and define
    // the method corresponding to the native function.
    [DllImport("user32.dll")]
    public static extern int MessageBox(IntPtr hWnd, String text, String caption, int options);

    public static void Main(string[] args) {
        // Invoke the function as a regular managed method.
        MessageBox(IntPtr.Zero, "Command-line message box", "Attention!", 0);
    }
}






The example above is pretty simple, but it does show off what is needed to invoke unmanaged functions from managed code. Let’s step through the example:



		Line #1 shows the using statement for the System.Runtime.InteropServices which is the namespace that holds all of the items we need.


		Line #5 introduces the DllImport attribute. This attribute is crucial, as it tells the runtime that it should load the unmanaged DLL. This is the DLL into which we wish to invoke.


		Line #6 is the crux of the P/Invoke work. It defines a managed method that has the exact same signature as the unmanaged one. The declaration has a new keyword that you can notice, extern, which tells the runtime this is an external method, and that when you invoke it, the runtime should find it in the DLL specified in DllImport attribute.





The rest of the example is just invoking the method as you would any other managed method.


The sample is similar for macOS. One thing that needs to change is, of course, the name of the library in the DllImport attribute, as macOS has a different scheme of naming dynamic libraries. The sample below uses the getpid(2) function to get the process ID of the application and print it out to the console.


using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
    public static class Program {

        // Import the libc and define the method corresponding to the native function.
        [DllImport("libSystem.dylib")]
        private static extern int getpid();

        public static void Main(string[] args){
            // Invoke the function and get the process ID.
            int pid = getpid();
            Console.WriteLine(pid);
        }
    }
}






It is similar on Linux, of course. The function name is same, since getpid(2) is POSIX [https://en.wikipedia.org/wiki/POSIX] system call.


using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
    public static class Program {

        // Import the libc and define the method corresponding to the native function.
        [DllImport("libc.so.6")]
        private static extern int getpid();

        public static void Main(string[] args){
            // Invoke the function and get the process ID.
            int pid = getpid();
            Console.WriteLine(pid);
        }
    }
}







Invoking managed code from unmanaged code


Of course, the runtime allows communication to flow both ways which enables you to call into managed artifacts from native functions, using function pointers. The closest thing to a function pointer in managed code is a delegate, so this is what is used to allow callbacks from native code into managed code.


The way to use this feature is similar to managed to native process described above. For a given callback, you define a delegate that matches the signature, and pass that into the external method. The runtime will take care of everything else.


using System;
using System.Runtime.InteropServices;

namespace ConsoleApplication1 {

    class Program {

        // Define a delegate that corresponds to the unmanaged function.
        delegate bool EnumWC(IntPtr hwnd, IntPtr lParam);

        // Import user32.dll (containing the function we need) and define
        // the method corresponding to the native function.
        [DllImport("user32.dll")]
        static extern int EnumWindows(EnumWC hWnd, IntPtr lParam);

        // Define the implementation of the delegate; here, we simply output the window handle.
        static bool OutputWindow(IntPtr hwnd, IntPtr lParam) {
            Console.WriteLine(hwnd.ToInt64());
            return true;
        }

        static void Main(string[] args) {
            // Invoke the method; note the delegate as a first parameter.
            EnumWindows(OutputWindow, IntPtr.Zero);
        }
    }
}






Before we walk through our example, it is good to go over the signatures of the unmanaged functions we need to work with. The function we want to call to enumerate all of the windows has the following signature: BOOL EnumWindows (WNDENUMPROC lpEnumFunc, LPARAM lParam);


The first parameter is a callback. The said callback has the following signature: BOOL CALLBACK EnumWindowsProc (HWND hwnd, LPARAM lParam);


With this in mind, let’s walk through the example:



		Line #8 in the example defines a delegate that matches the signature of the callback from unmanaged code. Notice how the LPARAM and HWND types are represented using IntPtr in the managed code.


		Lines #10 and #11 introduce the EnumWindows function from the user32.dll library.


		Lines #13 - 16 implement the delegate. For this simple example, we just want to output the handle to the console.


		Finally, in line #19 we invoke the external method and pass in the delegate.





The Linux and macOS examples are shown below. For them, we use the ftw function that can be found in libc, the C library. This function is used to traverse directory hierarchies and it takes a pointer to a function as one of its parameters. The said function has the following signature: int (*fn) (const char *fpath, const struct stat *sb, int typeflag).


using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
    public static class Program {

            // Define a delegate that has the same signature as the native function.
            delegate int DirClbk(string fName, StatClass stat, int typeFlag);

            // Import the libc and define the method to represent the native function.
            [DllImport("libc.so.6")]
            static extern int ftw(string dirpath, DirClbk cl, int descriptors);

            // Implement the above DirClbk delegate;
            // this one just prints out the filename that is passed to it.
            static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
                    Console.WriteLine(fName);
                    return 0;
            }

            public static void Main(string[] args){
                    // Call the native function.
                    // Note the second parameter which represents the delegate (callback).
                    ftw(".", DisplayEntry, 10);
            }
    }

    // The native callback takes a pointer to a struct. The below class
    // represents that struct in managed code. You can find more information
    // about this in the section on marshalling below.
    [StructLayout(LayoutKind.Sequential)]
    public class StatClass {
            public uint DeviceID;
            public uint InodeNumber;
            public uint Mode;
            public uint HardLinks;
            public uint UserID;
            public uint GroupID;
            public uint SpecialDeviceID;
            public ulong Size;
            public ulong BlockSize;
            public uint Blocks;
            public long TimeLastAccess;
            public long TimeLastModification;
            public long TimeLastStatusChange;
    }
}






macOS example uses the same function, and the only difference is the argument to the DllImport attribute, as macOS keeps libc in a different place.


using System;
using System.Runtime.InteropServices;

namespace PInvokeSamples {
        public static class Program {

                // Define a delegate that has the same signature as the native function.
                delegate int DirClbk(string fName, StatClass stat, int typeFlag);

                // Import the libc and define the method to represent the native function.
                [DllImport("libSystem.dylib")]
                static extern int ftw(string dirpath, DirClbk cl, int descriptors);

                // Implement the above DirClbk delegate;
                // this one just prints out the filename that is passed to it.
                static int DisplayEntry(string fName, StatClass stat, int typeFlag) {
                        Console.WriteLine(fName);
                        return 0;
                }

                public static void Main(string[] args){
                        // Call the native function.
                        // Note the second parameter which represents the delegate (callback).
                        ftw(".", DisplayEntry, 10);
                }
        }

        // The native callback takes a pointer to a struct. The below class
        // represents that struct in managed code. You can find more information
        // about this in the section on marshalling below.
        [StructLayout(LayoutKind.Sequential)]
        public class StatClass {
                public uint DeviceID;
                public uint InodeNumber;
                public uint Mode;
                public uint HardLinks;
                public uint UserID;
                public uint GroupID;
                public uint SpecialDeviceID;
                public ulong Size;
                public ulong BlockSize;
                public uint Blocks;
                public long TimeLastAccess;
                public long TimeLastModification;
                public long TimeLastStatusChange;
        }
}






Both of the above examples depend on parameters, and in both cases, the parameters are given as managed types. Runtime does the “right thing” and processes these into its equivalents on the other side. Since this process is really important to writing quality native interop code, let’s take a look at what happens when the runtime marshals the types.







Type marshalling


Marshalling is the process of transforming types when they need to cross the managed boundary into native and vice versa.


The reason marshalling is needed is because the types in the managed and unmanaged code are different. In managed code, for instance, you have a String, while in the unmanaged world strings can be Unicode (“wide”), non-Unicode, null-terminated, ASCII, etc. By default, the P/Invoke subsystem will try to do the Right Thing based on the default behavior which you can see on MSDN [https://msdn.microsoft.com/library/zah6xy75.aspx]. However, for those situations where you need extra control, you can employ the MarshalAs attribute to specify what is the expected type on the unmanaged side. For instance, if we want the string to be sent as a null-terminated ANSI string, we could do it like this:


[DllImport("somenativelibrary.dll"]
static extern int MethodA([MarshalAs(UnmanagedType.LPStr) string parameter);







Marshalling classes and structs


Another aspect of type marshalling is how to pass in a struct to an unmanaged method. For instance, some of the unmanaged methods require a struct as a parameter. In these cases, we need to create a corresponding struct or a class in managed part of the world to use it as a parameter. However, just defining the class is not enough, we also need to instruct the marshaler how to map fields in the class to the unmanaged struct. This is where the StructLayout attribute comes into play.


[DllImport("kernel32.dll")]
static extern void GetSystemTime(SystemTime systemTime);

[StructLayout(LayoutKind.Sequential)]
class SystemTime {
    public ushort Year;
    public ushort Month;
    public ushort DayOfWeek;
    public ushort Day;
    public ushort Hour;
    public ushort Minute;
    public ushort Second;
    public ushort Milsecond;
}

public static void Main(string[] args) {
    SystemTime st = new SystemTime();
    GetSystemTime(st);
    Console.WriteLine(st.Year);
}






The example above shows off a simple example of calling into GetSystemTime() function. The interesting bit is on line 4. The attribute specifies that the fields of the class should be mapped sequentially to the struct on the other (unmanaged) side. This means that the naming of the fields is not important, only their order is important, as it needs to correspond to the unmanaged struct, shown below:


typedef struct _SYSTEMTIME {
  WORD wYear;
  WORD wMonth;
  WORD wDayOfWeek;
  WORD wDay;
  WORD wHour;
  WORD wMinute;
  WORD wSecond;
  WORD wMilliseconds;
} SYSTEMTIME, *PSYSTEMTIME*;






We already saw the Linux and macOS example for this in the previous example. It is shown again below.


[StructLayout(LayoutKind.Sequential)]
public class StatClass {
        public uint DeviceID;
        public uint InodeNumber;
        public uint Mode;
        public uint HardLinks;
        public uint UserID;
        public uint GroupID;
        public uint SpecialDeviceID;
        public ulong Size;
        public ulong BlockSize;
        public uint Blocks;
        public long TimeLastAccess;
        public long TimeLastModification;
        public long TimeLastStatusChange;
}






The StatClass class represents a structure that is returned by the stat system call on UNIX systems. It represents information about a given file. The class above is the stat struct representation in managed code. Again, the fields in the class have to be in the same order as the native struct (you can find these by perusing man pages on your favorite UNIX implementation) and they have to be of the same underlying type.







More resources



		PInvoke.net wiki [http://www.pinvoke.net] an excellent Wiki with information on common Win32 APIs and how to call them.


		P/Invoke on MSDN [https://msdn.microsoft.com/library/zbz07712.aspx]


		Mono documentation on P/Invoke [http://www.mono-project.com/docs/advanced/pinvoke/]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/common-type-system.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Common Type System & Common Language Specification
description: Common Type System & Common Language Specification
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3b1f5725-ac94-4f17-8e5f-244442438a4d





Common Type System & Common Language Specification


Again, two terms that are freely used in the .NET world, they actually are crucial to understand how the .NET platform enables multi-language development and to understand how it works.



Common Type System


To start from the beginning, remember that the .NET platform is language agnostic. This doesn’t just mean that a programmer can write her code in any language that can be compiled to IL. It also means that she needs to be able to interact with code written in other languages that are able to be used on the .NET platform.


In order to do this transparently, there has to be a common way to describe all supported types. This is what the Common Type System (CTS) is in charge of doing. It was made to do several things:



		Establish a framework for cross-language execution.


		Provide an object-oriented model to support implementing various languages on .NET platform.


		Define a set of rules that all languages must follow when it comes to working with types.


		Provide a library that contains the basic primitive types that are used in application development (i.e. Boolean, Byte, Char etc.)





CTS defines two main kinds of types that should be supported: reference and value types. Their names point to their definitions.


Reference types’ objects are represented by a reference to the object’s actual value; a reference here is similar to a pointer in C/C++. It simply refers to a memory location where the objects’ values are. This has a profound impact on how these types are used. If you assign a reference type to a variable and then pass that variable into a method, for instance, any changes to the object will be reflected on the main object; there is no copying.


Value types are the opposite, where the objects are represented by their values. If you assign a value type to a variable, you are essentially copying a value of the object.


CTS defines several categories of types, each with their specific semantics and usage:



		Classes


		Structures


		Enums


		Interfaces


		Delegates





CTS also defines all other properties of the types, such as access modifiers, what are valid type members, how inheritance and overloading works and so on. Unfortunately, going deep into any of those is beyond the scope of an introductory article such as this, but you can consult More resources section at the end for links to more in-depth content that covers these topics.





Common Language Specification


To enable full interoperability scenarios, all objects that are created in code must rely on some commonality in the languages that are consuming them (are their callers). Since there are numerous different languages, .NET platform has specified those commonalities in something called the Common Language Specification (CLS). CLS defines a set of features that are needed by many common applications. It also provides a sort of recipe for any language that is implemented on top of .NET platform on what it needs to support.


CLS is a subset of the CTS. This means that all of the rules in the CTS also apply to the CLS, unless the CLS rules are more strict. If a component is built using only the rules in the CLS, that is, it exposes only the CLS features in its API, it is said to be CLS-compliant. For instance, the <framework-librares> are CLS-compliant precisely because they need to work across all of the languages that are supported on the .NET platform.


You can consult the documents in the More Resources section below to get an overview of all the features in the CLS.





More resources



		Common Type System [https://msdn.microsoft.com/library/zcx1eb1e.aspx]


		Common Language Specification [https://msdn.microsoft.com/library/12a7a7h3.aspx]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/comment.png





standard/garbagecollection/using-objects.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using objects that implement IDisposable
description: Using objects that implement IDisposable
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/19/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: df780a6e-734e-44b8-9747-9f7783f79e20





Using objects that implement IDisposable


The common language runtime’s garbage collector reclaims the memory used by unmanaged objects, but types that use unmanaged resources implement the IDisposable interface to allow this unmanaged memory to be reclaimed. When you finish using an object that implements IDisposable, you should call the object’s IDisposable.Dispose implementation. You can do this in one of two ways:



		With the C# using statement or the Visual Basic Using statement.


		By implementing a try/finally block.






The using statement


The using statement in C# and the Using statement in Visual Basic simplify the code that you must write to create and clean up an object. The using statement obtains one or more resources, executes the statements that you specify, and automatically disposes of the object. However, the using statement is useful only for objects that are used within the scope of the method in which they are constructed.


The following example uses the using statement to create and release a System.IO.StreamReader object.


using System;
using System.IO;

public class Example
{
   public static void Main()
   {
      Char[] buffer = new Char[50];
      using (StreamReader s = new StreamReader("File1.txt")) {
         int charsRead = 0;
         while (s.Peek() != -1) {
            charsRead = s.Read(buffer, 0, buffer.Length);
            //
            // Process characters read.
            //   
         }
         s.Close();    
      }

   }
}






Imports System.IO

Module Example
   Public Sub Main()
      Dim buffer(49) As Char
      Using s As New StreamReader("File1.txt")
         Dim charsRead As Integer
         Do While s.Peek() <> -1
            charsRead = s.Read(buffer, 0, buffer.Length)         
            ' 
            ' Process characters read.
            '
         Loop
         s.Close()
      End Using
   End Sub
End Module






Note that although the StreamReader class implements the IDisposable interface, which indicates that it uses an unmanaged resource, the example doesn’t explicitly call the StreamReader.Dispose method. When the C# or Visual Basic compiler encounters the using statement, it emits intermediate language (IL) that is equivalent to the following code that explicitly contains a try/finally block.


using System;
using System.IO;

public class Example
{
   public static void Main()
   {
      Char[] buffer = new Char[50];
      {
         StreamReader s = new StreamReader("File1.txt"); 
         try {
            int charsRead = 0;
            while (s.Peek() != -1) {
               charsRead = s.Read(buffer, 0, buffer.Length);
               //
               // Process characters read.
               //   
            }
            s.Close();
         }
         finally {
            if (s != null)
               ((IDisposable)s).Dispose();     
         }       
      }
   }
}






Imports System.IO

Module Example
   Public Sub Main()
      Dim buffer(49) As Char
''      Dim s As New StreamReader("File1.txt")
With s As New StreamReader("File1.txt")
      Try
         Dim charsRead As Integer
         Do While s.Peek() <> -1
            charsRead = s.Read(buffer, 0, buffer.Length)         
            ' 
            ' Process characters read.
            '
         Loop
         s.Close()
      Finally
         If s IsNot Nothing Then DirectCast(s, IDisposable).Dispose()
      End Try
End With
   End Sub
End Module






The C# using statement also allows you to acquire multiple resources in a single statement, which is internally equivalent to nested using statements. The following example instantiates two StreamReader objects to read the contents of two different files.


using System;
using System.IO;

public class Example
{
   public static void Main()
   {
      Char[] buffer1 = new Char[50], buffer2 = new Char[50];

      using (StreamReader version1 = new StreamReader("file1.txt"),
                          version2 = new StreamReader("file2.txt")) {
         int charsRead1, charsRead2 = 0;
         while (version1.Peek() != -1 && version2.Peek() != -1) {
            charsRead1 = version1.Read(buffer1, 0, buffer1.Length);
            charsRead2 = version2.Read(buffer2, 0, buffer2.Length);
            //
            // Process characters read.
            //
         }
         version1.Close();
         version2.Close();
      }
   }
}









Try/finally block


Instead of wrapping a try/finally block in a using statement, you may choose to implement the try/finally block directly. This may be your personal coding style, or you might want to do this for one of the following reasons:



		To include a catch block to handle any exceptions thrown in the try block. Otherwise, any exceptions thrown by the using statement are unhandled, as are any exceptions thrown within the using block if a try/catch block isn’t present.


		To instantiate an object that implements IDisposable whose scope is not local to the block within which it is declared.





The following example is similar to the previous example, except that it uses a try/catch/finally block to instantiate, use, and dispose of a StreamReader object, and to handle any exceptions thrown by the StreamReader constructor and its ReadToEnd method. Note that the code in the finally block checks that the object that implements IDisposable isn’t null before it calls the Dispose method. Failure to do this can result in a NullReferenceException exception at run time.


using System;
using System.Globalization;
using System.IO;

public class Example
{
   public static void Main()
   {
      StreamReader sr = null;
      try {
         sr = new StreamReader("file1.txt");
         String contents = sr.ReadToEnd();
         sr.Close();
         Console.WriteLine("The file has {0} text elements.", 
                           new StringInfo(contents).LengthInTextElements);    
      }      
      catch (FileNotFoundException) {
         Console.WriteLine("The file cannot be found.");
      }   
      catch (IOException) {
         Console.WriteLine("An I/O error has occurred.");
      }
      catch (OutOfMemoryException) {
         Console.WriteLine("There is insufficient memory to read the file.");   
      }
      finally {
         if (sr != null) sr.Dispose();     
      }
   }
}






Imports System.Globalization
Imports System.IO

Module Example
   Public Sub Main()
      Dim sr As StreamReader = Nothing
      Try 
         sr = New StreamReader("file1.txt")
         Dim contents As String = sr.ReadToEnd()
         sr.Close()
         Console.WriteLine("The file has {0} text elements.", 
                           New StringInfo(contents).LengthInTextElements)    
      Catch e As FileNotFoundException
         Console.WriteLine("The file cannot be found.")
      Catch e As IOException
         Console.WriteLine("An I/O error has occurred.")
      Catch e As OutOfMemoryException
         Console.WriteLine("There is insufficient memory to read the file.")   
      Finally 
         If sr IsNot Nothing Then sr.Dispose()     
      End Try
   End Sub
End Module






You can follow this basic pattern if you choose to implement or must implement a try/finally block, because your programming language doesn’t support a using statement but does allow direct calls to the Dispose method.





See Also


Cleaning up unmanaged resources








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/plus.png





standard/generics.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Generic Types (Generics) Overview
description: Generic Types (Generics) Overview
keywords: .NET, .NET Core
author: kuhlenh
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a315b111-8e48-446c-ab19-acb6405894a7





Generic Types (Generics) Overview


We use generics all the time in C#, whether implicitly or explicitly. When you use LINQ in C#, did you ever notice that you are working with IEnumerable? Or if you ever saw an online sample of a “generic repository” for talking to databases using Entity Framework, did you see that most methods return IQueryable? You may have wondered what the T is in these examples and why is it in there?


First introduced to the .NET Framework 2.0, generics involved changes to both the C# language and the Common Language Runtime (CLR). Generics are essentially a “code template” that allows developers to define type-safe [https://msdn.microsoft.com/library/hbzz1a9a.aspx] data structures without committing to an actual data type. For example, List<T> is a Generic Collection [https://msdn.microsoft.com/library/System.Collections.Generic.aspx] that can be declared and used with any type: List<int>, List<string>, List<Person>, etc.


So, what’s the point? Why are generics useful? In order to understand this, we need to take a look at a specific class before and after adding generics. Let’s look at the ArrayList. In C# 1.0, the ArrayList elements were of type object. This meant that any element that was added was silently converted into an object; same thing happens on reading the elements from the list (this process is known as boxing [https://msdn.microsoft.com/library/yz2be5wk.aspx] and unboxing respectively). Boxing and unboxing have an impact of performance. More than that, however, there is no way to tell at compile time what is the actual type of the data in the list. This makes for some fragile code. Generics solve this problem by providing additional information the type of data each instance of list will contain. Put simply, you can only add integers to List<int> and only add Persons to List<Person>, etc.


Generics are also available at runtime, or reified. This means the runtime knows what type of data structure you are using and can store it in memory more efficiently.


Here is a small program that illustrates the efficiency of knowing the data structure type at runtime:


  using System;
  using System.Collections;
  using System.Collections.Generic;
  using System.Diagnostics;

  namespace GenericsExample {
    class Program {
      static void Main(string[] args) {
        //generic list
        List<int> ListGeneric = new List<int> { 5, 9, 1, 4 };
        //non-generic list
        ArrayList ListNonGeneric = new ArrayList { 5, 9, 1, 4 };
        // timer for generic list sort
        Stopwatch s = Stopwatch.StartNew();
        ListGeneric.Sort();
        s.Stop();
        Console.WriteLine($"Generic Sort: {ListGeneric}  \n Time taken: {s.Elapsed.TotalMilliseconds}ms");

        //timer for non-generic list sort
        Stopwatch s2 = Stopwatch.StartNew();
        ListNonGeneric.Sort();
        s2.Stop();
        Console.WriteLine($"Non-Generic Sort: {ListNonGeneric}  \n Time taken: {s2.Elapsed.TotalMilliseconds}ms");
        Console.ReadLine();
      }
    }
  }






This program yields the following output:


Generic Sort: System.Collections.Generic.List\`1[System.Int32] Time taken: 0.0789ms
Non-Generic Sort: System.Collections.ArrayList Time taken: 2.4324ms






The first thing you notice here is that sorting the generic list is significantly faster than for the non-generic list. You might also notice that the type for the generic list is distinct ([System.Int32]) whereas the type for the non-generic list is generalized. Because the runtime knows the generic List<int> is of type int, it can store the list elements in an underlying integer array in memory while the non-generic ArrayList has to cast each list element as an object as stored in an object array in memory. As shown through this example, the extra castings take up time and slow down the list sort.


The last useful thing about the runtime knowing the type of your generic is a better debugging experience. When you are debugging a generic in C#, you know what type each element is in your data structure. Without generics, you would have no idea what type each element was.



Further reading and resources



		An Introduction to C# Generics [https://msdn.microsoft.com/library/ms379564.aspx]


		C# Programming Guide - Generics [https://msdn.microsoft.com/library/512aeb7t.aspx]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_static/file.png





standard/assembly-format.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Assembly File Format
description: .NET Assembly File Format
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6520323e-ff28-4c8a-ba80-e64a413199e6





.NET Assembly File Format


The .NET platform defines a binary file format - “assembly” - that is used to fully-describe and contain .NET programs. Assemblies are used for the programs themselves as well as any dependent libraries. A .NET program can be executed as one of more assemblies, with no other required artifacts, beyond the appropriate .NET runtime. Native dependencies, including operating system APIs, are a separate concern and are not contained within the .NET assembly format, although are sometimes described with this format (for example, WinRT).



Each CLI component carries the metadata for declarations, implementations, and references specific to that component. Therefore, the component-specific metadata is referred to as component metadata, and the resulting component is said to be self-describing – from ECMA 335 I.9.1, Components and assemblies.



The format is fully specified and standardized as ECMA 335. All .NET compilers and runtimes use this format. The presence of a documented and infrequently updated binary format has been a major benefit (arguably a requirement) for interoperatibility. The format was last updated in a substantive way in 2005 (.NET 2.0) to accommodate generics and processor architecture.


The format is CPU- and OS-agnostic. It has been used as part of .NET runtimes that target many chips and CPUs. While the format itself has Windows heritage, it is implementable on any operating system. It’s arguably most significant choice for OS interoperability is that most values are stored in little-endian format. It doesn’t have a specific affinity to machine pointer size (for example, 32-bit, 64-bit).


The .NET assembly format is also very descriptive about the structure of a given program or library. It describes the internal components of an assembly, specifically: assembly references and types defined and their internal structure. Tools or APIs can read and process this information for display or to make programmatic decisions.



Format


The .NET binary format is based on the Windows PE file [http://en.wikipedia.org/wiki/Portable_Executable] format. In fact, .NET class libraries are conformant Windows PEs, and appear on first glance to be Windows dynamic link libraries (DLLs) or application executables (EXEs). This is a very useful characteristic on Windows, where they can masquerade as native executable binaries and get some of the same treatment (for example, OS load, PE tools).


[image: Assembly headers]


Assembly Headers from ECMA 335 II.25.1, Structure of the runtime file format.





Processing the Assemblies


It is possible to write tools or APIs to process assemblies. Assembly information enables making programmatic decisions at runtime, re-writing assemblies, providing API IntelliSense in an editor and generating documentation. System.Reflection [https://msdn.microsoft.com/library/system.reflection.aspx] and Mono.Cecil [http://www.mono-project.com/docs/tools+libraries/libraries/Mono.Cecil/] are good examples of tools that are frequently used for this purpose.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

samples-and-tutorials/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Samples and Tutorials
description: Samples and Tutorials
keywords: .NET
author: BillWagner
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net
ms.technology: .net-technologies
ms.devlang: dotnet
ms.assetid: 617310e7-336b-4864-8dab-7e2021512929





Samples and Tutorials


We’ve got a rich catalog of samples and tutorials that you can use
to learn more about .NET. This area contains samples and tutorials
for .NET Core, and the C# Language.


You can find great resources to learn the F# programming language
on the F# Foundation’s site [http://fsharp.org/learn.html].


You can find great resources for learning ASP.NET Core on the
ASP.NET site [https://docs.asp.net/en/latest/tutorials/index.html]


In addition, if you are interested in exploring C# using an
online playground, try these interactive tutorials [http://go.microsoft.com/fwlink/?LinkId=817234].



General



Samples


Unit Testing in .NET Core using dotnet test


This guide shows how to create an ASP.NET Core web application and the associated unit tests. It will start by creating a simple web service application and then add tests, and continue by creating more tests to guide implementing new features. The completed code is available in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core/getting-started/unit-testing-using-dotnet-test].





Tutorials


Writing .NET Core console apps using the CLI tools: A step-by-step guide


This guide will show you how to use the .NET Core CLI tooling to build cross-platform console apps.  It will start with the most basic console app and eventually span multiple projects, including testing. You’ll add these features step-by-step, building on what you’ve already seen and built. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps].


Writing Libraries with Cross Platform Tools


This sample covers how you can write libraries for .NET using cross-platform CLI tools.  They provide an efficient and low-level experience that works across any supported OS.
The completed code is available in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/frameworks-library].







C# Language



Samples


Iterators


This sample demonstrates the syntax and features for creating and consuming C# iterators. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/iterators].


Indexers


This sample demonstrates the syntax and features for C# indexers. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/indexers].


Delegates and Events


This sample demonstrates the syntax and features for C# delegates and events. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/delegates-and-events]. A second sample, focused on events is also in the
same repository [https://github.com/dotnet/core-docs/tree/master/samples/csharp/events].


Expression Trees


This sample demonstrates many of the problems that can be solved by using Expression Trees. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/expression-trees].


LINQ Samples


These series of samples demonstrate many of the features of Language Integrated Query.  A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core/linq/csharp].





Tutorials


Console Application


This tutorial demonstrates Console I/O, the structure of a Console application, and
the basics of the Task based asynchronous programming model. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/console-teleprompter].


REST Client


This tutorial demonstrates web communications, JSON serialization, and Object Oriented
features in the C# language. A finished version of the code you’ll build is located
in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/console-webapiclient].


Working with LINQ


This tutorial demonstrates many of the features of LINQ and the language elements that support it. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/console-linq].


Microservices hosted in Docker


This tutorial demonstrates building an asp.net core microservice and hosting it it Docker. A finished version of the code you’ll build is located in the core-docs repository on GitHub [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/WeatherMicroservice].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/async-in-depth.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Async in depth
description: In-depth explanation of how asynchronous code works in .NET
keywords: .NET, .NET Core, .NET Standard
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1e38f9d9-8f84-46ee-a15f-199aec4f2e34





Async in depth


Writing I/O- and CPU-bound asynchronous code is straightforward using the .NET Task-based async model. The model is exposed by the Task and Task<T> types and the async and await language keywords. This article explains how to use .NET async and provides insight into the async framework used under the covers.



Task and Task&lt;


T&gt;





Tasks are constructs used to implement what is known as the Promise Model of Concurrency [https://en.wikipedia.org/wiki/Futures_and_promises].  In short, they offer you a “promise” that work will be completed at a later point, letting you coordinate with the promise with a clean API.



		Task represents a single operation which does not return a value.


		Task<T> represents a single operation which returns a value of type T.





It’s important to reason about tasks as abstractions of work happening asynchronously, and not an abstraction over threading. By default, tasks execute on the current thread and delegate work to the Operating System, as appropriate. Optionally, tasks can be be explicitly requested to run on a separate thread via the Task.Run API.


Tasks expose an API protocol for monitoring, waiting upon and accessing the result value (in the case of Task<T>) of a task. Language integration, with the await keyword, provides a higher-level abstraction for using tasks.


Using await allows your application or service to perform useful work while a task is running by yielding control to its caller until the task is done. Your code does not need to rely on callbacks or events to continue execution after the task has been completed. The language and task API integration does that for you. If you’re using Task<T>, the await keyword will additionally “unwrap” the value returned when the Task is complete.  The details of how this works are explained further below.


You can learn more about tasks and the different ways to interact with them in the Task-based Asynchronous Pattern (TAP) Article [https://msdn.microsoft.com/library/hh873175.aspx].





Deeper Dive into Tasks for an I/O-Bound Operation


The following section describes a 10,000 foot view of what happens with a typical async I/O call. Let’s start with a couple examples.


The first example calls an async method and returns an active task, likely yet to complete.


public Task<string> GetHtmlAsync()
{
    // Execution is synchronous here
    var client = new HttpClient();
    
    return client.GetStringAsync("http://www.dotnetfoundation.org");
}






The second example adds the use of he async and await keywords to operate on the task.


public async Task<string> GetFirstCharactersCountAsync(string url, int count)
{
    // Execution is synchronous here
    var client = new HttpClient();
    
    // Execution of GetFirstCharactersCountAsync() is yielded to the caller here
    // GetStringAsync returns a Task<string>, which is *awaited*
    var page = await client.GetStringAsync("http://www.dotnetfoundation.org");
    
    // Execution resumes when the client.GetStringAsync task completes,
    // becoming synchronous again.
    
    if (count > page.Length)
    {
        return page;
    }
    else
    {
        return page.Substring(0, count);
    }
}






The call to GetStringAsync() calls through lower-level .NET libraries (perhaps calling other async methods) until it reaches a P/Invoke interop call into a native networking library. The native library may subsequently call into a System API call (such as write() to a socket on Linux). A task object will be created at the native/managed boundary, possibly using TaskCompletionSource. The task object will be passed up through the layers, possibly operated on or directly returned, eventually returned to the initial caller.


In the second example above, a Task<T> object will be returned from GetStringAsync. The use of the await keyword causes the method to return a newly created task object. Control returns to the caller from this location in the GetFirstCharactersCountAsync method. The methods and properties of the Task

&lt;


T&gt;


 object enable callers to monitor the progress of the task, which will complete when the remaining code in GetFirstCharactersCountAsync has executed.


After the System API call, the request is now in kernel space, making its way to the networking subsystem of the OS (such as /net in the Linux Kernel).  Here the OS will handle the networking request asynchronously.  Details may be different depending on the OS used (the device driver call may be scheduled as a signal sent back to the runtime, or a device driver call may be made and then a signal sent back), but eventually the runtime will be informed that the networking request is in progress.  At this time, the work for the device driver will either be scheduled, in-progress, or already finished (the request is already out “over the wire”) - but because this is all happening asynchronously, the device driver is able to immediately handle something else!


For example, in Windows an OS thread makes a call to the network device driver and asks it to perform the networking operation via an Interrupt Request Packet (IRP) which represents the operation.  The device driver receives the IRP, makes the call to the network, marks the IRP as “pending”, and returns back to the OS.  Because the OS thread now knows that the IRP is “pending”, it doesn’t have any more work to do for this job and “returns” back so that it can be used to perform other work.


When the request is fulfilled and data comes back through the device driver, it notifies the CPU of new data received via an interrupt.  How this interrupt gets handled will vary depending on the OS, but eventually the data will be passed through the OS until it reaches a system interop call (for example, in Linux an interrupt handler will schedule the bottom half of the IRQ to pass the data up through the OS asynchronously).  Note that this also happens asynchronously!  The result is queued up until the next available thread is able execute the async method and “unwrap” the result of the completed task.


Throughout this entire process, a key takeaway is that no thread is dedicated to running the task.  Although work is executed in some context (i.e. the OS does have to pass data to a device driver and respond to an interrupt), there is no thread dedicated to waiting for data from the request to come back.  This allows the system to handle a much larger volume of work rather than waiting for some I/O call to finish.


Although the above may seem like a lot of work to be done, when measured in terms of wall clock time, it’s miniscule compared to the time it takes to do the actual I/O work. Although not at all precise, a potential timeline for such a call would look like this:


0-1————————————————————————————————————————————————–2-3



		Time spent from points 0 to 1 is everything up until an async method yields control to its caller.


		Time spent from points 1 to 2 is the time spent on I/O, with no CPU cost.


		Finally, time spent from points 2 to 3 is passing control back (and potentially a value) to the async method, at which point it is executing again.






What does this mean for a server scenario?


This model works well with a typical server scenario workload.  Because there are no threads dedicated to blocking on unfinished tasks, the server threadpool can service a much higher volume of web requests.


Consider two servers: one that runs async code, and one that does not.  For the purpose of this example, each server only has 5 threads available to service requests.  Note that these numbers are imaginarily small and serve only in a demonstrative context.


Assume both servers receive 6 concurrent requests. Each request performs an I/O operation.  The server without async code has to queue up the 6th request until one of the 5 threads have finished the I/O-bound work and written a response. At the point that the 20th request comes in, the server might start to slow down, because the queue is getting too long.


The server with async code running on it still queues up the 6th request, but because it uses async and await, each of its threads are freed up when the I/O-bound work starts, rather than when it finishes.  By the time the 20th request comes in, the queue for incoming requests will be far smaller (if it has anything in it at all), and the server won’t slow down.


Although this is a contrived example, it works in a very similar fashion in the real world.  In fact, you can expect a server to be able to handle an order of magnitude more requests using async and await than if it were dedicating a thread for each request it receives.





What does this mean for client scenario?


The biggest gain for using async and await for a client app is an increase in responsiveness.  Although you can make an app responsive by spawning threads manually, the act of spawning a thread is an expensive operation relative to just using async and await.  Especially for something like a mobile game, impacting the UI thread as little as possible where I/O is concerned is crucial.


More importantly, because I/O-bound work spends virtually no time on the CPU, dedicating an entire CPU thread to perform barely any useful work would be a poor use of resources.


Additionally, dispatching work to the UI thread (such as updating a UI) is very simple with async methods, and does not require extra work (such as calling a thread-safe delegate).







Deeper Dive into Task and Task for a CPU-Bound Operation


CPU-bound async code is a bit different than I/O-bound async code.  Because the work is done on the CPU, there’s no way to get around dedicating a thread to the computation.  The use of async and await provides you with a clean way to interact with a background thread and keep the caller of the async method responsive.  Note that this does not provide any protection for shared data.  If you are using shared data, you will still need to apply an appropriate synchronization strategy.


Here’s a 10,000 foot view of a CPU-bound async call:


public async Task<int> CalculateResult(InputData data)
{
    // This queues up the work on the threadpool.
    var expensiveResultTask = Task.Run(() => DoExpensiveCalculation(data));
    
    // Note that at this point, you can do some other work concurrently,
    // as CalculateResult() is still executing!
    
    // Execution of CalculateResult is yielded here!
    var result = await expensiveResultTask;
    
    return result;
}






CalculateResult() executes on the thread it was called on.  When it calls Task.Run, it queues the expensive CPU-bound operation, DoExpensiveCalculation(), on the thread pool and receives a Task<int> handle.  DoExpensiveCalculation() is eventually run concurrently on the next available thread, likely on another CPU core.  It’s possible to do concurrent work while DoExpensiveCalculation() is busy on another thread, because the thread which called CalculateResult() is still executing.


Once await is encountered, the execution of CalculateResult() is yielded to its caller, allowing other work to be done with the current thread while DoExpensiveCalculation() is churning out a result.  Once it has finished, the result is queued up to run on the main thread.  Eventually, the main thread will return to executing CalculateResult(), at which point it will have the result of DoExpensiveCalculation().



Why does async help here?


async and await are the best practice managing CPU-bound work when you need responsiveness. There are multiple patterns for using async with CPU-bound work. It’s important to note that there is a small cost to using async and it’s not recommended for tight loops.  It’s up to you to determine how you write your code around this new capability.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

about/products.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Products
description: .NET Products
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2e38e9d9-8284-46ee-a15f-199adc4f26f4





.NET Products


.NET is a very flexible, general purpose and inherently cross-platform specification [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] for building developer products. It is used for all of the most popular app categories: desktop, mobile, cloud, gaming and IoT.


There are two subtly different terms used in this document:



		”.NET product” - Enables you to build an app for one or more target platforms.


		”.NET implementation” - Some combination of a runtime, framework and tools that can execute ”.NET code” on which products are based.






Product Categories


.NET products are available for each of the following product categories.



Desktop


You can build desktop apps for Windows and macOS.



		Universal Windows Apps [https://developer.microsoft.com/windows] with .NET Native


		Windows Presentation Framework (WPF) [https://msdn.microsoft.com/library/ms754130.aspx] for Windows with the .NET Framework


		Windows Forms [https://msdn.microsoft.com/library/dd30h2yb.aspx] for Windows with the .NET Framework


		Cocoa for macOS with Xamarin


		Electron [http://electron.atom.io/] for cross-platform desktop with electron-edge [https://github.com/kexplo/electron-edge]








Games


You can build games for many desktop, mobile, console and virtual/augmented reality devices.



		CRYENGINE [http://docs.cryengine.com/display/CEPROG/CE%23+Programming] with Mono


		MonoGame [http://www.monogame.net/documentation/?page=main] with Mono


		Unity [http://docs.unity3d.com/Manual/index.html] with Mono








IoT


You can build IoT apps for Windows 10 IoT Core, including Raspberry Pi 2/3.



		Windows 10 IoT Core [https://developer.microsoft.com/windows/iot] with .NET Native








Mobile


You can build Mobile apps for iOS, Android and Windows.



		iOS app with Xamarin


		Android app with Xamarin


		Universal Windows App [https://developer.microsoft.com/windows] with .NET Native








Web and Cloud


You can build Web and Cloud apps for Windows and Linux.



		ASP.NET [http://www.asp.net/] for Windows with the .NET Framework


		ASP.NET Core [http://docs.asp.net/] for Windows, macOS and Linux with .NET Core










.NET Implementations


Major commercial and open source .NET implementations are listed below, in alphabetical order.



.NET Core


.NET Core is used to build device, web, cloud and embedded/IoT apps. It is open source [https://github.com/dotnet/core] and cross-platform, supporting Windows, macOS and Linux. ASP.NET Core [http://docs.asp.net/] is the most popular workload for .NET Core. You can use it to build web apps and services, for on-premises and cloud deployment. You can also use .NET Core to build tools, utilities and cloud worker apps.



		Learn about .NET Core


		Learn about ASP.NET Core [http://docs.asp.net/]


		Download .NET Core [http://dot.net/core]





The following are the main characteristics of .NET Core:


Cross-platform - .NET Core supports three operating systems families: Linux, Windows and macOS. .NET Core apps are cross-platform by default. You can write apps and libraries that run unmodified across supported OSes.


Open Source - .NET Core [https://github.com/dotnet/core] is available on GitHub, licensed with the MIT [https://github.com/dotnet/coreclr/blob/master/LICENSE.TXT] and Apache 2 [https://github.com/dotnet/roslyn/blob/master/License.txt] licenses (licensing is per component). Documentation is CC-BY [https://github.com/dotnet/core-docs/blob/master/license.txt]. .NET Core also makes use of a significant set of open source industry dependencies, listed in the .NET Core release notes [https://github.com/dotnet/core/releases].


Natural acquisition - NET Core is distributed in several forms, aligning with specific developer needs. You can acquire .NET Core with the .NET Core SDK [https://dot.net/core] installer (or zips) or via OS-specific package managers, such as APT and Yum. Official .NET Core Docker images [https://hub.docker.com/r/microsoft/dotnet/] are available on Docker Hub. Higher-level framework libraries and the larger .NET library ecosystem are available on NuGet [http://www.nuget.org/].


Modular platform - .NET Core is built with a modular design, enabling applications to include only the .NET Core libraries and dependencies that are needed. Each application makes its own .NET Core versioning choices, avoiding conflicts with shared components. This approach aligns with the trend of developing software using container technologies like Docker.





.NET Framework


The .NET Framework is used to build apps for Windows and Windows Server. You can use it to build rich user interfaces with Windows Presentation Framework (WPF) and Windows Forms. It also supports building server apps with ASP.NET Web Forms, ASP.NET MVC and Windows Communication Framework (WCF). Visual Studio provides rich designer experiences for the .NET Framework, making it easy to build both client and server apps. It is the best choice for writing apps for Windows.



		Learn about the .NET Framework [https://msdn.microsoft.com/library/w0x726c2.aspx]


		Download .NET Framework [https://dot.net]





Windows Forms [https://msdn.microsoft.com/library/dd30h2yb.aspx] enables you to build a “forms over data” desktop UI more rapidly than any other technology. It uses a designer that enables drag-and-drop of UI and non-UI controls, reducing most development tasks into a single gesture and conceptual model.


Windows Presentation Foundation (WPF) [https://msdn.microsoft.com/library/ms754130.aspx] separates code and UI concerns by describing UI with the XAML [https://msdn.microsoft.com/library/ms752059.aspx] markup language. WPF is very flexible and is often used for UIs that require a more complex user model or a more elegant appearance.


Windows Communication Foundation (WCF) [https://msdn.microsoft.com/library/ms731082.aspx] is a set of libraries for SOAP Web Services. It allows you to create services that can communicate through various supported protocols using various data formats, and that can be hosted in any process you choose. This leads to one of the major features of WCF: your services are not tied to any particular hosting strategy or approach.


ASP.NET [http://www.asp.net/] is a web framework. It has several distinct pieces which are used to produce modern and high-performance web applications.



		ASP.NET Web Forms [http://www.asp.net/web-forms] enables you to build a “forms over data” UI more rapidly than most other Web technologies, with a designer that enables drag-and-drop of web controls.


		ASP.NET MVC [http://www.asp.net/mvc] gives you greater control over the entire web pipeline, from the HTTP layer to the user interface.


		ASP.NET WebAPI [http://www.asp.net/web-api] is a convention-based framework for creating REST services.


		SignalR [http://www.asp.net/signalr] allows you to provide push-based communication to your web applications using the WebSocket [https://en.wikipedia.org/wiki/WebSocket] protocol.








.NET Native


.NET Native is a set of native build tools for .NET Core. .NET Native is an Ahead-of-Time (AOT) toolchain that produces native applications by compiling IL byte code to native machine code. This means that the resulting binary is what the OS executes; there is no JIT-ing, no runtime compilation. This leads to better startup performance, as well as some security benefits.


.NET Native is primarily used by .NET Universal Windows Platform (UWP) [https://msdn.microsoft.com/library/windows/apps/dn726767.aspx] applications.





Mono


Mono [http://www.mono-project.com/docs/about-mono/] is the original open source and cross-platform implementation of .NET, from the community Mono Project [http://mono-project.com]. It is now sponsored by Microsoft. It can be thought of as an open and cross-platform version of the .NET Framework. Its APIs follow the progress of the .NET Framework, not .NET Core.


There are several components that make up Mono:


C# Compiler - Mono’s C# compiler is feature complete for C# 6.


Mono Runtime - The runtime implements the ECMA Common Language Infrastructure (CLI). The runtime provides a Just-in-Time (JIT) compiler, an Ahead-of-Time compiler (AOT), a library loader, the garbage collector, a threading system and interoperability functionality.


Base Class Library - The Mono platform provides a comprehensive set of classes that provide a solid foundation to build applications on. These classes are compatible with Microsoft’s .Net Framework classes.


Mono Class Library - Mono also provides many classes that go above and beyond the Base Class Library provided by the .NET Framework. These provide additional functionality that are useful, especially in building Linux applications. Some examples are classes for Gtk+, Zip files, LDAP, OpenGL, Cairo, POSIX, etc.





Xamarin SDK


The Xamarin SDK [http://open.xamarin.com] is used to build native mobile and device apps, primarily for Apple and Google ecosystems. It is based on Mono and is open source using the MIT license. You can use it to build iOS and Android apps for phones, tablets and watches. Xamarin.Forms [https://www.xamarin.com/forms] is a popular way to write reusable UIs across Apple, Google and Windows apps.



		Learn about the Xamarin SDK [https://developer.xamarin.com/]


		Download Xamarin [https://www.xamarin.com/platform]













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/portability-analyzer.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Tooling to help you on the process
description: Tooling to help you on the process
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0375250f-5704-4993-a6d5-e21c499cea1e





The .NET Portability Analyzer


Want to make your libraries multi-platform? Want to see how much work is required to make your application compatible with other .NET platforms? The .NET Portability Analyzer [https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b] is a tool that provides you with a detailed report on how flexible your program is across .NET platforms by analyzing assemblies. The Portability Analyzer is offered as a Visual Studio Extension and as a console app.



New Targets



		.NET Core [https://www.dotnetfoundation.org/netcore]: Has a modular design, employs side-by-side, and targets cross-platform scenarios. Side-by-side allows you to adopt new .NET Core versions without breaking other apps.


		ASP.NET Core [https://www.dotnetfoundation.org/aspnet-core]: is a modern web-framework built on .NET Core thus giving developers the same benefits.


		.NET Native [https://blogs.msdn.microsoft.com/dotnet/2014/04/24/net-native-performance]: Improve performance of your Windows Store apps that run on x64 and ARM machines by using .NET Native’s static compilation.








How to Use Portability Analyzer


To begin using the .NET Portability Analyzer, download the extension from the Visual Studio Gallery. You can configure it in Visual Studio via Tools > Options > .NET Portability Analyzer and select your Target Platforms. For now, use ASP.NET Core as a proxy for all .NET Core-based platforms (for example, Windows 10 .NET UAP apps [http://blogs.windows.com/buildingapps/2015/03/02/a-first-look-at-the-windows-10-universal-app-platform/]).


[image: Portability screenshot]


To analyze your entire project, right-click on your project in Solution Explorer and select Analyze > Analyze Assembly Portability. Otherwise, go to the Analyze menu and select Analyze Assembly Portability. From there, select your project’s executable or .dll.


[image: Portability Solution Explorer]


After running the analysis, you will see your .NET Portability Report. Only types that are unsupported by a target platform will appear in the list and you can review recommendations in the Messages tab in the Error List. You can also jump to problem areas directly from the Messages tab.


[image: Portability Report]


Don’t want to use Visual Studio? You can also use the Portability Analyzer from the Command Prompt. Download the command-line analyzer here [http://www.microsoft.com/download/details.aspx?id=42678].



		Type the following command to analyze the current directory: \...\ApiPort.exe .


		To analyze a specific list of .dll files, type the following command: \...\ApiPort.exe first.dll second.dll third.dll





Your .NET Portability Report will be saved as an Excel .xlsx file in your current directory. The Details tab in the Excel Workbook will contain more info.


For more info on the .NET Portability Analyzer, read this article [http://blogs.msdn.com/b/dotnet/archive/2014/08/06/leveraging-existing-code-across-net-platforms.aspx].








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/sorted-collection-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Sorted Collection Typesdescription: Sorted Collection Typeskeywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bdc9c13e-e56a-433b-a293-c92364f6e9cb





Sorted Collection Types


The System.Collections.SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class, the System.Collections.Generic.SortedList

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic class, and the System.Collections.Generic.SortedDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] generic class are similar to the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class and the Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] generic class in that they implement the IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface, but they maintain their elements in sort order by key, and they do not have the O(1) insertion and retrieval characteristic of hash tables. The three classes have several features in common:



		All three classes implement the System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface. The two generic classes also implement the System.Collections.Generic.IDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface.


		Each element is a key/value pair for enumeration purposes.






[!NOTE]The nongeneric SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class returns DictionaryEntry [https://docs.microsoft.com/dotnet/core/api/System.Collections.DictionaryEntry] objects when enumerated, although the two generic types return KeyValuePair&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.KeyValuePair-2] objects.




		Elements are sorted according to a System.Collections.IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer] implementation (for nongeneric SortedList) or a System.Collections.Generic.IComparer&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] implementation (for the two generic classes).


		Each class provides properties that return collections containing only the keys or only the values.





The following table lists some of the differences between the two sorted list classes and the SortedDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] class.


SortedList nongeneric class and SortedList<TKey, TValue> generic class | SortedDictionary<TKey, TValue> generic class——————————————————————————— | ——————————The properties that return keys and values are indexed, allowing efficient indexed retrieval. | No indexed retrieval.Retrieval is O(log n). | Retrieval is O(log n).Insertion and removal are generally O(n); however, insertion is O(1) for data that are already in sort order, so that each element is added to the end of the list. (This assumes that a resize is not required.) | Insertion and removal are O(log n).Uses less memory than a SortedDictionary<TKey, TValue>. | Uses more memory than the SortedList nongeneric class and the SortedList<TKey, TValue> generic class.


For sorted lists or dictionaries that must be accessible concurrently from multiple threads, you can add sorting logic to a class that derives from ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2].



[!NOTE]For values that contain their own keys (for example, employee records that contain an employee ID number), you can create a keyed collection that has some characteristics of a list and some characteristics of a dictionary by deriving from the KeyedCollection&lt;


TKey, TItem&gt;


 generic class.



The SortedSet

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedSet-1] class provides a self-balancing tree that maintains data in sorted order after insertions, deletions, and searches. This class and the HashSet&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1] class implement the ISet&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ISet-1] interface.



See Also


System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]


System.Collections.Generic.IDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]


ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]


Commonly Used Collection Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interactive.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Interactive | C# Guide
description: Explore the C# Interactive Shell and use it to explore APIs and frameworks
keywords: .NET, .NET Core, C#
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: abed9e00-2ddc-468e-9cca-d033bd6a7e36





🔧 C# Interactive



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/968] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/type-system.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Type system
description: C# Type system
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 08589912-2fa0-4636-9aa6-d8b2b83cdf88





🔧 C# Type system



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/487] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/hashtable-and-dictionary-collection-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Hashtable and Dictionary Collection Types
description: Hashtable and Dictionary Collection Types
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0f18fac7-fd0d-4f25-a046-1d3d51de062e





Hashtable and Dictionary Collection Types


The System.Collections.Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class, and the System.Collections.Generic.Dictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and System.Collections.Concurrent.ConcurrentDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] generic classes implement the System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface. The Dictionary<T> generic class also implements the IDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface. Therefore, each element in these collections is a key-and-value pair.


A Hashtable object consists of buckets that contain the elements of the collection. A bucket is a virtual subgroup of elements within the Hashtable, which makes searching and retrieving easier and faster than in most collections. Each bucket is associated with a hash code, which is generated using a hash function and is based on the key of the element.


The generic HashSet

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1] class is an unordered collection for containing unique elements.


A hash function is an algorithm that returns a numeric hash code based on a key. The key is the value of some property of the object being stored. A hash function must always return the same hash code for the same key. It is possible for a hash function to generate the same hash code for two different keys, but a hash function that generates a unique hash code for each unique key results in better performance when retrieving elements from the hash table.


Each object that is used as an element in a Hashtable must be able to generate a hash code for itself by using an implementation of the GetHashCode method.


When an object is added to a Hashtable, it is stored in the bucket that is associated with the hash code that matches the object’s hash code. When a value is being searched for in the Hashtable, the hash code is generated for that value, and the bucket associated with that hash code is searched.


For example, a hash function for a string might take the ASCII codes of each character in the string and add them together to generate a hash code. The string “picnic” would have a hash code that is different from the hash code for the string “basket”; therefore, the strings “picnic” and “basket” would be in different buckets. In contrast, “stressed” and “desserts” would have the same hash code and would be in the same bucket.


The Dictionary<T> and ConcurrentDictionary<T> classes have the same functionality as the Hashtable class. A Dictionary<T> of a specific type (other than Object) provides better performance than a Hashtable for value types. This is because the elements of Hashtable are of type Object; therefore, boxing and unboxing typically occur when you store or retrieve a value type. The ConcurrentDictionary<T> class should be used when multiple threads might be accessing the collection simultaneously.



See Also


Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable]


IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]


Dictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2]


System.Collections.Generic.IDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]


System.Collections.Concurrent.ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]


Commonly Used Collection Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interfaces.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Interfaces | C# Guide
description: Learn about creating and using interfaces in C#
keywords: .NET, .NET Core, C#
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: be9a19c8-642c-48be-b481-2dab7d216fad





🔧 Interfaces



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/967] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/when-to-use-generic-collections.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: When to Use Generic Collections
description: When to Use Generic Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 971e08bd-b63f-4832-9e61-9f65cbedd352





When to Use Generic Collections


Using generic collections is generally recommended, because you gain the immediate benefit of type safety without having to derive from a base collection type and implement type-specific members. Generic collection types also generally perform better than the corresponding nongeneric collection types (and better than types that are derived from nongeneric base collection types) when the collection elements are value types, because with generics there is no need to box the elements.


You should use the generic collection classes in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace when multiple threads might be adding or removing items from the collection concurrently.


The following generic types correspond to existing collection types:



		List&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] is the generic class that corresponds to ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList].


		Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and ConcurrentDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] are the generic classes that correspond to Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable].


		Collection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.Collection-1] is the generic class that corresponds to CollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.CollectionBase]. Collection<T> can be used as a base class, but unlike CollectionBase, it is not abstract. This makes it much easier to use.


		ReadOnlyCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.ReadOnlyCollection-1] is the generic class that corresponds to ReadOnlyCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.ReadOnlyCollectionBase]. ReadOnlyCollection<T> is not abstract, and has a constructor that makes it easy to expose an existing List&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] as a read-only collection.


		The Queue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1], ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1], Stack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1], ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1], and SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes correspond to the respective nongeneric classes with the same names.






Additional Types


Several generic collection types do not have nongeneric counterparts. They include the following:



		LinkedList&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] is a general-purpose linked list that provides O(1) insertion and removal operations.


		SortedDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] is a sorted dictionary with O(log n) insertion and retrieval operations, which makes it a useful alternative to SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2].


		KeyedCollection&lt;


TKey, TItem&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] is a hybrid between a list and a dictionary, which provides a way to store objects that contain their own keys.


		BlockingCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] implements a collection class with bounding and blocking functionality.


		ConcurrentBag&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] provides fast insertion and removal of unordered elements.








LINQ to Objects


The LINQ to Objects feature enables you to use LINQ queries to access in-memory objects as long as the object type implements the System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] interface. LINQ queries provide a common pattern for accessing data; are typically more concise and readable than standard foreach loops; and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.





Additional Functionality


Some of the generic types have functionality that is not found in the nongeneric collection types. For example, the List

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] class, which corresponds to the nongeneric ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList] class, has a number of methods that accept generic delegates, such as the Predicate&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Predicate-1] delegate that allows you to specify methods for searching the list, and the Action&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Action-1] delegate that represents methods that act on each element of the list.


The List

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] class allows you to specify your own IComparer&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] generic interface implementations for sorting and searching the list. The SortedDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] and SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] classes also have this capability. In addition, these classes let you specify comparers when the collection is created. In similar fashion, the Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and KeyedCollection&lt;


TKey, TItem&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] classes let you specify your own equality comparers.





See Also


Collections and Data Structures


Commonly Used Collection Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/codedoc.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Documenting your code
description: Documenting your code
keywords: .NET, .NET Core
author: tsolarin
manager: wpickett
ms.date: 09/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8e75e317-4a55-45f2-a866-e76124171838





Documenting your code


XML documentation comments are a special kind of comment, added above the definition of any user defined type or member.
They are special because they can be processed by the compiler to generate an XML documentation file at compile time.
The compiler generated XML file can be distributed alongside your .NET assembly so that Visual Studio and other IDEs can show quick information about types or members when performing intellisense.
Additionally the XML file can be run through tools like DocFX [https://dotnet.github.io/docfx/] and Sandcastle [https://github.com/EWSoftware/SHFB] to generate full on API reference websites.


XML documentation comments like all other comments are ignored by the compiler, to enable generation of the XML file add "xmlDoc":true under buildOptions in your project.json when using .NET Core or use the /doc compiler option for the .NET framework.
See the /doc [https://msdn.microsoft.com/library/3260k4x7.aspx] article on MSDN to learn how to enable XML documentation generation in Visual Studio.


XML documentation comments are characterized by triple forward slashes (///) and an XML formatted comment body.


/// <summary>
/// This class does something.
/// </summary>
public class SomeClass
{

}







Walkthrough


Let’s walk through documenting a very basic math library to make it easy for new developers to understand/contribute and for third party developers to use.


Here’s code for the simple math library:


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
public class Math
{
    // Adds two integers and returns the result
    public static int Add(int a, int b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Adds two doubles and returns the result
    public static double Add(double a, double b)
    {
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Subtracts an integer from another and returns the result
    public static int Subtract(int a, int b)
    {
        return a - b;
    }

    // Subtracts a double from another and returns the result
    public static double Subtract(double a, double b)
    {
        return a - b;
    }

    // Multiplies two intergers and returns the result
    public static int Multiply(int a, int b)
    {
        return a * b;
    }

    // Multiplies two doubles and returns the result
    public static double Multiply(double a, double b)
    {
        return a * b;
    }

    // Divides an integer by another and returns the result
    public static int Divide(int a, int b)
    {
        return a / b;
    }

    // Divides a double by another and returns the result
    public static double Divide(double a, double b)
    {
        return a / b;
    }
}






The sample library supports four major arithmetic operations add, subtract, multiply and divide on int and double datatypes.


Now you want to be able to create an API reference document from your code for third party developers who use your library but don’t have access to the source code.
As mentioned earlier XML documentation tags can be used to achieve this, You will now be introduced to the standard XML tags the C# compiler supports.



&lt;


summary&gt;





First off is the <summary> tag and as the name suggests you use it to add brief information about a type or member.
I’ll demonstrate its use by adding it to the Math class definition and the first Add method, feel free to apply it to the rest of your code.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    // Adds two integers and returns the result
    /// <summary>
    /// Adds two integers and returns the result.
    /// </summary>
    public static int Add(int a, int b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }
}






The <summary> tag is super important and you are strongly advised to include it because its content is the primary source of type or member description in intellisense and the resulting API reference document.





&lt;


remarks&gt;





You use the <remarks> tag to add information about types or members, supplementing the information specified with <summary>.
In this example you’ll just add it to the class.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// This class can add, subtract, multiply and divide.
/// </remarks>
public class Math
{

}









&lt;


returns&gt;





As the name suggests you use the <returns> tag in the comment for a method declaration to describe its return value.
Like before this will be illustrated on the first Add method go ahead an implement it on other methods.


// Adds two integers and returns the result
/// <summary>
/// Adds two integers and returns the result.
/// </summary>
/// <returns>
/// The sum of two integers.
/// </returns>
public static int Add(int a, int b)
{
    // If any parameter is equal to the max value of an integer
    // and the other is greater than zero
    if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
        throw new System.OverflowException();

    return a + b;
}









&lt;


value&gt;





The <value> works similarly to the <returns> tag except that you use it for properties.
Assuming your Math library had a static property called PI here’s how you’ll use this tag:


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// This class can add, subtract, multiply and divide.
/// These operations can be performed on both integers and doubles
/// </remarks>
public class Math
{
    /// <value>Gets the value of PI.</value>
    public static double PI { get; }
}









&lt;


example&gt;





You use the <example> tag to include an example in your XML documentation.
This involves using the child <code> tag.


// Adds two integers and returns the result
/// <summary>
/// Adds two integers and returns the result.
/// </summary>
/// <returns>
/// The sum of two integers.
/// </returns>
/// <example>
/// <code>
/// int c = Math.Add(4, 5);
/// if (c > 10)
/// {
///     Console.WriteLine(c);
/// }
/// </code>
/// </example>
public static int Add(int a, int b)
{
    // If any parameter is equal to the max value of an integer
    // and the other is greater than zero
    if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
        throw new System.OverflowException();

    return a + b;
}






The code tag preserves line breaks and indentation for longer examples.





&lt;


para&gt;





You may find you need to format the content of certain tags and that’s where the <para> tag comes in.
You usually use it inside a tag, such as <remarks>, or <returns>, and lets you divide text into paragraphs.
You can go ahead and format the contents of the <remarks> tag for your class definition.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main Math class.
/// Contains all methods for performing basic math functions.
/// </summary>
/// <remarks>
/// <para>This class can add, subtract, multiply and divide.</para>
/// <para>These operations can be performed on both integers and doubles.</para>
/// </remarks>
public class Math
{

}









&lt;


c&gt;





Still on the topic of formatting, you use the <c> tag for marking part of text as code.
It’s like the <code> tag but inline and is great when you want to show a quick code example as part of a tag’s content.
Let’s update the documentation for the Math class.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{

}









&lt;


exception&gt;





There’s no getting rid of exceptions, there will always be exceptional situations your code is not built to handle.
Good news is there’s a way to let your developers know that certain methods can throw certain exceptions and that’s by using the <exception> tag.
Looking at your little Math library you can see that both Add methods throw an exception if a certain condition is met, not so obvious though
is that both Divide methods will throw as well if the parameter b is zero. Now go ahead to add exception documentation to these methods.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Adds two integers and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Add(4, 5);
    /// if (c > 10)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than 0.</exception>
    public static int Add(int a, int b)
    {
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    /// <summary>
    /// Adds two doubles and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two doubles.
    /// </returns>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than zero.</exception>
    public static double Add(double a, double b)
    {
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    /// <summary>
    /// Divides an integer by another and returns the result.
    /// </summary>
    /// <returns>
    /// The division of two integers.
    /// </returns>
    /// <exception cref="System.DivideByZeroException">Thrown when a division by zero occurs.</exception>
    public static int Divide(int a, int b)
    {
        return a / b;
    }

    /// <summary>
    /// Divides a double by another and returns the result.
    /// </summary>
    /// <returns>
    /// The division of two doubles.
    /// </returns>
    /// <exception cref="System.DivideByZeroException">Thrown when a division by zero occurs.</exception>
    public static double Divide(double a, double b)
    {
        return a / b;
    }
}






The cref attribute represents a reference to an exception that is available from the current compilation environment.
This can be any type defined in the project or a referenced assembly, the compiler will issue a warning if its value cannot be resolved.





&lt;


see&gt;





While documenting your code with XML tags you might reach a point where you need to add some sort of reference to another part of the code to make your reader understand it better.
The <see> tag is one that let’s you create clickable links to documentation pages for other code elements. In our next example we’ll create a clickable link between the two Add methods.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Adds two integers and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Add(4, 5);
    /// if (c > 10)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than 0.</exception>
    /// See <see cref="Math.Add(double, double)"/> to add doubles.
    public static int Add(int a, int b)
    {
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    /// <summary>
    /// Adds two doubles and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two doubles.
    /// </returns>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than zero.</exception>
    /// See <see cref="Math.Add(int, int)"/> to add integers.
    public static double Add(double a, double b)
    {
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }
}






The cref is a required attribute that represents a reference to a type or its member that is available from the current compilation environment.
This can be any type defined in the project or a referenced assembly.





&lt;


seealso&gt;





You use the <seealso> tag in the same way you do the <see> tag, the only difference is that it’s content is typically broken into a “See Also” section not that different from
the one you sometimes see on the MSDN documentation pages. Here we’ll add a seealso tag on the integer Add method to reference other methods in the class that accept interger parameters:


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Adds two integers and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Add(4, 5);
    /// if (c > 10)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than 0.</exception>
    /// See <see cref="Math.Add(double, double)"/> to add doubles.
    /// <seealso cref="Math.Subtract(int, int)"/>
    /// <seealso cref="Math.Multiply(int, int)"/>
    /// <seealso cref="Math.Divide(int, int)"/>
    public static int Add(int a, int b)
    {
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }
}






The cref attribute represents a reference to a type or its member that is available from the current compilation environment.
This can be any type defined in the project or a referenced assembly.





&lt;


param&gt;





You use the <param> tag for describing the parameters a method takes. Here’s an example on the double Add method:
The parameter the tag describes is specified in the required name attribute.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Adds two doubles and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two doubles.
    /// </returns>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than zero.</exception>
    /// See <see cref="Math.Add(int, int)"/> to add integers.
    /// <param name="a">A double precision number.</param>
    /// <param name="b">A double precision number.</param>
    public static double Add(double a, double b)
    {
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }
}









&lt;


typeparam&gt;





You use <typeparam> tag just like the <param> tag but for generic type or method declarations to describe a generic parameter.
Go ahead and add a quick generic method to your Math class to check if one quantity is greater than another.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Checks if an IComparable is greater than another.
    /// </summary>
    /// <typeparam name="T">A type that inherits from the IComparable interface.</typeparam>
    public static bool GreaterThan<T>(T a, T b) where T : IComparable
    {
        return a.CompareTo(b) > 0;
    }
}









&lt;


paramref&gt;





Sometimes you might be in the middle of describing what a method does in what could be a <summary> tag and you might want to make a reference
to a parameter, the <paramref> tag is great for just this. Let’s update the summary of our double based Add method. Like the <param> tag
the parameter name is specified in the required name attribute.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two doubles.
    /// </returns>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than zero.</exception>
    /// See <see cref="Math.Add(int, int)"/> to add integers.
    /// <param name="a">A double precision number.</param>
    /// <param name="b">A double precision number.</param>
    public static double Add(double a, double b)
    {
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }
}









&lt;


typeparamref&gt;





You use <typeparamref> tag just like the <paramref> tag but for generic type or method declarations to describe a generic parameter.
You can use the same generic method you previously created.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// </summary>
public class Math
{
    /// <summary>
    /// Checks if an IComparable <typeparamref name="T"/> is greater than another.
    /// </summary>
    /// <typeparam name="T">A type that inherits from the IComparable interface.</typeparam>
    public static bool GreaterThan<T>(T a, T b) where T : IComparable
    {
        return a.CompareTo(b) > 0;
    }
}









&lt;


list&gt;





You use the <list> tag to format documentation information as an ordered list, unordered list or table.
You’ll make an unordered list of every math operation your Math library supports.


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// <list type="bullet">
/// <item>
/// <term>Add</term>
/// <description>Addition Operation</description>
/// </item>
/// <item>
/// <term>Subtract</term>
/// <description>Subtraction Operation</description>
/// </item>
/// <item>
/// <term>Multiply</term>
/// <description>Multiplication Operation</description>
/// </item>
/// <item>
/// <term>Divide</term>
/// <description>Division Operation</description>
/// </item>
/// </list>
/// </summary>
public class Math
{

}






You can make an ordered list or table by changing the type attribute to number or table respectively.





Putting it all together


You’ve followed this tutorial and applied the tags to your code where necessary, your code should now look similar to the following:


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <summary>
/// The main <c>Math</c> class.
/// Contains all methods for performing basic math functions.
/// <list type="bullet">
/// <item>
/// <term>Add</term>
/// <description>Addition Operation</description>
/// </item>
/// <item>
/// <term>Subtract</term>
/// <description>Subtraction Operation</description>
/// </item>
/// <item>
/// <term>Multiply</term>
/// <description>Multiplication Operation</description>
/// </item>
/// <item>
/// <term>Divide</term>
/// <description>Division Operation</description>
/// </item>
/// </list>
/// </summary>
/// <remarks>
/// <para>This class can add, subtract, multiply and divide.</para>
/// <para>These operations can be performed on both integers and doubles.</para>
/// </remarks>
public class Math
{
    // Adds two integers and returns the result
    /// <summary>
    /// Adds two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Add(4, 5);
    /// if (c > 10)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than 0.</exception>
    /// See <see cref="Math.Add(double, double)"/> to add doubles.
    /// <seealso cref="Math.Subtract(int, int)"/>
    /// <seealso cref="Math.Multiply(int, int)"/>
    /// <seealso cref="Math.Divide(int, int)"/>
    /// <param name="a">An integer.</param>
    /// <param name="b">An integer.</param>
    public static int Add(int a, int b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Adds two doubles and returns the result
    /// <summary>
    /// Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The sum of two doubles.
    /// </returns>
    /// <example>
    /// <code>
    /// double c = Math.Add(4.5, 5.4);
    /// if (c > 10)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.OverflowException">Thrown when one parameter is max 
    /// and the other is greater than 0.</exception>
    /// See <see cref="Math.Add(int, int)"/> to add integers.
    /// <seealso cref="Math.Subtract(double, double)"/>
    /// <seealso cref="Math.Multiply(double, double)"/>
    /// <seealso cref="Math.Divide(double, double)"/>
    /// <param name="a">A double precision number.</param>
    /// <param name="b">A double precision number.</param>
    public static double Add(double a, double b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Subtracts an integer from another and returns the result
    /// <summary>
    /// Subtracts <paramref name="b"/> from <paramref name="a"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The difference between two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Subtract(4, 5);
    /// if (c > 1)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// See <see cref="Math.Subtract(double, double)"/> to subtract doubles.
    /// <seealso cref="Math.Add(int, int)"/>
    /// <seealso cref="Math.Multiply(int, int)"/>
    /// <seealso cref="Math.Divide(int, int)"/>
    /// <param name="a">An integer.</param>
    /// <param name="b">An integer.</param>
    public static int Subtract(int a, int b)
    {
        return a - b;
    }

    // Subtracts a double from another and returns the result
    /// <summary>
    /// Subtracts a double <paramref name="b"/> from another double <paramref name="a"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The difference between two doubles.
    /// </returns>
    /// <example>
    /// <code>
    /// double c = Math.Subtract(4.5, 5.4);
    /// if (c > 1)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// See <see cref="Math.Subtract(int, int)"/> to subtract integers.
    /// <seealso cref="Math.Add(double, double)"/>
    /// <seealso cref="Math.Multiply(double, double)"/>
    /// <seealso cref="Math.Divide(double, double)"/>
    /// <param name="a">A double precision number.</param>
    /// <param name="b">A double precision number.</param>
    public static double Subtract(double a, double b)
    {
        return a - b;
    }

    // Multiplies two intergers and returns the result
    /// <summary>
    /// Multiplies two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The product of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Multiply(4, 5);
    /// if (c > 100)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// See <see cref="Math.Multiply(double, double)"/> to multiply doubles.
    /// <seealso cref="Math.Add(int, int)"/>
    /// <seealso cref="Math.Subtract(int, int)"/>
    /// <seealso cref="Math.Divide(int, int)"/>
    /// <param name="a">An integer.</param>
    /// <param name="b">An integer.</param>
    public static int Multiply(int a, int b)
    {
        return a * b;
    }

    // Multiplies two doubles and returns the result
    /// <summary>
    /// Multiplies two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The product of two doubles.
    /// </returns>
    /// <example>
    /// <code>
    /// double c = Math.Multiply(4.5, 5.4);
    /// if (c > 100.0)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// See <see cref="Math.Multiply(int, int)"/> to multiply integers.
    /// <seealso cref="Math.Add(double, double)"/>
    /// <seealso cref="Math.Subtract(double, double)"/>
    /// <seealso cref="Math.Divide(double, double)"/>
    /// <param name="a">A double precision number.</param>
    /// <param name="b">A double precision number.</param>
    public static double Multiply(double a, double b)
    {
        return a * b;
    }

    // Divides an integer by another and returns the result
    /// <summary>
    /// Divides an integer <paramref name="a"/> by another integer <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The quotient of two integers.
    /// </returns>
    /// <example>
    /// <code>
    /// int c = Math.Divide(4, 5);
    /// if (c > 1)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
    /// See <see cref="Math.Divide(double, double)"/> to divide doubles.
    /// <seealso cref="Math.Add(int, int)"/>
    /// <seealso cref="Math.Subtract(int, int)"/>
    /// <seealso cref="Math.Multiply(int, int)"/>
    /// <param name="a">An integer dividend.</param>
    /// <param name="b">An integer divisor.</param>
    public static int Divide(int a, int b)
    {
        return a / b;
    }

    // Divides a double by another and returns the result
    /// <summary>
    /// Divides a double <paramref name="a"/> by another double <paramref name="b"/> and returns the result.
    /// </summary>
    /// <returns>
    /// The quotient of two doubles.
    /// </returns>
    /// <example>
    /// <code>
    /// double c = Math.Divide(4.5, 5.4);
    /// if (c > 1.0)
    /// {
    ///     Console.WriteLine(c);
    /// }
    /// </code>
    /// </example>
    /// <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
    /// See <see cref="Math.Divide(int, int)"/> to divide integers.
    /// <seealso cref="Math.Add(double, double)"/>
    /// <seealso cref="Math.Subtract(double, double)"/>
    /// <seealso cref="Math.Multiply(double, double)"/>
    /// <param name="a">A double precision dividend.</param>
    /// <param name="b">A double precision divisor.</param>
    public static double Divide(double a, double b)
    {
        return a / b;
    }
}






From your code you can generate a well detailed documentation website complete with clickable cross-references but then you’re faced with another problem, your code has become hard to read.
This is going to be a nightmare for any developer who wants to contribute to this code, so much information to sift through.
Thankfully there’s an XML tag that can help you deal with this:





&lt;


include&gt;





The <include> tag lets you refer to comments in a separate XML file that describe the types and members in your source code as opposed to placing documentation comments directly in your source code file.


Now you’re going to move all your XML tags into a separate XML file named docs.xml, feel free to name the file whatever you want.


<docs>
    <members name="math">
        <Math>
            <summary>
            The main <c>Math</c> class.
            Contains all methods for performing basic math functions.
            </summary>
            <remarks>
            <para>This class can add, subtract, multiply and divide.</para>
            <para>These operations can be performed on both integers and doubles.</para>
            </remarks>
        </Math>
        <AddInt>
            <summary>
            Adds two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The sum of two integers.
            </returns>
            <example>
            <code>
            int c = Math.Add(4, 5);
            if (c > 10)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            <exception cref="System.OverflowException">Thrown when one parameter is max 
            and the other is greater than 0.</exception>
            See <see cref="Math.Add(double, double)"/> to add doubles.
            <seealso cref="Math.Subtract(int, int)"/>
            <seealso cref="Math.Multiply(int, int)"/>
            <seealso cref="Math.Divide(int, int)"/>
            <param name="a">An integer.</param>
            <param name="b">An integer.</param>
        </AddInt>
        <AddDouble>
            <summary>
            Adds two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The sum of two doubles.
            </returns>
            <example>
            <code>
            double c = Math.Add(4.5, 5.4);
            if (c > 10)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            <exception cref="System.OverflowException">Thrown when one parameter is max 
            and the other is greater than 0.</exception>
            See <see cref="Math.Add(int, int)"/> to add integers.
            <seealso cref="Math.Subtract(double, double)"/>
            <seealso cref="Math.Multiply(double, double)"/>
            <seealso cref="Math.Divide(double, double)"/>
            <param name="a">A double precision number.</param>
            <param name="b">A double precision number.</param>
        </AddDouble>
        <SubtractInt>
            <summary>
            Subtracts <paramref name="b"/> from <paramref name="a"/> and returns the result.
            </summary>
            <returns>
            The difference between two integers.
            </returns>
            <example>
            <code>
            int c = Math.Subtract(4, 5);
            if (c > 1)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            See <see cref="Math.Subtract(double, double)"/> to subtract doubles.
            <seealso cref="Math.Add(int, int)"/>
            <seealso cref="Math.Multiply(int, int)"/>
            <seealso cref="Math.Divide(int, int)"/>
            <param name="a">An integer.</param>
            <param name="b">An integer.</param>
        </SubtractInt>
        <SubtractDouble>
            <summary>
            Subtracts a double <paramref name="b"/> from another double <paramref name="a"/> and returns the result.
            </summary>
            <returns>
            The difference between two doubles.
            </returns>
            <example>
            <code>
            double c = Math.Subtract(4.5, 5.4);
            if (c > 1)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            See <see cref="Math.Subtract(int, int)"/> to subtract integers.
            <seealso cref="Math.Add(double, double)"/>
            <seealso cref="Math.Multiply(double, double)"/>
            <seealso cref="Math.Divide(double, double)"/>
            <param name="a">A double precision number.</param>
            <param name="b">A double precision number.</param>
        </SubtractDouble>
        <MultiplyInt>
            <summary>
            Multiplies two integers <paramref name="a"/> and <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The product of two integers.
            </returns>
            <example>
            <code>
            int c = Math.Multiply(4, 5);
            if (c > 100)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            See <see cref="Math.Multiply(double, double)"/> to multiply doubles.
            <seealso cref="Math.Add(int, int)"/>
            <seealso cref="Math.Subtract(int, int)"/>
            <seealso cref="Math.Divide(int, int)"/>
            <param name="a">An integer.</param>
            <param name="b">An integer.</param>
        </MultiplyInt>
        <MultiplyDouble>
            <summary>
            Multiplies two doubles <paramref name="a"/> and <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The product of two doubles.
            </returns>
            <example>
            <code>
            double c = Math.Multiply(4.5, 5.4);
            if (c > 100.0)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            See <see cref="Math.Multiply(int, int)"/> to multiply integers.
            <seealso cref="Math.Add(double, double)"/>
            <seealso cref="Math.Subtract(double, double)"/>
            <seealso cref="Math.Divide(double, double)"/>
            <param name="a">A double precision number.</param>
            <param name="b">A double precision number.</param>
        </MultiplyDouble>
        <DivideInt>
            <summary>
            Divides an integer <paramref name="a"/> by another integer <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The quotient of two integers.
            </returns>
            <example>
            <code>
            int c = Math.Divide(4, 5);
            if (c > 1)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
            See <see cref="Math.Divide(double, double)"/> to divide doubles.
            <seealso cref="Math.Add(int, int)"/>
            <seealso cref="Math.Subtract(int, int)"/>
            <seealso cref="Math.Multiply(int, int)"/>
            <param name="a">An integer dividend.</param>
            <param name="b">An integer divisor.</param>
        </DivideInt>
        <DivideDouble>
            <summary>
            Divides a double <paramref name="a"/> by another double <paramref name="b"/> and returns the result.
            </summary>
            <returns>
            The quotient of two doubles.
            </returns>
            <example>
            <code>
            double c = Math.Divide(4.5, 5.4);
            if (c > 1.0)
            {
                Console.WriteLine(c);
            }
            </code>
            </example>
            <exception cref="System.DivideByZeroException">Thrown when <paramref name="b"/> is equal to 0.</exception>
            See <see cref="Math.Divide(int, int)"/> to divide integers.
            <seealso cref="Math.Add(double, double)"/>
            <seealso cref="Math.Subtract(double, double)"/>
            <seealso cref="Math.Multiply(double, double)"/>
            <param name="a">A double precision dividend.</param>
            <param name="b">A double precision divisor.</param>
        </DivideDouble>
    </members>
</docs>






In the above XML each member’s documentation comments appears directly inside a tag named after what they do; you can choose your own strategy.
Now that you have your XML comments in a separate file let’s see how your code can be made more readable using the <include> tag:


/*
    The main Math class
    Contains all methods for performing basic math functions
*/
/// <include file='docs.xml' path='docs/members[@name="math"]/Math/*'/>
public class Math
{
    // Adds two integers and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/AddInt/*'/>
    public static int Add(int a, int b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == int.MaxValue && b > 0) || (b == int.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Adds two doubles and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/AddDouble/*'/>
    public static double Add(double a, double b)
    {
        // If any parameter is equal to the max value of an integer
        // and the other is greater than zero
        if ((a == double.MaxValue && b > 0) || (b == double.MaxValue && a > 0))
            throw new System.OverflowException();

        return a + b;
    }

    // Subtracts an integer from another and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/SubtractInt/*'/>
    public static int Subtract(int a, int b)
    {
        return a - b;
    }

    // Subtracts a double from another and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/SubtractDouble/*'/>
    public static double Subtract(double a, double b)
    {
        return a - b;
    }

    // Multiplies two intergers and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/MultiplyInt/*'/>
    public static int Multiply(int a, int b)
    {
        return a * b;
    }

    // Multiplies two doubles and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/MultiplyDouble/*'/>
    public static double Multiply(double a, double b)
    {
        return a * b;
    }

    // Divides an integer by another and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/DivideInt/*'/>
    public static int Divide(int a, int b)
    {
        return a / b;
    }

    // Divides a double by another and returns the result
    /// <include file='docs.xml' path='docs/members[@name="math"]/DivideDouble/*'/>
    public static double Divide(double a, double b)
    {
        return a / b;
    }
}






An there you have it, our code is back to being readable and no documentation information has been lost.


The filename attribute represents the name of the XML file containing the documentation.


The path attribute represents an XPath [https://msdn.microsoft.com/library/ms256115.aspx] query to the tag name present in the specified filename.


The name attribute represents the name specifier in the tag that precedes the comments.


The id attribute which can be used in place of name represents the ID for the tag that precedes the comments.





User Defined Tags


All the tags outlined above represent those that are recognized by the C# compiler. However, a user is free to define their own tags.
Tools like Sandcastle bring support for extra tags like <event> [http://ewsoftware.github.io/XMLCommentsGuide/html/81bf7ad3-45dc-452f-90d5-87ce2494a182.htm], <note> [http://ewsoftware.github.io/XMLCommentsGuide/html/4302a60f-e4f4-4b8d-a451-5f453c4ebd46.htm]
and even support documenting namespaces [http://ewsoftware.github.io/XMLCommentsGuide/html/BD91FAD4-188D-4697-A654-7C07FD47EF31.htm].
Custom or in-house documentation generation tools can also be used with the standard tags and multiple output formats from HTML to PDF can be supported.







Recommendations


Documenting code is definitely a recommended practice for lots of reasons. However, there are some best practices and general use case scenarios
that need to be taken into consideration when using XML documentation tags in your C# code.



		For the sake of consistency all publicly visible types and their members should be documented. If you must do it, do it all.


		Private members can also be documented using XML comments, however this exposes the inner (potentially confidential) workings of your library.


		In addition to other tags, types and their members should have at the very least a <summary> tag because its content is needed for intellisense.


		Documentation text should be written using complete sentences ending with full stops.


		Partial classes are fully supported and documentation information will be concatenated into one.


		The compiler verifies the syntax of <exception>, <include>, <param>, <see>, <seealso> and <typeparam> tags.
It validates the parameters that contain file paths and references to other parts of the code.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/commonly-used-collection-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Commonly Used Collection Types
description: Commonly Used Collection Types
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 55861611-1e40-4cc2-9ec5-0b2df4ba6c0c





Commonly Used Collection Types


Collection types are the common variations of data collections, such as hash tables, queues, stacks, bags, dictionaries, and lists.


Collections are based on the ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection] interface, the IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList] interface, the IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary] interface, or their generic counterparts. The IList interface and the IDictionary interface are both derived from the ICollection interface; therefore, all collections are based on the ICollection interface either directly or indirectly. In collections based on the IList interface (such as Array [https://docs.microsoft.com/dotnet/core/api/System.Array], ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList], or List<T>) [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] or directly on the ICollection interface (such as Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue], ConcurrentQueue<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1], Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack], ConcurrentStack<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] or LinkedList<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1]), every element contains only a value. In collections based on the IDictionary interface (such as the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] and SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] classes, the Dictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and SortedList<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes), or the ConcurrentDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] classes, every element contains both a key and a value. The KeyedCollection<TKey, TItem> [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] class is unique because it is a list of values with keys embedded within the values and, therefore, it behaves like a list and like a dictionary.


Generic collections are the best solution to strong typing. However, if your language does not support generics, the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace includes base collections, such as CollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.CollectionBase], ReadOnlyCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.ReadOnlyCollectionBase], and DictionaryBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.DictionaryBase], which are abstract base classes that can be extended to create collection classes that are strongly typed. When efficient multi-threaded collection access is required, use the generic collections in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace.


Collections can vary, depending on how the elements are stored, how they are sorted, how searches are performed, and how comparisons are made. The Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue] class and the Queue<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] generic class provide first-in-first-out lists, while the Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack] class and the Stack<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] generic class provide last-in-first-out lists. The SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList] class and the SortedList<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic class provide sorted versions of the Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class and the Dictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] generic class. The elements of a Hashtable or a Dictionary<TKey, TValue> are accessible only by the key of the element, but the elements of a SortedList or a KeyedCollection<TKey, TItem> [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] are accessible either by the key or by the index of the element. The indexes in all collections are zero-based, except Array [https://docs.microsoft.com/dotnet/core/api/System.Array], which allows arrays that are not zero-based.


The LINQ to Objects feature allows you to use LINQ queries to access in-memory objects as long as the object type implements IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or IEnumerable<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1]. LINQ queries provide a common pattern for accessing data; are typically more concise and readable than standard foreach loops; and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.



Related Topics


Title | Description
—– | ———–
Collections and Data Structures | Discusses the various collection types available in the .NET Framework, including stacks, queues, lists, arrays, and dictionaries.
Hashtable and Dictionary Collection Types | Describes the features of generic and non-generic hash-based dictionary types.
Sorted Collection Types | Describes sorted collections performance and characteristics.





Reference


System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]


System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]


System.Collections.ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection]


System.Collections.Generic.ICollection<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ICollection-1]


System.Collections.IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList]


System.Collections.Generic.IList<T> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1]


System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]


System.Collections.Generic.IDictionary<TKey, TValue> [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2]


System.Linq [https://docs.microsoft.com/dotnet/core/api/System.Linq]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/events-overview.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Introduction to Events
description: Introduction to Events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9b8d2a00-1584-4a5b-8994-5003d54d8e0c





Introduction to Events


Previous


Events are, like delegates, a late binding mechanism. In fact,
events are built on the language support for delegates.


Events are a way for an object to broadcast (to all interested
components in the system) that something has happened. Any other
component can subscribe to the event, and be notified when an event
is raised.


You’ve probably used events in some of your programming. Many graphical
systems have an event model to report user interaction. These events would
report mouse movement, button presses and similar interactions. That’s one
of the most common, but certainly not the only scenario where events are
used.


You can define events that should be raised for your classes. One important
consideration when working with events is that there may not be any
object registered for a particular event. You must write your code so that
it does not raise events when no listeners are configured.


Subscribing to an event also creates a coupling between two objects (the event
source, and the event sink). You need to ensure that the event sink unsubscribes
from the event source when no longer interested in events.



Design Goals for Event Support


The language design for events targets these goals.


First, enable very minimal
coupling between an event source and an event sink. These two components may
not be written by the same organization, and may even be updated on totally
different schedules.


Secondly, it should be very simple to subscribe to an event, and to
unsubscribe from that same event.


And finally, event sources should support multiple event subscribers. It should
also support having no event subscribers attached.


You can see that the goals for events are very similar to the goals for delegates.
That’s why the event language support is built on the delegate language support.





Language Support for Events


The syntax for defining events, and subscribing or unsubscribing from events is
an extension of the syntax for delegates.


To define an event you use the event keyword:


public event EventHandler<FileListArgs> Progress;






The type of the event (EventHandler<FileListArgs> in this example) must be a
delegate type. There are a number of conventions that you should follow
when declaring an event. Typically, the event delegate type has a void return.
Event declarations should be a verb, or a verb phrase.
Use past tense (as in this example) when
the event reports something that has happened. Use a present tense verb (for
example, Closing) to report something that is about to happen. Often, using
present tense indicates that your class supports some kind of customization
behavior. One of the most common scenarios is to support cancellation. For example,
a Closing event may include an argument that would indicate if the close
operation should continue, or not.  Other scenarios may enable callers to modify
behavior by updating properties of the event arguments. You may raise an
event to indicate a proposed next action an algorithm will take. The event
handler may mandate a different action by modifying  properties of the event
argument.


When you want to raise the event, you call the event handlers using the delegate invocation
syntax:


Progress?.Invoke(this, new FileListArgs(file));






As discussed in the section on delegates, the ?.
operator makes it easy to ensure that you do not attempt to raise the event
when there are no subscribers to that event.


You subscribe to an event by using the += operator:


EventHandler<FileListArgs> onProgress = (sender, eventArgs) => 
    Console.WriteLine(eventArgs.FoundFile);
lister.Progress += OnProgress;






The handler method typically is the prefix ‘On’ followed
by the event name, as shown above.


You unsubscribe using the -= operator:


lister.Progress -= onProgress;






It’s important to note that I declared a local variable for the expression that
represents the event handler. That ensures the unsubscribe removes the handler.
If, instead, you used the body of the lambda expression, you are attempting
to remove a handler that has never been attached, which does nothing.


In the next article, you’ll learn more about typical event patterns, and
different variations on this example.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/selecting-a-collection-class.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Selecting a Collection Class
description: Selecting a Collection Class
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0a60fca7-e082-48d4-9dda-30b0d3e67ec7





Selecting a Collection Class


Be sure to choose your collection class carefully. Using the wrong type can restrict your use of the collection. The generic and concurrent versions of the collections are to be preferred because of their greater type safety and other improvements. In general, avoid using the types in the System.Collections namespace unless you are specifically targeting .NET Framework version 1.1.


Consider the following questions:



		Do you need a sequential list where the element is typically discarded after its value is retrieved?
		If yes, consider using the System.Collections.Generic.Queue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] generic class if you need first-in, first-out (FIFO) behavior. Consider using the System.Collections.Generic.Stack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] generic class if you need last-in, first-out (LIFO) behavior. For safe access from multiple threads, use the concurrent versions System.Collections.Concurrent.ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and System.Collections.Concurrent.ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1].


		If not, consider using the other collections.








		Do you need to access the elements in a certain order, such as FIFO, LIFO, or random?
		The System.Collections.Generic.Queue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] or System.Collections.Concurrent.ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] generic class offer FIFO access. For more information, see When to Use a Thread-Safe Collection.


		The System.Collections.Generic.Stack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] orSystem.Collections.Concurrent.ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] generic class offer LIFO access. For more information, see When to Use a Thread-Safe Collection.


		The System.Collections.Generic.LinkedList&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] generic class allows sequential access either from the head to the tail, or from the tail to the head.








		Do you need to access each element by index?
		The System.Collections.Specialized.StringCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringCollection] class and the System.Collections.Generic.List&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] generic class offer access to their elements by the zero-based index of the element.


		The System.Collections.Specialized.ListDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.ListDictionary] and System.Collections.Specialized.StringDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringDictionary] classes, and the System.Collections.Generic.Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] and System.Collections.Generic.SortedDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] generic classes offer access to their elements by the key of the element.


		The System.Collections.Specialized.NameObjectCollectionBase [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameObjectCollectionBase] and System.Collections.Specialized.NameValueCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameValueCollection] classes, and the System.Collections.ObjectModel.KeyedCollection&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] and System.Collections.Generic.SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes offer access to their elements by either the zero-based index or the key of the element.








		Will each element contain one value, a combination of one key and one value, or a combination of one key and multiple values?
		One value: Use any of the collections based on the System.Collections.Generic.IList&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1] generic interface.


		One key and one value: Use any of the collections based on the System.Collections.Generic.IDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IDictionary-2] generic interface.


		One value with embedded key: Use the System.Collections.ObjectModel.KeyedCollection&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.KeyedCollection-2] generic class.


		One key and multiple values: Use the System.Collections.Specialized.NameValueCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.NameValueCollection] class.








		Do you need to sort the elements differently from how they were entered?
		The System.Collections.Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable] class sorts its elements by their hash codes.


		The System.Collections.Generic.SortedDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedDictionary-2] and System.Collections.Generic.SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] generic classes sort their elements by the key, based on implementations of the System.Collections.IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer] interface and the System.Collections.Generic.IComparer&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] generic interface.


		System.Collections.Generic.List&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] generic class, provides a Sort method that takes an implementation of the IComparer<T> generic interface as a parameter.








		Do you need collections that accept only strings?
		StringCollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringCollection] (based on System.Collections.IList [https://docs.microsoft.com/dotnet/core/api/System.Collections.IList]) and StringDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.StringDictionary] (based on System.Collections.IDictionary [https://docs.microsoft.com/dotnet/core/api/System.Collections.IDictionary]) are in the System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized] namespace.


		In addition, you can use any of the generic collection classes in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace as strongly typed string collections by specifying the String class for their generic type arguments.












LINQ to Objects


LINQ to Objects enables developers to use LINQ queries to access in-memory objects as long as the object type implements System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1]. LINQ queries provide a common pattern for accessing data, are typically more concise and readable than standard foreach loops, and provide filtering, ordering, and grouping capabilities. For more information, see Language Integrated Query (LINQ).





See Also


System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]


System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized]


System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/whats-new.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: What’s New in C# | C# Guide
description: How is the C# language evolving
keywords: C#, Latest Features, What’s New, Roslyn
author: BillWagner
manager: wpickett
ms.date: 08/25/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 77deec51-a14d-46d4-9bb3-faf449477149





What’s new in C



		C# 7:
		This page describes the latest features in the C# language. This covers C# 7, currently available in Visual Studio 15 Preview 4 [https://www.visualstudio.com/en-us/downloads/visual-studio-next-downloads-vs.aspx].








		C# 6:
		This page describes the latest features in the currently released version of C#, C# 6. These features are available in Visual Studio 2015 for Windows developers, and on .NET Core 1.0 for developers exploring C# on MacOS and Linux.








		C# Interactive:
		This page describes C# Interactive, an interactive Read Eval Print Loop (REPL) that you can use to explore the C# language. You can use it to write code interactively and see it execute immediately, without any compile or build step.








		Cross Platform Support:
		C#, through .NET Core support, runs on multiple platforms. If you are interested in trying C# on MacOS, or on one of hte many support Linux distributions, learn more about .NET Core.












		.NET Compiler Platform SDK:
		The .NET Compiler Platform SDK enables you to write code that performs static analysis on C# code. You can use these APIs to find potential errors, or bad practices, suggest fixes, and even implement those fixes.















          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Collections and Data Structures
description: Collections and Data Structures
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9e70255a-c02a-4046-86b7-10c84bab2d38





Collections and Data Structures


Similar data can often be handled more efficiently when stored and manipulated as a collection. You can use the System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array] class or the classes in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections], System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic], or System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespaces to add, remove, and modify either individual elements or a range of elements in a collection.


There are two main types of collections; generic collections and non-generic collections. Generic collections are type-safe at compile time. Because of this, generic collections typically offer better performance. Generic collections accept a type parameter when they are constructed and do not require that you cast to and from the Object [https://docs.microsoft.com/dotnet/core/api/System.Object] type when you add or remove items from the collection. Non-generic collections store items as Object [https://docs.microsoft.com/dotnet/core/api/System.Object] and require casting. You may see non-generic collections in older code.


The collections in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace provide efficient thread-safe operations for accessing collection items from multiple threads.



Common collection features


All collections provide methods for adding, removing or finding items in the collection. In addition, all collections that directly or indirectly implement the ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection] interface or the ICollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.ICollection-1] interface share these features:



		The ability to enumerate the collection


.NET Framework collections either implement System.Collections.IEnumerable [https://docs.microsoft.com/dotnet/core/api/System.Collections.IEnumerable] or System.Collections.Generic.IEnumerable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] to enable the collection to be iterated through. An enumerator can be thought of as a movable pointer to any element in the collection. The foreach, in statement (C#) uses the enumerator exposed by the GetEnumerator method and hides the complexity of manipulating the enumerator. In addition, any collection that implements System.Collections.Generic.IEnumerable&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEnumerable-1] is considered a queryable type and can be queried with LINQ. LINQ queries provide a common pattern for accessing data. They are typically more concise and readable than standard for each loops, and provide filtering, ordering and grouping capabilities. LINQ queries can also improve performance.





		The ability to copy the collection contents to an array


All collections can be copied to an array using the CopyTo method; however, the order of the elements in the new array is based on the sequence in which the enumerator returns them. The resulting array is always one-dimensional with a lower bound of zero.








In addition, many collection classes contain the following features:



		Capacity and Count properties


The capacity of a collection is the number of elements it can contain. The count of a collection is the number of elements it actually contains. Some collections hide the capacity or the count or both.


Most collections automatically expand in capacity when the current capacity is reached. The memory is reallocated, and the elements are copied from the old collection to the new one. This reduces the code required to use the collection; however, the performance of the collection might be negatively affected. For example, for List

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], if Count is less than Capacity, adding an item is an O(1) operation. If the capacity needs to be increased to accommodate the new element, adding an item becomes an O(n) operation, where n is Count. The best way to avoid poor performance caused by multiple reallocations is to set the initial capacity to be the estimated size of the collection.


A BitArray [https://docs.microsoft.com/dotnet/core/api/System.Collections.BitArray] is a special case; its capacity is the same as its length, which is the same as its count.





		A consistent lower bound








The lower bound of a collection is the index of its first element. All indexed collections in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespaces have a lower bound of zero, meaning they are 0-indexed. Array [https://docs.microsoft.com/dotnet/core/api/System.Array] has a lower bound of zero by default, but a different lower bound can be defined when creating an instance of the Array class using Array.CreateInstance.



		Synchronization for access from multiple threads (System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] classes only).





Non-generic collection types in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace provide some thread safety with synchronization; typically exposed through the SyncRoot and IsSynchronized members. These collections are not thread-safe by default. If you require scalable and efficient multi-threaded access to a collection, use one of the classes in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace or consider using an immutable collection. For more information, see Thread-Safe Collections.





Choosing a collection


In general, you should use generic collections. The following table describes some common collection scenarios and the collection classes you can use for those scenarios. If you are new to generic collections, this table will help you choose the generic collection that works the best for your task.


I want to… | Generic collection option(s) | Non-generic collection option(s)
———- | —————————- | ——————————–
Store items as key/value pairs for quick look-up by key | System.Collections.Generic.Dictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] | Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable]
Access items by index | System.Collections.Generic.List&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] | System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array], System.Collections.ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList]
Use items first-in-first-out (FIFO) | System.Collections.Generic.Queue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] | System.Collections.Queue [https://docs.microsoft.com/dotnet/core/api/System.Collections.Queue]
Use data Last-In-First-Out (LIFO) | System.Collections.Generic.Stack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] | System.Collections.Stack [https://docs.microsoft.com/dotnet/core/api/System.Collections.Stack]
Access items sequentially | System.Collections.Generic.LinkedList&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.LinkedList-1] | No recommendation
Receive notifications when items are removed or added to the collection. (implements INotifyPropertyChanged [https://docs.microsoft.com/dotnet/core/api/System.ComponentModel.INotifyPropertyChanged] and INotifyCollectionChanged [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized.INotifyCollectionChanged]) | System.Collections.ObjectModel.ObservableCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.ObjectModel.ObservableCollection-1] | No recommendation
Use a sorted collection | System.Collections.Generic.SortedList&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedList-2] | System.Collections.SortedList [https://docs.microsoft.com/dotnet/core/api/System.Collections.SortedList]
Manage efficient storage and access of unique elements | System.Collections.Generic.HashSet&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.HashSet-1], System.Collections.Generic.SortedSet&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.SortedSet-1] | No recommendation





Related Topics


Title | Description
—– | ———–
Selecting a Collection Class | Describes the different collections and helps you select one for your scenario.
Commonly Used Collection Types | Describes commonly used generic and nongeneric collection types such as System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array], System.Collections.Generic.List

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], and System.Collections.Generic.Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2].
When to Use Generic Collections | Discusses the use of generic collection types.
Comparisons and Sorts Within Collections | Discusses the use of equality comparisons and sorting comparisons in collections.
Sorted Collection Types | Describes sorted collections performance and characteristics.
Hashtable and Dictionary Collection Types | Describes the features of generic and non-generic hash-based dictionary types.
Thread-Safe Collections | Describes collection types such as System.Collections.Concurrent.BlockingCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] and System.Collections.Concurrent.ConcurrentBag&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] that support safe and efficient concurrent access from multiple threads.





Reference


System.Array [https://docs.microsoft.com/dotnet/core/api/System.Array]


System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections]


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic]


System.Collections.Specialized [https://docs.microsoft.com/dotnet/core/api/System.Collections.Specialized]


System.Linq [https://docs.microsoft.com/dotnet/core/api/System.Linq]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Guide
description: C# Guide
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 08/03/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 52db8280-0e53-40cf-858b-e8eef3997dea





C# Guide


The C# guide provides a wealth of information about the C# language. This site has many different audiences. Depending on your experience with programming, or with the C# language and .NET, you may wish to explore different sections of this guide.



		For brand-new developers:
		Start with our tutorials section. These tutorials show you how to create C# programs from scratch. The tutorials provide a step-by-step process to create programs. You’ll learn the language concepts, and how to build C# programs on your own. If you prefer reading overview information first, try our tour of the C# language. It explains the concepts of the C# language. After reading this, you’ll have a basic understanding of the language, and be ready to try the tutorials, or build something on your own.








		For developers new to C#:
		If you’ve done development before, but are new to C#, read the tour of the C# language. You will lern the basic syntax and structure for the language, and you can use the language tour to contrast C# with other languages you’ve used. You can also browse the tutorials to try basic C# programs. Or, check out the C# Concepts to learn the features of the C# language in depth.








		Experienced C# developers:
		If you’ve used C# before, you should start by reading what’s in the latest version of the language. Check out What’s new in C# 6 for the new features in the current version. Then, explore the C# Concepts where you want more depth.












How the C# guide is organized


There are seven sections in the C# Guide. You can read them in order, or jump directly to what interests you the most. Some of the sections are heavily focused on the language. Others provide end-to-end scenarios that demonstrate a few of the types of programs you can create using C# and the .NET Framework.



		Getting Started:
		This section covers what you need to install for a C# development environment on your preferred platform. The different topics under this section explain how to create your first C# program in different supported environments.








		Tutorials:
		This section provides a variety of end to end scenarios, including descriptions and code. You’ll learn why certain idioms are preferred, what C# features work best in different situations, and see reference implemetntaions for common tasks. If you learn best by seeing code, start in this section. You can also download all the code and experiment in your own environment.








		A Tour of C#:
		This section provides an overview of the language. You’ll learn the elements that make up C# programs, the capabilities of the language. You’ll see small samples of all the syntax elements of C# and discussions of the major C# language topics.








		Latest Features:
		Learn about new features in the language. Learn about new tools like C# Interactive (C#’s REPL), and the .NET Compiler Platform SDK. You’ll learn how the language is evolving. You’ll see how the new tools can make you more productive in exploring the language, and automating tasks.








		C# Interactive:
		C# Interactive is a Read-Eval-Print Loop (REPL) that you can use to interactively explore the language. It can also be used to explore different libraries and frameworks by trying different actions using an interactive approach. In this section you’ll learn how to install and start C# interactive, and how to explore APIs with it. You’ll also learn how to use C# interactive to export tested classes for later use.








		C# Concepts:
		Learn the concepts that are most useful to C# programmers. This section contains several end to end scenarios that show you different techniques for C# development. It focuses on the language, but the nature of the end to end scenarios are that this section also includes several programs that demonstrate different frameworks and libraries that are part of the .NET ecosystem.








		.NET Compiler Platform SDK:
		The .NET Compiler Platform SDK enables you to write components that analyze code, and suggest or make improvements to that code. In this section, you’ll learn how the APIs are organized, and how you can create code that enables rules and practices for your team. You’ll also see samples, end to end scenarios, and links to other libraries with more examples using these APIs.








		Syntax Reference:
		This section contains the reference material on the C# language. This material will help you understand the syntax and semantics of C#.

















          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/comparisons-and-sorts-within-collections.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Comparisons and Sorts Within Collections
description: Comparisons and Sorts Within Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c7b7c005-628d-427a-91ad-af0c3958c00e





Comparisons and Sorts Within Collections


The System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] classes perform comparisons in almost all the processes involved in managing collections, whether searching for the element to remove or returning the value of a key-and-value pair.


Collections typically utilize an equality comparer and/or an ordering comparer. Two constructs are used for comparisons.



Checking for equality


Methods such as Contains, IndexOf, LastIndexOf, and Remove use an equality comparer for the collection elements. If the collection is generic, items are compared for equality according to the following guidelines:



		If type T implements the IEquatable&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1] generic interface, then the equality comparer is the Equals method of that interface.


		If type T does not implement IEquatable<T>, Object.Equals is used.





In addition, some constructor overloads for dictionary collections accept an IEqualityComparer

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IEqualityComparer-1] implementation, which is used to compare keys for equality.





Determining sort order


Methods such as BinarySearch and Sort use an ordering comparer for the collection elements. The comparisons can be between elements of the collection, or between an element and a specified value. For comparing objects, there is the concept of a default comparer and an explicit comparer.


The default comparer relies on at least one of the objects being compared to implement the IComparable interface. It is a good practice to implement IComparable on all classes are used as values in a list collection or as keys in a dictionary collection. For a generic collection, equality comparison is determined according to the following:



		If type T implements the System.IComparable&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1] generic interface, then the default comparer is the CompareTo(T) method of that interface.


		If type T implements the non-generic System.IComparable [https://docs.microsoft.com/dotnet/core/api/System.IComparable] interface, then the default comparer is the CompareTo(Object) method of that interface.


		If type T doesn’t implement either interface, then there is no default comparer, and a comparer or comparison delegate must be provided explicitly.





To provide explicit comparisons, some methods accept an IComparer implementation as a parameter. For example, the List<T>.Sort method accepts an System.Collections.Generic.IComparer

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1] implementation.





Equality and sort example


The following code demonstrates an implementation of IEquatable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1] and IComparable&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1] on a simple business object. In addition, when the object is stored in a list and sorted, you will see that calling the Sort() method results in the use of the default comparer for the ‘Part’ type, and the Sort(Comparison<T>) method implemented by using an anonymous method.


C#


using System;
using System.Collections.Generic;
// Simple business object. A PartId is used to identify the type of part 
// but the part name can change. 
public class Part : IEquatable<Part> , IComparable<Part>
{
    public string PartName { get; set; }

    public int PartId { get; set; }

    public override string ToString()
    {
        return "ID: " + PartId + "   Name: " + PartName;
    }
    public override bool Equals(object obj)
    {
        if (obj == null) return false;
        Part objAsPart = obj as Part;
        if (objAsPart == null) return false;
        else return Equals(objAsPart);
    }
    public int SortByNameAscending(string name1, string name2)
    {

        return name1.CompareTo(name2);
    }

    // Default comparer for Part type.
    public int CompareTo(Part comparePart)
    {
          // A null value means that this object is greater.
        if (comparePart == null)
            return 1;

        else
            return this.PartId.CompareTo(comparePart.PartId);
    }
    public override int GetHashCode()
    {
        return PartId;
    }
    public bool Equals(Part other)
    {
        if (other == null) return false;
        return (this.PartId.Equals(other.PartId));
    }
    // Should also override == and != operators.

}
public class Example
{
    public static void Main()
    {
        // Create a list of parts.
        List<Part> parts = new List<Part>();

        // Add parts to the list.
        parts.Add(new Part() { PartName = "regular seat", PartId = 1434 });
        parts.Add(new Part() { PartName= "crank arm", PartId = 1234 });
        parts.Add(new Part() { PartName = "shift lever", PartId = 1634 }); ;
        // Name intentionally left null.
        parts.Add(new Part() {  PartId = 1334 });
        parts.Add(new Part() { PartName = "banana seat", PartId = 1444 });
        parts.Add(new Part() { PartName = "cassette", PartId = 1534 });


        // Write out the parts in the list. This will call the overridden 
        // ToString method in the Part class.
        Console.WriteLine("\nBefore sort:");
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }


        // Call Sort on the list. This will use the 
        // default comparer, which is the Compare method 
        // implemented on Part.
        parts.Sort();


        Console.WriteLine("\nAfter sort by part number:");
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }

        // This shows calling the Sort(Comparison(T) overload using 
        // an anonymous method for the Comparison delegate. 
        // This method treats null as the lesser of two values.
        parts.Sort(delegate(Part x, Part y)
        {
            if (x.PartName == null && y.PartName == null) return 0;
            else if (x.PartName == null) return -1;
            else if (y.PartName == null) return 1;
            else return x.PartName.CompareTo(y.PartName);
        });

        Console.WriteLine("\nAfter sort by name:");
        foreach (Part aPart in parts)
        {
            Console.WriteLine(aPart);
        }

        /*

            Before sort:
        ID: 1434   Name: regular seat
        ID: 1234   Name: crank arm
        ID: 1634   Name: shift lever
        ID: 1334   Name:
        ID: 1444   Name: banana seat
        ID: 1534   Name: cassette

        After sort by part number:
        ID: 1234   Name: crank arm
        ID: 1334   Name:
        ID: 1434   Name: regular seat
        ID: 1444   Name: banana seat
        ID: 1534   Name: cassette
        ID: 1634   Name: shift lever

        After sort by name:
        ID: 1334   Name:
        ID: 1444   Name: banana seat
        ID: 1534   Name: cassette
        ID: 1234   Name: crank arm
        ID: 1434   Name: regular seat
        ID: 1634   Name: shift lever

         */

    }
}









See Also


IComparer [https://docs.microsoft.com/dotnet/core/api/System.Collections.IComparer]


IEquatable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IEquatable-1]


IComparer

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IComparer-1]


IComparable [https://docs.microsoft.com/dotnet/core/api/System.IComparable]


IComparable

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.IComparable-1]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-execution.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Executing Expression Trees
description: Executing Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 109e0ac5-2a9c-48b4-ac68-9b6219cdbccf





Executing Expression Trees


Previous – Framework Types Supporting Expression Trees


An expression tree is a data structure that represents some code.
It is not compiled and executable code. If you want to execute
the .NET code that is represented by an expression tree, you must
convert it into executable IL instructions.



Lambda Expressions to Functions


You can convert any LambdaExpression, or any type derived from
LambdaExpression into executable IL. Other expression types
cannot be directly converted into code. This restriction has
little effect in practice. Lambda expressions are the only
types of expressions that you would want to execute by converting
to executable intermediate language (IL). (Think about what it would mean
to directly execute a ConstantExpression. Would it mean
anything useful?) Any expression tree that is a LamdbaExpression,
or a type derived from LambdaExpression can be converted to IL.
The expression type Expression<TDelegate>
is the only concrete example in the .NET Core libraries. It’s used
to represent an expression that maps to any delegate type. Because
this type maps to a delegate type, .NET can examine
the expression, and generate IL for an appropriate delegate that
matches the signature of the lambda expression.


In most cases, this creates a simple mapping between an expression,
and its corresponding delegate. For example, an expression tree that
is represented by Expression<Func<int>> would be converted to a delegate
of the type Func<int>. For a lambda expression with any return type
and argument list, there exists a delegate type that is the target type
for the executable code represented by that lamdba expression.


The LamdbaExpression type contains Compile and CompileToMethod
members that you would use to convert an expression tree to executable
code. The Compile method creates a delegate. The ConmpileToMethod
method updates a MethodBuilder object with the IL that represents
the compiled output of the expression tree. Note that CompileToMethod
is only available on the full desktop framework, not on the
.NET Core framework.


Optionally, you can also provide a DebugInfoGenerator that will
receive the symbol debugging information for the generated delegate
object. This enables you to convert the expression tree into a
delegate object, and have full debugging information about the
generated delegate.


You would convert an expression into a delegate using the following
code:


Expression<Func<int>> add = () => 1 + 2;
var func = add.Compile(); // Create Delegate
var answer = func(); // Invoke Delegate
Console.WriteLine(answer);






Notice that the delegate type is based on the expression type. You must
know the return type and the argument list if you want to use the
delegate object in a strongly typed manner. The LambdaExpression.Compile()
method returns the Delegate type. You will have to cast it to the correct
delegate type to have any compile-time tools check the argument list of
return type.





Execution and Lifetimes


You execute the code by invoking the delegate created when
you called LamdbaExpression.Compile(). You can see this above where
add.Compile() returns a delegate. Invoking that delegate, by calling
func() executes the code.


That delegate represents the code in the expression tree. You can
retain the handle to that delegate and invoke it later. You don’t need
to compile the expression tree each time you want to execute the code
it represents. (Remember that expression trees are immutable, and
compiling the same expression tree later will create a delegate that
executes the same code.)


I will caution you against trying to create any more sophisticated
caching mechanisms to increase performance by avoiding unnecessary
compile calls. Comparing two arbitrary expression trees to determine
if they represent the same algorithm will also be time consuming to
execute. You’ll likely
find that the compute time you save avoiding any extra calls to
LambdaExpression.Compile() will be more than consumed by the time executing
code that determines of two different expression trees result in
the same executable code.





Caveats


Compiling a lambda expression to a delegate and invoking that delegate
is one of the simplest operations you can perform with an expression
tree. However, even with this simple operation, there are caveats
you must be aware of.


Lambda Expressions create closures over any local variables that are
referenced in the expression. You must guarantee that any variables
that would be part of the delegate are usable at the location where
you call Compile, and when you execute the resulting delegate.


In general, the compiler will ensure that this is true. However,
if your expression accesses a variable that implements IDisposable,
it’s possible that your code might dispose of the object while it
is still held by the expression tree.


For example, this code works fine, because int does not implement
IDisposable:


private static Func<int, int> CreateBoundFunc()
{
    var constant = 5; // constant is captured by the expression tree
    Expression<Func<int, int>> expression = (b) => constant + b;
    var rVal = expression.Compile();
    return rVal;
}






The delegate has captured a reference to the local variable constant.
That variable is accessed at any time later, when the function returned
by CreateBoundFunc executes.


However, consider this (rather contrived) class that implements
IDisposable:


public class Resource : IDisposable
{
    private bool isDisposed = false;
    public int Argument
    {
        get
        {
            if (!isDisposed)
                return 5;
            else throw new ObjectDisposedException("Resource");
        }
    }

    public void Dispose()
    {
        isDisposed = true;
    }
}






If you use it in an expression as shown below, you’ll get an
ObjectDisposedException when you execute the code referenced
by the Resource.Argument property:


private static Func<int, int> CreateBoundResource()
{
    using (var constant = new Resource()) // constant is captured by the expression tree
    {
        Expression<Func<int, int>> expression = (b) => constant.Argument + b;
        var rVal = expression.Compile();
        return rVal;
    }
}






The delegate returned from this method has closed over the constant object,
which has been disposed of. (It’s been disposed, because it was declared in a
using statement.)


Now, when you execute the delegate returned from this method, you’ll have a
ObjecctDisposedException thrown at the point of execution.


It does seem strange to have a runtime error representing a compile-time
construct, but that’s the world we enter when we work with
expression trees.


There are a lot of permutations of this problem, so it’s hard
to offer general guidance to avoid it. Be careful about accessing
local variables when defining expressions, and be careful about
accessing state in the current object (represented by this) when
creating an expression tree that can be returned by a public API.


The code in your expression may reference methods or properties in
other assemblies. That assembly must be accessible when the expression
is defined, and when it is compiled, and when the resulting delegate
is invoked. You’ll be met with a ReferencedAssemblyNotFoundException
in cases where it is not present.





Summary


Expression Trees that represent lambda expressions can be compiled
to create a delegate that you can execute. This provides one
mechanism to execute the code represented by an expression tree.


The Expression Tree does represent the code that would execute for
any given construct you create. As long as the environment where
you compile and execute the code matches the environment where you
create the expression, everything works as expected. When that
doesn’t happen, the errors are very predictable, and they will
be caught in your first tests of any code using the expression
trees.


Next – Interpreting Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-create-an-object-pool.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Create an Object Pool by Using a ConcurrentBag”
description: “How to: Create an Object Pool by Using a ConcurrentBag”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 87a6ada1-ee27-423d-b587-82e7cb45361b





How to: Create an Object Pool by Using a ConcurrentBag


This example shows how to use a concurrent bag to implement an object pool. Object pools can improve application performance in situations where you require multiple instances of a class and the class is expensive to create or destroy. When a client program requests a new object, the object pool first attempts to provide one that has already been created and returned to the pool. If none is available, only then is a new object created.


ConcurrentBag

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] is used to store the objects because it supports fast insertion and removal, especially when the same thread is both adding and removing items. This example could be further augmented to be built around a IProducerConsumerCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1], which the bag data structure implements, as do ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1].



Example


using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;


namespace ObjectPoolExample
{
    public class ObjectPool<T>
    {
        private ConcurrentBag<T> _objects;
        private Func<T> _objectGenerator;

        public ObjectPool(Func<T> objectGenerator)
        {
            if (objectGenerator == null) throw new ArgumentNullException("objectGenerator");

            _objects = new ConcurrentBag<T>();
            _objectGenerator = objectGenerator;
        }

        public T GetObject()
        {
            T item;
            return _objects.TryTake(out item) ? item : _objectGenerator();
        }

        public void PutObject(T item)
        {
            _objects.Add(item);
        }
    }

    class Program
    {
       static void Main(string[] args)
        {
            CancellationTokenSource cts = new CancellationTokenSource();

            // Create an opportunity for the user to cancel.
            Task.Run(() =>
                {
                    if (Console.ReadKey().KeyChar == 'c' || Console.ReadKey().KeyChar == 'C')
                        cts.Cancel();
                });

            ObjectPool<MyClass> pool = new ObjectPool<MyClass> (() => new MyClass());            

            // Create a high demand for MyClass objects.
            Parallel.For(0, 1000000, (i, loopState) =>
                {
                    MyClass mc = pool.GetObject();
                    Console.CursorLeft = 0;
                    // This is the bottleneck in our application. All threads in this loop
                    // must serialize their access to the static Console class.
                    Console.WriteLine("{0:####.####}", mc.GetValue(i));                 

                    pool.PutObject(mc);
                    if (cts.Token.IsCancellationRequested)
                        loopState.Stop();                 
                });
            Console.WriteLine("Press the Enter key to exit.");
            Console.ReadLine();
            cts.Dispose();
        }
    }

    // A toy class that requires some resources to create.
    // You can experiment here to measure the performance of the
    // object pool vs. ordinary instantiation.
    class MyClass
    {
        public int[] Nums {get; set;}
        public double GetValue(long i)
        {
            return Math.Sqrt(Nums[i]);
        }
        public MyClass()
        {
            Nums = new int[1000000];
            Random rand = new Random();
            for (int i = 0; i < Nums.Length; i++)
                Nums[i] = rand.Next();
        }
    }   
}









See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/linq.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Language Integrated Query (LINQ)
description: Language Integrated Query (LINQ)
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 007cc736-f5cf-4919-b99b-0c00ab2814ce





🔧 Language Integrated Query (LINQ)



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/490] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-use-foreach-to-remove.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Use ForEach to Remove Items in a BlockingCollection”
description: “How to: Use ForEach to Remove Items in a BlockingCollection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f3db5825-b5c9-4e8b-80bc-e11760d9523e





How to: Use ForEach to Remove Items in a BlockingCollection


In addition to taking items from a BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] by using the Take and TryTake methods, you can also use a foreach loop to remove items until adding is completed and the collection is empty. This is called a mutating enumeration or consuming enumeration because, unlike a typical foreach loop, this enumerator modifies the source collection by removing items.



Example


The following example shows how to remove all the items in a BlockingCollection<T> by using a foreach loop.


using System;
using System.Collections.Concurrent;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;

class Example
{
   // Limit the collection size to 2000 items at any given time.
   // Set itemsToProduce to > 500 to hit the limit.
   const int upperLimit = 1000;

   // Adjust this number to see how it impacts the producing-consuming pattern.
   const int itemsToProduce = 100;

   static BlockingCollection<long> collection = new BlockingCollection<long>(upperLimit);

   // Variables for diagnostic output only.
   static Stopwatch sw = new Stopwatch();
   static int totalAdditions = 0;

   // Counter for synchronizing producers.
   static int producersStillRunning = 2;

   static void Main()
   {
       // Start the stopwatch.
       sw.Start();

       // Queue the Producer threads. Store in an array
       // for use with ContinueWhenAll
       Task[] producers = new Task[2];
       producers[0] = Task.Run(() => RunProducer("A", 0));
       producers[1] = Task.Run(() => RunProducer("B", itemsToProduce));

       // Create a cleanup task that will call CompleteAdding after
       // all producers are done adding items.
       Task cleanup = Task.Factory.ContinueWhenAll(producers, (p) => collection.CompleteAdding());

       // Queue the Consumer thread. Put this call
       // before Parallel.Invoke to begin consuming as soon as
       // the producers add items.
       Task.Run(() => RunConsumer());

       // Keep the console window open while the
       // consumer thread completes its output.
       Console.ReadKey(true);
   }

   static void RunProducer(string ID, int start)
   {

       int additions = 0;
       for (int i = start; i < start + itemsToProduce; i++)
       {
           // The data that is added to the collection.
           long ticks = sw.ElapsedTicks;

           // Display additions and subtractions.
           Console.WriteLine("{0} adding tick value {1}. item# {2}", ID, ticks, i);

           if(!collection.IsAddingCompleted)
               collection.Add(ticks);

           // Counter for demonstration purposes only.
           additions++;

           // Uncomment this line to
           // slow down the producer threads     ing.
           Thread.SpinWait(100000);
       }

       Interlocked.Add(ref totalAdditions, additions);
       Console.WriteLine("{0} is done adding: {1} items", ID, additions);
   }

   static void RunConsumer()
   {
       // GetConsumingEnumerable returns the enumerator for the
       // underlying collection.
       int subtractions = 0;
       foreach (var item in collection.GetConsumingEnumerable())
       {
           Console.WriteLine("Consuming tick value {0} : item# {1} : current count = {2}",
                   item.ToString("D18"), subtractions++, collection.Count);
       }

       Console.WriteLine("Total added: {0} Total consumed: {1} Current count: {2} ",
                           totalAdditions, subtractions, collection.Count);
       sw.Stop();

       Console.WriteLine("Press any key to exit");
   }
}






This example uses a foreach loop with the BlockingCollection<T>.GetConsumingEnumerable method in the consuming thread, which causes each item to be removed from the collection as it is enumerated. BlockingCollection<T> limits the maximum number of items that are in the collection at any time. Enumerating the collection in this way blocks the consumer thread if no items are available or if the collection is empty. In this example blocking is not a concern because the producer thread adds items faster than they can be consumed.


There is no guarantee that the items are enumerated in the same order in which they are added by the producer threads.


To enumerate the collection without modifying it, just use foreach without the GetConsumingEnumerable method. However, it is important to understand that this kind of enumeration represents a snapshot of the collection at a precise point in time. If other threads are adding or removing items concurrently while you are executing the loop, then the loop might not represent the actual state of the collection.





See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


BlockingCollection Overview








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/delegates-events.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Delegates & events
description: Delegates & events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4e80e053-8022-4987-a8a0-209caec0315d





Delegates & events


This topic will be covered under the following articles:



1. [Overview of Delegates](delegates-overview.md)This article covers an overview of delegates.







		System.Delegate and the delegate keyword


This article covers the classes in the .NET Core Framework that support delegates and how that maps to the delegate keyword.





		Strongly Typed Delegates


This article covers the types and techniques for using strongly typed delegates.





		Common Patterns for Delegates


This article covers common practices for delegates.





		Overview of Events


This article covers an overview of events in .NET.





		The .NET Event Pattern


This article covers the standard event pattern in .NET.





		The Updated .NET Event Pattern


This article covers several updates to the .NET event pattern in recent releases.





		Distinguishing Delegates from Events


This article discusses how you should distinguish between using events and delegates in your designs.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-add-and-remove-items.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Add and Remove Items from a ConcurrentDictionary”
description: “How to: Add and Remove Items from a ConcurrentDictionary”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b7c04a5f-a8e6-42ae-8c84-0e1ae18896eb





How to: Add and Remove Items from a ConcurrentDictionary


This example shows how to add, retrieve, update, and remove items from a System.Collections.Concurrent.ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2]. This collection class is a thread-safe implementation. We recommend that you use it whenever multiple threads might be attempting to access the elements concurrently.


ConcurrentDictionary<TKey, TValue> provides several convenience methods that make it unnecessary for code to first check whether a key exists before it attempts to add or remove data. The following table lists these convenience methods and describes when to use them.


Method | Use when...
—— | ———–
AddOrUpdate | You want to add a new value for a specified key and, if the key already exists, you want to replace its value.
GetOrAdd | You want to retrieve the existing value for a specified key and, if the key does not exist, you want to specify a key/value pair.
TryAdd, TryGetValue, TryUpdate, TryRemove | You want to add, get, update, or remove a key/value pair, and, if the key already exists or the attempt fails for any other reason, you want to take some alternative action.



Example


namespace DictionaryHowTo
{
    using System;
    using System.Collections.Concurrent;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Threading;
    using System.Threading.Tasks;

    // The type of the Value to store in the dictionary:
    class CityInfo : IEqualityComparer<CityInfo>
    {
        public string Name { get; set; }
        public DateTime lastQueryDate { get; set; }
        public decimal Longitude { get; set; }
        public decimal Latitude { get; set; }
        public int[] RecentHighTemperatures { get; set; }

        public CityInfo(string name, decimal longitude, decimal latitude, int[] temps)
        {
            Name = name;
            lastQueryDate = DateTime.Now;
            Longitude = longitude;
            Latitude = latitude;
            RecentHighTemperatures = temps;
        }

        public CityInfo()
        {
        }

        public CityInfo(string key)
        {
            Name = key;
            // MaxValue means "not initialized"
            Longitude = Decimal.MaxValue;
            Latitude = Decimal.MaxValue;
            lastQueryDate = DateTime.Now;
            RecentHighTemperatures = new int[] { 0 };

        }
        public bool Equals(CityInfo x, CityInfo y)
        {
            return x.Name == y.Name && x.Longitude == y.Longitude && x.Latitude == y.Latitude;
        }

        public int GetHashCode(CityInfo obj)
        {
            CityInfo ci = (CityInfo)obj;
            return ci.Name.GetHashCode();
        }
    }

    class Program
    {
        // Create a new concurrent dictionary.
        static ConcurrentDictionary<string, CityInfo> cities = new ConcurrentDictionary<string, CityInfo>();

        static void Main(string[] args)
        {
            CityInfo[] data = 
            {
                new CityInfo(){ Name = "Boston", Latitude = 42.358769M, Longitude = -71.057806M, RecentHighTemperatures = new int[] {56, 51, 52, 58, 65, 56,53}},
                new CityInfo(){ Name = "Miami", Latitude = 25.780833M, Longitude = -80.195556M, RecentHighTemperatures = new int[] {86,87,88,87,85,85,86}},
                new CityInfo(){ Name = "Los Angeles", Latitude = 34.05M, Longitude = -118.25M, RecentHighTemperatures =   new int[] {67,68,69,73,79,78,78}},
                new CityInfo(){ Name = "Seattle", Latitude = 47.609722M, Longitude =  -122.333056M, RecentHighTemperatures =   new int[] {49,50,53,47,52,52,51}},
                new CityInfo(){ Name = "Toronto", Latitude = 43.716589M, Longitude = -79.340686M, RecentHighTemperatures =   new int[] {53,57, 51,52,56,55,50}},
                new CityInfo(){ Name = "Mexico City", Latitude = 19.432736M, Longitude = -99.133253M, RecentHighTemperatures =   new int[] {72,68,73,77,76,74,73}},
                new CityInfo(){ Name = "Rio de Janiero", Latitude = -22.908333M, Longitude = -43.196389M, RecentHighTemperatures =   new int[] {72,68,73,82,84,78,84}},
                new CityInfo(){ Name = "Quito", Latitude = -0.25M, Longitude = -78.583333M, RecentHighTemperatures =   new int[] {71,69,70,66,65,64,61}}
            };

            // Add some key/value pairs from multiple threads.
            Task[] tasks = new Task[2];

            tasks[0] = Task.Run(() =>
            {
                for (int i = 0; i < 2; i++)
                {
                    if (cities.TryAdd(data[i].Name, data[i]))
                        Console.WriteLine("Added {0} on thread {1}", data[i],
                            Thread.CurrentThread.ManagedThreadId);
                    else 
                        Console.WriteLine("Could not add {0}", data[i]);
                }
            });

            tasks[1] = Task.Run(() =>
            {
                for (int i = 2; i < data.Length; i++)
                {
                    if (cities.TryAdd(data[i].Name, data[i]))
                        Console.WriteLine("Added {0} on thread {1}", data[i],
                            Thread.CurrentThread.ManagedThreadId);
                    else
                        Console.WriteLine("Could not add {0}", data[i]);
                }
            });

            // Output results so far.
            Task.WaitAll(tasks);

            // Enumerate collection from the app main thread.
            // Note that ConcurrentDictionary is the one concurrent collection
            // that does not support thread-safe enumeration.
            foreach (var city in cities)
            {
                Console.WriteLine("{0} has been added.", city.Key);
            }

            AddOrUpdateWithoutRetrieving();
            RetrieveValueOrAdd();
            RetrieveAndUpdateOrAdd();  

            Console.WriteLine("Press any key.");
            Console.ReadKey();
        }

        // This method shows how to add key-value pairs to the dictionary
        // in scenarios where the key might already exist.
        private static void AddOrUpdateWithoutRetrieving()
        {
            // Sometime later. We receive new data from some source.
            CityInfo ci = new CityInfo() { Name = "Toronto",
                                            Latitude = 43.716589M,
                                            Longitude = -79.340686M,
                                            RecentHighTemperatures = new int[] { 54, 59, 67, 82, 87, 55, -14 } };

            // Try to add data. If it doesn't exist, the object ci is added. If it does
            // already exist, update existingVal according to the custom logic in the 
            // delegate.
            cities.AddOrUpdate(ci.Name, ci,
                (key, existingVal) =>
                {
                    // If this delegate is invoked, then the key already exists.
                    // Here we make sure the city really is the same city we already have.
                    // (Support for multiple cities of the same name is left as an exercise for the reader.)
                    if (ci != existingVal)
                        throw new ArgumentException("Duplicate city names are not allowed: {0}.", ci.Name);

                    // The only updatable fields are the temerature array and lastQueryDate.
                    existingVal.lastQueryDate = DateTime.Now;
                    existingVal.RecentHighTemperatures = ci.RecentHighTemperatures;
                    return existingVal;
                });

            // Verify that the dictionary contains the new or updated data.
            Console.Write("Most recent high temperatures for {0} are: ", cities[ci.Name].Name);
            int[] temps = cities[ci.Name].RecentHighTemperatures;
            foreach (var temp in temps) Console.Write("{0}, ", temp);
            Console.WriteLine();
        }

        // This method shows how to use data and ensure that it has been
        // added to the dictionary.
        private static void RetrieveValueOrAdd()
        {
            string searchKey = "Caracas";
            CityInfo retrievedValue = null;

            try
            {
                retrievedValue = cities.GetOrAdd(searchKey, GetDataForCity(searchKey));
            }
            catch (ArgumentException e)
            {
                Console.WriteLine(e.Message);
            }

            // Use the data.
            if (retrievedValue != null)
            {
                Console.Write("Most recent high temperatures for {0} are: ", retrievedValue.Name);
                int[] temps = cities[retrievedValue.Name].RecentHighTemperatures;
                foreach (var temp in temps) Console.Write("{0}, ", temp);
            }
            Console.WriteLine();
        }




        // This method shows how to retrieve a value from the dictionary,
        // when you expect that the key/value pair already exists,
        // and then possibly update the dictionary with a new value for the key.
        private static void RetrieveAndUpdateOrAdd()
        {
            CityInfo retrievedValue;
            string searchKey = "Buenos Aires";

            if (cities.TryGetValue(searchKey, out retrievedValue))
            {
                // use the data
                Console.Write("Most recent high temperatures for {0} are: ", retrievedValue.Name);
                int[] temps = retrievedValue.RecentHighTemperatures;
                foreach (var temp in temps) Console.Write("{0}, ", temp);

                // Make a copy of the data. Our object will update its lastQueryDate automatically.
                CityInfo newValue = new CityInfo(retrievedValue.Name,
                                                retrievedValue.Longitude,
                                                retrievedValue.Latitude,
                                                retrievedValue.RecentHighTemperatures);

                // Replace the old value with the new value.
                if (!cities.TryUpdate(searchKey, retrievedValue, newValue))
                {
                    //The data was not updated. Log error, throw exception, etc.
                    Console.WriteLine("Could not update {0}", retrievedValue.Name);
                }
            }
            else
            {
                // Add the new key and value. Here we call a method to retrieve
                // the data. Another option is to add a default value here and 
                // update with real data later on some other thread.
                CityInfo newValue = GetDataForCity(searchKey);
                if( cities.TryAdd(searchKey, newValue))
                {
                    // use the data
                    Console.Write("Most recent high temperatures for {0} are: ", newValue.Name);
                    int[] temps = newValue.RecentHighTemperatures;
                    foreach (var temp in temps) Console.Write("{0}, ", temp);
                }
                else
                    Console.WriteLine("Unable to add data for {0}", searchKey);
            }
        }

        //Assume this method knows how to find long/lat/temp info for any specified city.
        static CityInfo GetDataForCity(string name)
        {
            // Real implementation left as exercise for the reader.
            if (String.CompareOrdinal(name, "Caracas") == 0)
                return new CityInfo() { Name = "Caracas", 
                                        Longitude = 10.5M, 
                                        Latitude = -66.916667M,
                                        RecentHighTemperatures = new int[] { 91, 89, 91, 91, 87, 90, 91 } };
            else if (String.CompareOrdinal(name, "Buenos Aires") == 0)
                return new CityInfo() { Name = "Buenos Aires", 
                                        Longitude = -34.61M, 
                                        Latitude = -58.369997M, 
                                        RecentHighTemperatures = new int[] { 80, 86, 89, 91, 84, 86, 88 } };
            else
                throw new ArgumentException("Cannot find any data for {0}", name);
        }
    }
}






ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] is designed for multithreaded scenarios. You do not have to use locks in your code to add or remove items from the collection. However, it is always possible for one thread to retrieve a value, and another thread to immediately update the collection by giving the same key a new value.


Also, although all methods of ConcurrentDictionary<TKey, TValue> are thread-safe, not all methods are atomic, specifically GetOrAdd and AddOrUpdate. The user delegate that is passed to these methods is invoked outside of the dictionary’s internal lock. (This is done to prevent unknown code from blocking all threads.) Therefore it is possible for this sequence of events to occur:



		threadA calls GetOrAdd, finds no item and creates a new item to Add by invoking the valueFactory delegate.


		threadB calls GetOrAdd concurrently, its valueFactory delegate is invoked and it arrives at the internal lock before threadA, and so its new key-value pair is added to the dictionary.


		threadA’s user delegate completes, and the thread arrives at the lock, but now sees that the item exists already


		threadA performs a “Get”, and returns the data that was previously added by threadB.





Therefore, it is not guaranteed that the data that is returned by GetOrAdd is the same data that was created by the thread’s valueFactory. A similar sequence of events can occur when AddOrUpdate is called.





See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-building.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Building Expression Trees
description: Building Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 542754a9-7f40-4293-b299-b9f80241902c





Building Expression Trees


Previous – Interpreting Expressions


All the expression trees you’ve seen so far have been created
by the C# compiler. All you had to do was create a lambda expression
that was assigned to a variable typed as an Expression<Func<T>> or
some similar type. That’s not the only way to create an expression
tree. For many scenarios you may find that you need to build an
expression in memory at runtime.


Building Expression Trees is complicated by the fact that those
expression trees are immutable. Being immutable means that you must
build the tree from the leaves up to the root. The APIs you’ll use to
build expression trees reflect this fact: The methods you’ll use to
build a node take all its children as arguments. Let’s walk through
a few examples to show you the techniques.



Creating Nodes


Let’s start relatively simply again. We’ll use the addition
expression I’ve been working with throughout these sections:


Expression<Func<int>> sum = () => 1 + 2;






To construct that expression tree, you must construct the leaf nodes.
The leaf nodes are constants, so you can use the Expression.Constant
method to create the nodes:


var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));






Next, you’ll build the addition expression:


var addition = Expression.Add(one, two);






Once you’ve got the addition expression, you can create the lambda
expression:


var lamdba = Expression.Lambda(addition);






This is a very simple LambdaExpression, because it contains no arguments.
Later in this section, you’ll see how to map arguments to parameters
and build more complicated expressions.


For expressions that are as simple as this one, you may combine all the
calls into a single statement:


var lambda = Expression.Lambda(
    Expression.Add(
        Expression.Constant(1, typeof(int)),
        Expression.Constant(2, typeof(int))
    )
);









Building a Tree


That’s the basics of building an expression tree in memory. More
complex trees generally mean more node types, and more nodes in the
tree. Let’s run through one more example and show two more node types
that you will typically build when you create expression trees:
the argument nodes, and method call nodes.


Let’s build an expression tree to create this expression:


Expression<Func<double, double, double>> distanceCalc =
    (x, y) => Math.Sqrt(x * x + y * y);






You’ll start by creating parameter expressions for x and y:


var xParameter = Expression.Parameter(typeof(double), "x");
var yParameter = Expression.Parameter(typeof(double), "y");






Creating the multiplication and addition expressions follows the pattern
you’ve already seen:


var xSquared = Expression.Multiply(xParameter, xParameter);
var ySquared = Expression.Multiply(yParameter, yParameter);
var sum = Expression.Add(xSquared, ySquared);






Next, you need to create a method call expression for the call to
Math.Sqrt.


var sqrtMethod = typeof(Math).GetMethod("Sqrt", new[] { typeof(double) });
var distance = Expression.Call(sqrtMethod, sum);






And  then finally, you put the method call into a lambda expression,
and make sure to define the arguments to the lambda expression:


var distanceLambda = Expression.Lambda(
    distance,
    xParameter,
    yParameter);






In this more complicated example, you see a couple more techniques that
you will often need to create expression trees.


First, you need to create the objects that represent parameters or
local variables before you use them. Once you’ve created those objects,
you can use them in your expression tree wherever you need.


Second, you need to use a subset of the Reflection APIs to create a MethodInfo object
so that you can create an expression tree to access that method. You must limit
yourself to the subset of the Reflection APIs that are available on the .NET Core platform. Again,
these techniques will extend to other expression trees.





Building Code In Depth


You aren’t limited in what you can build using these APIs. However, the more
complicated expression tree that you want to build, the more difficult
the code is to manage and to read.


Let’s build an expression tree that is the equivalent of this code:


Func<int, int> factorialFunc = (n) =>
{
    var res = 1;
    while (n > 1)
    {
        res = res * n;
        n--;
    }
    return res;
};






Notice above that I did not build the expression tree, but simply the delegate. Using
the Expression class, you can’t build statement lambdas. Here’s the code that is required
to build the same functionality. It’s complicated by the fact that there isn’t an API to build
a while loop, instead you need to build a loop that contains a conditional test, and a label
target to break out of the loop.


var nArgument = Expression.Parameter(typeof(int), "n");
var result = Expression.Variable(typeof(int), "result");

// Creating a label that represents the return value
LabelTarget label = Expression.Label(typeof(int));

var initializeResult = Expression.Assign(result, Expression.Constant(1));

// This is the inner block that performs the multiplication,
// and decrements the value of 'n'
var block = Expression.Block(
    Expression.Assign(result,
        Expression.Multiply(result, nArgument)),
    Expression.PostDecrementAssign(nArgument)
);

// Creating a method body.
BlockExpression body = Expression.Block(
    new[] { result },
    initializeResult,
    Expression.Loop(
        Expression.IfThenElse(
            Expression.GreaterThan(nArgument, Expression.Constant(1)),
            block,
            Expression.Break(label, result)
        ),
        label
    )
);






The code to build the expression tree for the factorial function is quite a bit longer,
more complicated, and it’s riddled with labels and break statements and other elements
we’d like to avoid in our everyday coding tasks.


For this section, I’ve also updated the visitor code to visit every node in this expression
tree and write out information about the nodes that are created in this sample. You can see
the code in the samples section [https://github.com/dotnet/core-docs/tree/master/samples/csharp/expression-trees].
You can experiment for yourself: build it and run the samples.





Examining the APIs


The expression tree APIs are some of the more difficult to navigate in
.NET Core, but that’s fine. Their purpose is a rather complex undertaking: writing code that generates
code at runtime. They are necessarily complicated to provide a balance between supporting
all the control structures available in the C# language and keeping the surface area
of the APIs as small as reasonable. This balance means that many control structures are
represented not by their C# constructs, but by constructs that represent the underlying
logic that the compiler generates from these higher level constructs.


Also, at this time, there are C# expressions that cannot be built directly
using Expression class methods. In general, these will be the newest operators
and expressions added in C# 5 and C# 6. (For example, async expressions cannot be built, and
the new ?. operator cannot be directly created.)


Next – Translating Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/converting-between-time-zones.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Converting times between time zones
description: Converting times between time zones
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bf8f74e6-e7f2-4c2a-a04c-57db0e28dd36





Converting times between time zones


It is becoming increasingly important for any application that works with dates and times to handle differences between time zones. An application can no longer assume that all times can be expressed in the local time, which is the time available from the System.DateTime structure. For example, a Web page that displays the current time in the eastern part of the United States will lack credibility to a customer in eastern Asia. This topic explains how to convert times from one time zone to another, as well as how to convert System.DateTimeOffset values that have limited time zone awareness.



Converting to Coordinated Universal Time


Coordinated Universal Time (UTC) is a high-precision, atomic time standard. The world’s time zones are expressed as positive or negative offsets from UTC. Thus, UTC provides a kind of time-zone free or time-zone neutral time. The use of UTC time is recommended when a date and time’s portability across computers is important. Converting individual time zones to UTC makes time comparisons easy.



[!NOTE]
You can also serialize a DateTimeOffset structure to unambiguously represent a single point in time. Because DateTimeOffset objects store a date and time value along with its offset from UTC, they always represent a particular point in time in relationship to UTC.



The easiest way to convert a time to UTC is to call the static (Shared in Visual Basic) TimeZoneInfo.ConvertTimeToUtc(DateTime) [https://msdn.microsoft.com/en-us/library/bb381744(v=vs.110).aspx] method.



[!IMPORTANT]
The `TimeZoneInfo.ConvertTimeToUtc(DateTime)’ method isn’t currently available in .NET Core.



The exact conversion performed by the method depends on the value of the DateTime parameter’s Kind property, as the following table shows.


DateTime.Kind property | Conversion
———————————————————————————————- | ———-
DateTimeKind.Local | Converts local time to UTC.
DateTimeKind.Unspecified | Assumes the DateTime parameter is local time and converts local time to UTC.
DateTimeKind.Utc | Returns the DateTime parameter unchanged.


The following code converts the current local time to UTC and displays the result to the console.


DateTime dateNow = DateTime.Now;
Console.WriteLine("The date and time are {0} UTC.", 
                   TimeZoneInfo.ConvertTimeToUtc(dateNow));






Dim dateNow As Date = Date.Now      
Console.WriteLine("The date and time are {0} UTC.", _
                  TimeZoneInfo.ConvertTimeToUtc(dateNow))







[!NOTE]
The TimeZoneInfo.ConvertTimeToUtc(DateTime) [https://msdn.microsoft.com/en-us/library/bb381744(v=vs.110).aspx] method does not necessarily produce results that are identical to the TimeZone.ToUniversalTime [https://msdn.microsoft.com/en-us/library/System.TimeZone.ToUniversalTime(v=vs.110).aspx] and DateTime.ToUniversalTime methods. If the host system’s local time zone includes multiple adjustment rules, TimeZoneInfo.ConvertTimeToUtc(DateTime) [https://msdn.microsoft.com/en-us/library/System.TimeZone.ConvertTimeToUtc(v=vs.110).aspx] applies the appropriate rule to a particular date and time. The other two methods always apply the latest adjustment rule.



If the date and time value does not represent either the local time or UTC, the ToUniversalTime [https://msdn.microsoft.com/en-us/library/System.TimeZone.ToUniversalTime(v=vs.110).aspx] method will likely return an erroneous result. However, you can use the TimeZoneInfo.ConvertTimeToUtc [https://msdn.microsoft.com/en-us/library/bb381744(v=vs.110).aspx] method to convert the date and time from a specified time zone. (For details on retrieving a TimeZoneInfo object that represents the destination time zone, see Finding the Time Zones Defined on a Local System. The following code uses the TimeZoneInfo.ConvertTimeToUtc [https://msdn.microsoft.com/en-us/library/bb381744(v=vs.110).aspx] method to convert Eastern Standard Time to UTC.


DateTime easternTime = new DateTime(2007, 01, 02, 12, 16, 00);
string easternZoneId = "Eastern Standard Time";
try
{
   TimeZoneInfo easternZone = TimeZoneInfo.FindSystemTimeZoneById(easternZoneId);
   Console.WriteLine("The date and time are {0} UTC.", 
                     TimeZoneInfo.ConvertTimeToUtc(easternTime, easternZone));
}
catch (TimeZoneNotFoundException)
{
   Console.WriteLine("Unable to find the {0} zone in the registry.", 
                     easternZoneId);
}                           
catch (InvalidTimeZoneException)
{
   Console.WriteLine("Registry data on the {0} zone has been corrupted.", 
                     easternZoneId);
}






Dim easternTime As New Date(2007, 01, 02, 12, 16, 00)
Dim easternZoneId As String = "Eastern Standard Time"
Try
   Dim easternZone As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById(easternZoneId)
   Console.WriteLine("The date and time are {0} UTC.", _ 
                     TimeZoneInfo.ConvertTimeToUtc(easternTime, easternZone))
Catch e As TimeZoneNotFoundException
   Console.WriteLine("Unable to find the {0} zone in the registry.", _
                     easternZoneId)
Catch e As InvalidTimeZoneException
   Console.WriteLine("Registry data on the {0} zone has been corrupted.", _ 
                     easternZoneId)
End Try    






Note that this method throws an ArgumentException if the DateTime object’s Kind property and the time zone are mismatched. A mismatch occurs if the Kind property is DateTimeKind.Local but the TimeZoneInfo object does not represent the local time zone, or if the Kind property is DateTimeKind.Utc but the TimeZoneInfo object does not equal DateTimeKind.Utc.


All of these methods take DateTime values as parameters and return a DateTime value. For DateTimeOffset values, the DateTimeOffset structure has a ToUniversalTime instance method that converts the date and time of the current instance to UTC. The following example calls the ToUniversalTime method to convert a local time and several other times to Coordinated Universal Time (UTC).


DateTimeOffset localTime, otherTime, universalTime;

// Define local time in local time zone
localTime = new DateTimeOffset(new DateTime(2007, 6, 15, 12, 0, 0));
Console.WriteLine("Local time: {0}", localTime);
Console.WriteLine();

// Convert local time to offset 0 and assign to otherTime
otherTime = localTime.ToOffset(TimeSpan.Zero);
Console.WriteLine("Other time: {0}", otherTime);
Console.WriteLine("{0} = {1}: {2}", 
                  localTime, otherTime, 
                  localTime.Equals(otherTime));
Console.WriteLine("{0} exactly equals {1}: {2}", 
                  localTime, otherTime, 
                  localTime.EqualsExact(otherTime));
Console.WriteLine();

// Convert other time to UTC
universalTime = localTime.ToUniversalTime(); 
Console.WriteLine("Universal time: {0}", universalTime);
Console.WriteLine("{0} = {1}: {2}", 
                  otherTime, universalTime, 
                  universalTime.Equals(otherTime));
Console.WriteLine("{0} exactly equals {1}: {2}", 
                  otherTime, universalTime, 
                  universalTime.EqualsExact(otherTime));
Console.WriteLine();
// The example produces the following output to the console:
//    Local time: 6/15/2007 12:00:00 PM -07:00
//    
//    Other time: 6/15/2007 7:00:00 PM +00:00
//    6/15/2007 12:00:00 PM -07:00 = 6/15/2007 7:00:00 PM +00:00: True
//    6/15/2007 12:00:00 PM -07:00 exactly equals 6/15/2007 7:00:00 PM +00:00: False
//    
//    Universal time: 6/15/2007 7:00:00 PM +00:00
//    6/15/2007 7:00:00 PM +00:00 = 6/15/2007 7:00:00 PM +00:00: True
//    6/15/2007 7:00:00 PM +00:00 exactly equals 6/15/2007 7:00:00 PM +00:00: True 






Dim localTime, otherTime, universalTime As DateTimeOffset

' Define local time in local time zone
localTime = New DateTimeOffset(#6/15/2007 12:00:00PM#)
Console.WriteLine("Local time: {0}", localTime)
Console.WriteLine()

' Convert local time to offset 0 and assign to otherTime
otherTime = localTime.ToOffset(TimeSpan.Zero)
Console.WriteLine("Other time: {0}", otherTime)
Console.WriteLine("{0} = {1}: {2}", _
                  localTime, otherTime, _
                  localTime.Equals(otherTime))
Console.WriteLine("{0} exactly equals {1}: {2}", _ 
                  localTime, otherTime, _
                  localTime.EqualsExact(otherTime))
Console.WriteLine()

' Convert other time to UTC
universalTime = localTime.ToUniversalTime() 
Console.WriteLine("Universal time: {0}", universalTime)
Console.WriteLine("{0} = {1}: {2}", _
                  otherTime, universalTime, _ 
                  universalTime.Equals(otherTime))
Console.WriteLine("{0} exactly equals {1}: {2}", _ 
                  otherTime, universalTime, _
                  universalTime.EqualsExact(otherTime))
Console.WriteLine()
' The example produces the following output to the console:
'    Local time: 6/15/2007 12:00:00 PM -07:00
'    
'    Other time: 6/15/2007 7:00:00 PM +00:00
'    6/15/2007 12:00:00 PM -07:00 = 6/15/2007 7:00:00 PM +00:00: True
'    6/15/2007 12:00:00 PM -07:00 exactly equals 6/15/2007 7:00:00 PM +00:00: False
'    
'    Universal time: 6/15/2007 7:00:00 PM +00:00
'    6/15/2007 7:00:00 PM +00:00 = 6/15/2007 7:00:00 PM +00:00: True
'    6/15/2007 7:00:00 PM +00:00 exactly equals 6/15/2007 7:00:00 PM +00:00: True 









Converting UTC to a Designated Time Zone


To convert UTC to local time, see the Converting UTC to Local Time section that follows.


To convert UTC to the time in any time zone that you designate, call the ConvertTimeFromUtc [https://msdn.microsoft.com/en-us/library/System.TimeZoneInfo.converttimefromutc(v=vs.110).aspx] method.



[!IMPORTANT]
The `TimeZoneInfo.ConvertTimeFromUtc’ method isn’t currently available in .NET Core.



The method takes two parameters:



		The UTC to convert. This must be a DateTime value whose Kind property is set to DateTimeKind.Utc or DateTimeKind.Unspecified.


		The time zone to convert the UTC to.





The following code converts UTC to Central Standard Time.


DateTime timeUtc = DateTime.UtcNow;
try
{
   TimeZoneInfo cstZone = TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time");
   DateTime cstTime = TimeZoneInfo.ConvertTimeFromUtc(timeUtc, cstZone);
   Console.WriteLine("The date and time are {0} {1}.", 
                     cstTime, 
                     cstZone.IsDaylightSavingTime(cstTime) ?
                             cstZone.DaylightName : cstZone.StandardName);
}
catch (TimeZoneNotFoundException)
{
   Console.WriteLine("The registry does not define the Central Standard Time zone.");
}                           
catch (InvalidTimeZoneException)
{
   Console.WriteLine("Registry data on the Central Standard Time zone has been corrupted.");
}






Dim timeUtc As Date = Date.UtcNow
Try
   Dim cstZone As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById("Central Standard Time")
   Dim cstTime As Date = TimeZoneInfo.ConvertTimeFromUtc(timeUtc, cstZone)
   Console.WriteLine("The date and time are {0} {1}.", _
                     cstTime, _
                     IIf(cstZone.IsDaylightSavingTime(cstTime), _
                         cstZone.DaylightName, cstZone.StandardName))
Catch e As TimeZoneNotFoundException
   Console.WriteLine("The registry does not define the Central Standard Time zone.")
Catch e As InvalidTimeZoneException
   Console.WriteLine("Registry data on the Central Standard Time zone has been corrupted.")
End Try









Converting UTC to Local Time


To convert UTC to local time, call the DateTime.ToLocalTime method of the DateTime object whose time you want to convert. The exact behavior of the method depends on the value of the object’s Kind property, as the following table shows.


DateTime.Kind property | Conversion
———————————————————————————————- | ———-
DateTimeKind.Local | Returns the DateTime value unchanged.
DateTimeKind.Unspecified | Assumes that the DateTime value is UTC and converts the UTC to local time.
DateTimeKind.Utc | Converts the DateTime value to local time.





Converting Between Any Two Time Zones


You can convert between any two time zones by using the static TimeZoneInfo.ConvertTime method. This method’s parameters are the DateTime value to convert, a TimeZoneInfo object that represents the time zone of the date and time value, and a TimeZoneInfo object that represents the time zone to convert the date and time value to.


The method requires that the Kind property of the date and time value to convert and the TimeZoneInfo object or time zone identifier that represents its time zone correspond to one another. Otherwise, an ArgumentException is thrown. For example, if the Kind property of the date and time value is DateTimeKind.Local, an exception is thrown if the TimeZoneInfo object passed as a parameter to the method is not equal to TimeZoneInfo.Local. An exception is also thrown if the identifier passed as a parameter to the method is not equal to TimeZoneInfo.Id.


The following example uses the ConvertTime method to convert from Hawaiian Standard Time to local time.


DateTime hwTime = new DateTime(2007, 02, 01, 08, 00, 00);
try
{
   TimeZoneInfo hwZone = TimeZoneInfo.FindSystemTimeZoneById("Hawaiian Standard Time");
   Console.WriteLine("{0} {1} is {2} local time.", 
           hwTime, 
           hwZone.IsDaylightSavingTime(hwTime) ? hwZone.DaylightName : hwZone.StandardName, 
           TimeZoneInfo.ConvertTime(hwTime, hwZone, TimeZoneInfo.Local));
}
catch (TimeZoneNotFoundException)
{
   Console.WriteLine("The registry does not define the Hawaiian Standard Time zone.");
}                           
catch (InvalidTimeZoneException)
{
   Console.WriteLine("Registry data on the Hawaiian STandard Time zone has been corrupted.");
}






Dim hwTime As Date = #2/01/2007 8:00:00 AM#
Try
   Dim hwZone As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById("Hawaiian Standard Time")
   Console.WriteLine("{0} {1} is {2} local time.", _
                     hwTime, _
                     IIf(hwZone.IsDaylightSavingTime(hwTime), hwZone.DaylightName, hwZone.StandardName), _
                     TimeZoneInfo.ConvertTime(hwTime, hwZone, TimeZoneInfo.Local))
Catch e As TimeZoneNotFoundException
   Console.WriteLine("The registry does not define the Hawaiian Standard Time zone.")
Catch e As InvalidTimeZoneException
   Console.WriteLine("Registry data on the Hawaiian Standard Time zone has been corrupted.")
End Try









Converting DateTimeOffset Values


Date and time values represented by System.DateTimeOffset objects are not fully time-zone aware because the object is disassociated from its time zone at the time it is instantiated. However, in many cases an application simply needs to convert a date and time based on two different offsets from UTC rather than on the time in particular time zones. To perform this conversion, you can call the current instance’s ToOffset method. The method’s single parameter is TimeSpan representing the offset of the new date and time value that the method is to return.


For example, if the date and time of a user request for a Web page is known and is serialized as a string in the format MM/dd/yyyy hh:mm:ss zzzz, the following ReturnTimeOnServer method converts this date and time value to the date and time on the Web server.


public DateTimeOffset ReturnTimeOnServer(string clientString)
{
   string format = @"M/d/yyyy H:m:s zzz";
   TimeSpan serverOffset = TimeZoneInfo.Local.GetUtcOffset(DateTimeOffset.Now);

   try
   {      
      DateTimeOffset clientTime = DateTimeOffset.ParseExact(clientString, format, CultureInfo.InvariantCulture);
      DateTimeOffset serverTime = clientTime.ToOffset(serverOffset);
      return serverTime;
   }
   catch (FormatException)
   {
      return DateTimeOffset.MinValue;
   }
}






Public Function ReturnTimeOnServer(clientString As String) As DateTimeOffset
   Dim format As String = "M/d/yyyy H:m:s zzz"
   Dim serverOffset As TimeSpan = TimeZoneInfo.Local.GetUtcOffset(DateTimeOffset.Now)

   Try      
      Dim clientTime As DateTimeOffset = DateTimeOffset.ParseExact(clientString, format, CultureInfo.InvariantCulture)
      Dim serverTime As DateTimeOffset = clientTime.ToOffset(serverOffset)
      Return serverTime
   Catch e As FormatException
      Return DateTimeOffset.MinValue
   End Try    
End Function






If the method is passed the string “9/1/2007 5:32:07 -05:00”, which represents the date and time in a time zone five hours earlier than UTC, it returns 9/1/2007 3:32:07 AM -07:00 for a server located in the U.S. Pacific Standard Time zone.


The TimeZoneInfo class also includes an overloaded TimeZoneInfo.ConvertTime(DateTimeOffset, TimeZoneInfo) method that performs time zone conversions with System.DateTimeOffset values. The method’s parameters are a System.DateTimeOffset value and a reference to the time zone to which the time is to be converted. The method call returns a System.DateTimeOffset value. For example, the ReturnTimeOnServer method in the previous example could be rewritten as follows to call the ConvertTime(DateTimeOffset, TimeZoneInfo) method.


public DateTimeOffset ReturnTimeOnServer(string clientString)
{
   string format = @"M/d/yyyy H:m:s zzz";

   try
   {      
      DateTimeOffset clientTime = DateTimeOffset.ParseExact(clientString, format, 
                                  CultureInfo.InvariantCulture);
      DateTimeOffset serverTime = TimeZoneInfo.ConvertTime(clientTime, 
                                  TimeZoneInfo.Local);
      return serverTime;
   }
   catch (FormatException)
   {
      return DateTimeOffset.MinValue;
   }
}






Public Function ReturnTimeOnServer(clientString As String) As DateTimeOffset
   Dim format As String = "M/d/yyyy H:m:s zzz"

   Try      
      Dim clientTime As DateTimeOffset = DateTimeOffset.ParseExact(clientString, format, CultureInfo.InvariantCulture)
      Dim serverTime As DateTimeOffset = TimeZoneInfo.ConvertTime(clientTime, TimeZoneInfo.Local)
      Return serverTime
   Catch e As FormatException
      Return DateTimeOffset.MinValue
   End Try    
End Function









See Also


TimeZoneInfo


Dates, times, and time zones


Finding the time zones defined on a local system








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/delegates-overview.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Introduction to Delegates
description: Introduction to Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 59b61d77-84e5-457b-8da5-fb5f24ca6ed6





Introduction to Delegates


Previous


Delegates provide a late binding mechanism in .NET. Late Binding
means that you create an algorithm where the caller also supplies
at least one method that implements part of the algorithm.


For example, consider sorting a list of stars in an astronomy application.
You may choose to sort those stars by their distance from the earth, or the
magnitude of the star, or their perceived brightness.


In all those cases, the Sort() method does essentially the same thing:
arranges the items in the list based on some comparison. The code that
compares two stars is different for each of the sort orderings.


These kinds of solutions have been used in software for half a century.
The C# language delegate concept provides first class language support,
and type safety around the concept.


As you’ll see later in this series, the C# code you write for algorithms
like this is type safe, and leverages the language and the compiler to
ensure that the types match for arguments and return types.



Language Design Goals for Delegates


The language designers enumerated several goals for the feature that
eventually became delegates.


The team wanted a common language construct that could be used for
any late binding algorithms. That enables developers to learn one
concept, and use that same concept across many different software
problems.


Second, the team wanted to support both single and multi-cast method
calls. (Multicast delegates are delegates where multiple methods have
been chained together. You’ll see examples
later in this series.


The team wanted delegates to support the same type safety that developers
expect from all C# constructs.


Finally, the team recognized that an event pattern is one specific pattern
where delegates, or any late binding algorithm) is very useful. The team
wanted to ensure that the code for delegates could provide the basis for
the .NET event pattern.


The result of all that work was the delegate and event support in C# and
.NET. The remaining articles in this section will cover the language
features, the library support, and the common idioms that are used
when you work with delegates.


You’ll learn about the delegate keyword and what code it generates. You’ll
learn about the features in the System.Delegate class, and how those features
are used. You’ll learn how to create type safe delegates, and how to create methods
that can be invoked through delegates. You’ll also learn how to work with delegates
and events by using Lambda expressions. You’ll see where delegates become one of the
building blocks for LINQ. You’ll learn how delegates are the basis for the .NET
event pattern, and how they are different.


Overall, you’ll see how delegates are an integral part of programming in .NET
and working with the framework APIs.


Let’s get started.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/finding-the-time-zones-on-local-system.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Finding the time zones defined on a local system
description: Finding the time zones defined on a local system
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3a6ee323-f3cf-486d-aa0c-103931f1eba9





Finding the time zones defined on a local system


The System.TimeZoneInfo class does not expose a public constructor. As a result, the new keyword cannot be used to create a new TimeZoneInfo object. Instead, TimeZoneInfo objects are instantiated by retrieving information on predefined time zones from the operating system. This topic discusses instantiating a time zone from data stored by the operating system. In addition, static (Shared in Visual Basic) properties of the TimeZoneInfo class provide access to Coordinated Universal Time (UTC) and the local time zone.



Accessing Individual Time Zones


The TimeZoneInfo class provides two predefined time zone objects that represent the UTC time and the local time zone. They are available from the TimeZoneInfo.Utc and TimeZoneInfo.Local properties, respectively. For instructions on accessing the UTC or local time zones, see How to: access the predefined UTC and local time zone objects.


You can also instantiate a TimeZoneInfo object that represents any time zone defined by the operating system. For instructions on instantiating a specific time zone object, see How to: instantiate a TimeZoneInfo object.





Time Zone Identifiers


The time zone identifier is a key field that uniquely identifies the time zone. While most keys are relatively short, the time zone identifier is comparatively long. In most cases, its value corresponds to the TimeZoneInfo.StandardName property, which is used to provide the name of the time zone’s standard time. However, there are exceptions. The best way to make sure that you supply a valid identifier is to enumerate the time zones available on your system and note their associated identifiers. For instructions on enumerating time zones, see How to: enumerate time zones present on a computer.





See Also


Dates, times, and time zones


How to: access the predefined UTC and local time zone objects


How to: instantiate a TimeZoneInfo object


How to: enumerate time zones present on a computer


Converting times between time zones








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/delegate-class.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: System.Delegate and the delegate keyword
description: System.Delegate and the delegate keyword
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f3742fda-13c2-4283-8966-9e21c2674393





System.Delegate and the delegate keyword


Previous


This article will cover the classes in the .NET framework
that support delegates, and how those map to the delegate
keyword.



Defining Delegate Types


Let’s start with the ‘delegate’ keyword, because that’s primarily what
you will use as you work with delegates. The code that the
compiler generates when you use the delegate keyword will
map to method calls that invoke members of the @System.Delegate
and @System.MulticastDelegate classes.


You define a delegate type using syntax that is similar to defining
a method signature. You just add the delegate keyword to the
definition.


Let’s continue to use the List.Sort() method as our example. The first
step is to create a type for the comparison delegate:


// From the .NET Core library

// Define the delegate type:
public delegate int Comparison<in T>(T left, T right);






The compiler generates a class, derived from System.Delegate
that matches the signature used (in this case, a method that
returns an integer, and has two arguments). The type
of that delegate is Comparison. The Comparison delegate
type is a generic type. For details on generics see here.


Notice that the syntax may appear as though it is declaring
a variable, but it is actually declaring a type. You can
define delegate types inside classes, directly inside namespaces,
or even in the global namespace.



[!NOTE]
Declaring delegate types (or other types) directly in
the global namespace is not recommended.



The compiler also generates add and remove handlers for this new
type so that clients of this class can add and remove methods from an instance’s
invocation list. The compiler will enforce that the signature
of the method being added or removed matches the signature
used when declaring the method.





Declaring instances of delegates


After defining the delegate, you can create an instance of that type.
Like all variables in C#, you cannot declare delegate instances directly
in a namespace, or in the global namespace.


// inside a class definition:

// Declare an instance of that type:
public Comparison<T> comparator;






The type of the variable is Comparison<T>, the delegate type
defined earlier. The name of the variable is comparator.


That code snippet above declared a member variable inside a class. You can also
declare delegate variables that are local variables, or arguments to methods.





Invoking Delegates


You invoke the methods that are in the invocation list of a delegate by calling
that delegate. Inside the Sort() method, the code will call the
comparison method to determine which order to place objects:


int result = comparator(left, right);






In the line above, the code invokes the method attached to the delegate.
You treat the variable as a method name, and invoke it using normal
method call syntax.


That line of code makes an unsafe assumption: There’s no guarantee that
a target has been added to the delegate. If no targets have been attached,
the line above would cause a NullReferenceException to be thrown. The
idioms used to address this problem are more complicated than a simple
null-check, and are covered later in this series.





Assigning, Adding and removing Invocation Targets


That’s how a delegate type is defined, and how delegate instances
are declared and invoked.


Developers that want to use the List.Sort() method need to define
a method whose signature matches the delegate type definition, and
assign it to the delegate used by the sort method. This assignment
adds the method to the invocation list of that delegate object.


Suppose you wanted to sort a list of strings by their length. Your
comparison function might be the following:


private static int CompareLength(string left, string right)
{
    return left.Length.CompareTo(right.Length);
}






The method is declared as a private method. That’s fine. You may not
want this method to be part of your public interface. It can still
be used as the comparison method when attached to a delegate. The
calling code will have this method attached to the target list of
the delegate object, and can access it through that delegate.


You create that relationship by passing that method to the
List.Sort() method:


phrases.Sort(CompareLength);






Notice that the method name is used, without parentheses. Using the method
as an argument tells the compiler to convert the method reference into a reference
that can be used as a delegate invocation target, and attach that method as
an invocation target.


You could also have been explicit by declaring a variable of type
‘Comparison` and doing an assignment:


Comparison<string> comparer = CompareLength;
phrases.Sort(comparer);






In uses where the method being used as a delegate target is a small method,
it’s common to use Lambda Expression syntax
to perform the assignment:


Comparison<string> comparer = (left, right) => left.Length.CompareTo(right.Length);
phrases.Sort(comparer);






Using Lambda Expressions for delegate targets
is covered more in a later section.


The Sort() example typically attaches a single target method to the
delegate. However, delegate objects do support invocation lists that
have multiple target methods attached to a delegate object.





Delegate and MulticastDelegate classes


The language support described above provides the features
and support you’ll typically need to work with delegates. These
features are built on two classes in the .NET Core
framework: @System.Delegate and @”System.MulticastDelegate”.


The System.Delegate class, and its single direct sub-class,
System.MulticastDelegate, provide the framework support for
creating delegates, registering methods as delegate targets,
and invoking all methods that are registered as a delegate
target.


Interestingly, the System.Delegate and System.MulticastDelegate
classes are not themselves delegate types. They do provide the
basis for all specific delegate types. That same language
design process mandated that you cannot declare a class that derives
from Delegate or MulticastDelegate. The C# language rules prohibit it.


Instead, the C# compiler creates instances of a class derived from MulticastDelegate
when you use the C# language keyword to declare delegate types.


This design has its roots in the first release of C# and .NET. One
goal for the design team was to ensure that the language enforced
type safety when using delegates. That meant ensuring that delegates
were invoked with the right type and number of arguments. And, that
any return type was correctly indicated at compile time. Delegates
were part of the 1.0 .NET release, which was before generics.


The best way to enforce this type safety was for the compiler to
create the concrete delegate classes that represented the
method signature being used.


Even though you cannot create derived classes directly, you will
use the methods defined on these classes. Let’s go through
the most common methods that you will use when you work with delegates.


The first, most important fact to remember is that every delegate you
work with is derived from MulticastDelegate. A multicast delegate means
that more than one method target can be invoked when invoking through
a delegate. The original design considered making a distinction between
delegates where only one target method could be attached and invoked,
and delegates where multiple target methods could be attached and
invoked. That distinction proved to be less useful in practice than
originally thought. The two different classes were already created,
and have been in the framework since its initial public release.


The methods that you will use the most with delegates are Invoke() and
BeginInvoke() / EndInvoke(). Invoke() will invoke all the methods that
have been attached to a particular delegate instance. As you saw above, you
typically invoke delegates using the method call syntax on the delegate
variable. As you’ll see later in this series,
there are patterns that work directly with these methods.


Now that you’ve seen the language syntax and the classes that support
delegates, let’s examine how strongly typed delegates are used, created
and invoked.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/performing-arithmetic-operations.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Performing arithmetic operations with dates and times
description: Performing arithmetic operations with dates and times
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 589ac5ec-8365-4a0d-bc38-72183718110c





Performing arithmetic operations with dates and times


Although both the System.DateTime and the System.DateTimeOffset structures provide members that perform arithmetic operations on their values, the results of arithmetic operations are very different. This article examines those differences, relates them to degrees of time zone awareness in date and time data, and discusses how to perform fully time zone aware operations using date and time data.



Comparisons and Arithmetic Operations with DateTime Values


System.DateTime values possess a limited degree of time zone awareness. The DateTime.Kind property allows a System.DateTimeKind value to be assigned to the date and time to indicate whether it represents local time, Coordinated Universal Time (UTC), or the time in an unspecified time zone. However, this limited time zone information is ignored when comparing or performing date and time arithmetic on DateTime values. The following example, which compares the current local time with the current UTC time, illustrates this.


using System;

public enum TimeComparison
{
   EarlierThan = -1,
   TheSameAs = 0,
   LaterThan = 1
}

public class DateManipulation
{
   public static void Main()
   {
      DateTime localTime = DateTime.Now;
      DateTime utcTime = DateTime.UtcNow;

      Console.WriteLine("Difference between {0} and {1} time: {2}:{3} hours", 
                        localTime.Kind.ToString(), 
                        utcTime.Kind.ToString(), 
                        (localTime - utcTime).Hours, 
                        (localTime - utcTime).Minutes);
      Console.WriteLine("The {0} time is {1} the {2} time.", 
                        localTime.Kind.ToString(), 
                        Enum.GetName(typeof(TimeComparison), localTime.CompareTo(utcTime)), 
                        utcTime.Kind.ToString());  
   }
}
// If run in the U.S. Pacific Standard Time zone, the example displays 
// the following output to the console:
//    Difference between Local and Utc time: -7:0 hours
//    The Local time is EarlierThan the Utc time.






Public Enum TimeComparison As Integer
   EarlierThan = -1
   TheSameAs = 0
   LaterThan = 1
End Enum

Module DateManipulation
   Public Sub Main()
      Dim localTime As Date = Date.Now
      Dim utcTime As Date = Date.UtcNow

      Console.WriteLine("Difference between {0} and {1} time: {2}:{3} hours", _
                        localTime.Kind.ToString(), _
                        utcTime.Kind.ToString(), _
                        (localTime - utcTime).Hours, _
                        (localTime - utcTime).Minutes)
      Console.WriteLine("The {0} time is {1} the {2} time.", _
                        localTime.Kind.ToString(), _ 
                        [Enum].GetName(GetType(TimeComparison), localTime.CompareTo(utcTime)), _
                        utcTime.Kind.ToString())  
      ' If run in the U.S. Pacific Standard Time zone, the example displays 
      ' the following output to the console:
      '    Difference between Local and Utc time: -7:0 hours
      '    The Local time is EarlierThan the Utc time.                                                    
   End Sub
End Module






The DateTime.CompareTo(DateTime, DateTime) method reports that the local time is earlier than (or less than) the UTC time, and the subtraction operation indicates that the difference between UTC and the local time for a system in the U.S. Pacific Standard Time zone is seven hours. But because these two values provide different representations of a single point in time, it is clear in this case that this time interval is completely attributable to the local time zone’s offset from UTC.


More generally, the DateTimeKind property does not affect the results returned by DateTime comparison and arithmetic methods (as the comparison of two identical points in time indicates), although it can affect the interpretation of those results. For example:



		The result of any arithmetic operation performed on two date and time values whose DateTimeKind properties both equal DateTimeKind.Utc reflects the actual time interval between the two values. Similarly, the comparison of two such date and time values accurately reflects the relationship between times.


		The result of any arithmetic or comparison operation performed on two date and time values whose DateTimeKind properties both equal DateTimeKind.Local or on two date and time values with different DateTimeKind property values reflects the difference in clock time between the two values.


		Arithmetic or comparison operations on local date and time values do not consider whether a particular value is ambiguous or invalid, nor do they take account of the effect of any adjustment rules that result from the local time zone’s transition to or from daylight saving time.


		Any operation that compares or calculates the difference between UTC and a local time includes a time interval equal to the local time zone’s offset from UTC in the result.


		Any operation that compares or calculates the difference between an unspecified time and either UTC or the local time reflects simple clock time. Time zone differences are not considered, and the result does not reflect the application of time zone adjustment rules.


		Any operation that compares or calculates the difference between two unspecified times may include an unknown interval that reflects the difference between the time in two different time zones.





There are many scenarios in which time zone differences do not affect date and time calculations or in which the context of the date and time data defines the meaning of comparison or arithmetic operations. For a discussion of some of these, see Choosing Between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo.





Comparisons and Arithmetic Operations with DateTimeOffset Values


A System.DateTimeOffset value includes not only a date and time, but also an offset that unambiguously defines that date and time relative to UTC. This makes it possible to define equality somewhat differently than for System.DateTime values. Whereas DateTime values are equal if they have the same date and time value, DateTimeOffset values are equal if they both refer to the same point in time. This makes a DateTimeOffset value more accurate and less in need of interpretation when used in comparisons and in most arithmetic operations that determine the interval between two dates and times. The following example, which is the DateTimeOffset equivalent to the previous example that compared local and UTC DateTime values, illustrates this difference in behavior.


using System;

public enum TimeComparison
{
   EarlierThan = -1,
   TheSameAs = 0,
   LaterThan = 1
}

public class DateTimeOffsetManipulation
{
   public static void Main()
   {
      DateTimeOffset localTime = DateTimeOffset.Now;
      DateTimeOffset utcTime = DateTimeOffset.UtcNow;

      Console.WriteLine("Difference between local time and UTC: {0}:{1:D2} hours", 
                        (localTime - utcTime).Hours, 
                        (localTime - utcTime).Minutes);
      Console.WriteLine("The local time is {0} UTC.", 
                        Enum.GetName(typeof(TimeComparison), localTime.CompareTo(utcTime)));  
   }
}
// Regardless of the local time zone, the example displays 
// the following output to the console:
//    Difference between local time and UTC: 0:00 hours.
//    The local time is TheSameAs UTC.






Public Enum TimeComparison As Integer
   EarlierThan = -1
   TheSameAs = 0
   LaterThan = 1
End Enum

Module DateTimeOffsetManipulation
   Public Sub Main()
      Dim localTime As DateTimeOffset = DateTimeOffset.Now
      Dim utcTime As DateTimeOffset = DateTimeOffset.UtcNow

      Console.WriteLine("Difference between local time and UTC: {0}:{1:D2} hours.", _
                        (localTime - utcTime).Hours, _
                        (localTime - utcTime).Minutes)
      Console.WriteLine("The local time is {0} UTC.", _
                        [Enum].GetName(GetType(TimeComparison), localTime.CompareTo(utcTime)))  
   End Sub
End Module
' Regardless of the local time zone, the example displays 
' the following output to the console:
'    Difference between local time and UTC: 0:00 hours.
'    The local time is TheSameAs UTC.
'          Console.WriteLine(e.GetType().Name)






In this example, the DateTimeOffset.CompareTo method indicates that the current local time and the current UTC time are equal, and subtraction of DateTimeOffset values indicates that the difference between the two times is TimeSpan.Zero.


The chief limitation of using DateTimeOffset values in date and time arithmetic is that although DateTimeOffset values have some time zone awareness, they are not fully time zone aware. Although the DateTimeOffset value’s offset reflects a time zone’s offset from UTC when a DateTimeOffset variable is first assigned a value, it becomes disassociated from the time zone thereafter. Because it is no longer directly associated with an identifiable time, the addition and subtraction of date and time intervals does not consider a time zone’s adjustment rules.


To illustrate, the transition to daylight saving time in the U.S. Central Standard Time zone occurs at 2:00 A.M. on March 9, 2008. This means that adding a two and a half hour interval to a Central Standard time of 1:30 A.M. on March 9, 2008, should produce a date and time of 5:00 A.M. on March 9, 2008. However, as the following example shows, the result of the addition is 4:00 A.M. on March 9, 2008. Note that this result of this operation does represent the correct point in time, although it is not the time in the time zone in which we are interested (that is, it does not have the expected time zone offset).


using System;

public class IntervalArithmetic
{
   public static void Main()
   {
      DateTime generalTime = new DateTime(2008, 3, 9, 1, 30, 0);
      const string tzName = "Central Standard Time";
      TimeSpan twoAndAHalfHours = new TimeSpan(2, 30, 0);

      // Instantiate DateTimeOffset value to have correct CST offset
      try
      {
         DateTimeOffset centralTime1 = new DateTimeOffset(generalTime, 
                    TimeZoneInfo.FindSystemTimeZoneById(tzName).GetUtcOffset(generalTime));

         // Add two and a half hours      
         DateTimeOffset centralTime2 = centralTime1.Add(twoAndAHalfHours);
         // Display result
         Console.WriteLine("{0} + {1} hours = {2}", centralTime1, 
                                                    twoAndAHalfHours.ToString(), 
                                                    centralTime2);  
      }
      catch (TimeZoneNotFoundException)
      {
         Console.WriteLine("Unable to retrieve Central Standard Time zone information.");
      }
   }
}
// The example displays the following output to the console:
//    3/9/2008 1:30:00 AM -06:00 + 02:30:00 hours = 3/9/2008 4:00:00 AM -06:00






Module IntervalArithmetic
   Public Sub Main()
      Dim generalTime As Date = #03/09/2008 1:30AM#
      Const tzName As String = "Central Standard Time"
      Dim twoAndAHalfHours As New TimeSpan(2, 30, 0)

      ' Instantiate DateTimeOffset value to have correct CST offset
      Try
         Dim centralTime1 As New DateTimeOffset(generalTime, _
                    TimeZoneInfo.FindSystemTimeZoneById(tzName).GetUtcOffset(generalTime))

         ' Add two and a half hours      
         Dim centralTime2 As DateTimeOffset = centralTime1.Add(twoAndAHalfHours)
         ' Display result
         Console.WriteLine("{0} + {1} hours = {2}", centralTime1, _
                                                    twoAndAHalfHours.ToString(), _
                                                    centralTime2)   
      Catch e As TimeZoneNotFoundException
         Console.WriteLine("Unable to retrieve Central Standard Time zone information.")
      End Try
   End Sub
End Module
' The example displays the following output to the console:
'    3/9/2008 1:30:00 AM -06:00 + 02:30:00 hours = 3/9/2008 4:00:00 AM -06:00









Arithmetic Operations with Times in Time Zones


The System.TimeZoneInfo class does not provide any methods that automatically apply adjustment rules when you perform date and time arithmetic. However, you can do this by converting the time in a time zone to UTC, performing the arithmetic operation, and then converting from UTC back to the time in the time zone. For details, see How to: Use Time Zones in Date and Time Arithmetic.


For example, the following code is similar to the previous code that added two-and-a-half hours to 2:00 A.M. on March 9, 2008. However, because it converts a Central Standard time to UTC before it performs date and time arithmetic, and then converts the result from UTC back to Central Standard time, the resulting time reflects the Central Standard Time Zone’s transition to daylight saving time.


using System;

public class TimeZoneAwareArithmetic
{
   public static void Main()
   {
      const string tzName = "Central Standard Time";

      DateTime generalTime = new DateTime(2008, 3, 9, 1, 30, 0);
      TimeZoneInfo cst = TimeZoneInfo.FindSystemTimeZoneById(tzName);
      TimeSpan twoAndAHalfHours = new TimeSpan(2, 30, 0);

      // Instantiate DateTimeOffset value to have correct CST offset
      try
      {
         DateTimeOffset centralTime1 = new DateTimeOffset(generalTime, 
                                       cst.GetUtcOffset(generalTime));

         // Add two and a half hours
         DateTimeOffset utcTime = centralTime1.ToUniversalTime();
         utcTime += twoAndAHalfHours;

         DateTimeOffset centralTime2 = TimeZoneInfo.ConvertTime(utcTime, cst);
         // Display result
         Console.WriteLine("{0} + {1} hours = {2}", centralTime1, 
                                                    twoAndAHalfHours.ToString(), 
                                                    centralTime2);  
      }
      catch (TimeZoneNotFoundException)
      {
         Console.WriteLine("Unable to retrieve Central Standard Time zone information.");
      }
   }
}
// The example displays the following output to the console:
//    3/9/2008 1:30:00 AM -06:00 + 02:30:00 hours = 3/9/2008 5:00:00 AM -05:00






Module TimeZoneAwareArithmetic
   Public Sub Main()
      Const tzName As String = "Central Standard Time"

      Dim generalTime As Date = #03/09/2008 1:30AM#
      Dim cst As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById(tzName) 
      Dim twoAndAHalfHours As New TimeSpan(2, 30, 0)

      ' Instantiate DateTimeOffset value to have correct CST offset
      Try
         Dim centralTime1 As New DateTimeOffset(generalTime, _
                    cst.GetUtcOffset(generalTime))

         ' Add two and a half hours 
         Dim utcTime As DateTimeOffset = centralTime1.ToUniversalTime()
         utcTime += twoAndAHalfHours

         Dim centralTime2 As DateTimeOffset = TimeZoneInfo.ConvertTime(utcTime, cst)
         ' Display result
         Console.WriteLine("{0} + {1} hours = {2}", centralTime1, _
                                                    twoAndAHalfHours.ToString(), _
                                                    centralTime2)   
      Catch e As TimeZoneNotFoundException
         Console.WriteLine("Unable to retrieve Central Standard Time zone information.")
      End Try
   End Sub
End Module
' The example displays the following output to the console:
'    3/9/2008 1:30:00 AM -06:00 + 02:30:00 hours = 3/9/2008 5:00:00 AM -05:00









See Also


Dates, times, and time zones


How to: use time zones in date and time arithmetic








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-translating.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Translating Expression Trees
description: Translating Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b453c591-acc6-4e08-8175-97e5bc65958e





Translating Expression Trees


Previous – Building Expressions


In this final section, you’ll learn how to visit each node
in an expression tree, while building a modified copy of that
expression tree. These are the techniques that you will use in two
important scenarios. The first is to understand the algorithms
expressed by an expression tree so that it can be translated
into another environment. The second is when you want to change
the algorithm that has been created. This might be to add logging,
intercept method calls and track them, or other purposes.



Translating is Visiting


The code you build to translate an expression tree is an extension
of what you’ve already seen to visit all the nodes in a tree. When
you translate an expression tree, you visit all the nodes, and while
visiting them, build the new tree. The new tree may contain references
to the original nodes, or new nodes that you have placed in the tree.


Let’s see this in action by visiting an expression tree, and
creating a new tree with some replacement nodes. In this example,
let’s replace any constant with a constant that is ten times larger.
Otherwise, we’ll leave the expression tree intact. Rather than
reading the value of the constant, and replacing it with a new
constant, we’ll make this replacement by replacing the constant
node with a new node that performs the multiplication.


Here, once you find a constant node, you create a new multiplication
node whose children are the original constant, and the constant
10:


private static Expression ReplaceNodes(Expression original)
{
    if (original.NodeType == ExpressionType.Constant)
    {
        return Expression.Multiply(original, Expression.Constant(10));
    }
    else if (original.NodeType == ExpressionType.Add)
    {
        var binaryExpression = (BinaryExpression)original;
        return Expression.Add(
            ReplaceNodes(binaryExpression.Left),
            ReplaceNodes(binaryExpression.Right));
    }
    return original;
}






By replacing the original node with the substitute, a new tree
is formed that contains our modifications. We can verify that by
compiling and executing the replaced tree.


var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var addition = Expression.Add(one, two);
var sum = ReplaceNodes(addition);
var executableFunc = Expression.Lambda(sum);

var func = (Func<int>)executableFunc.Compile();
var answer = func();
Console.WriteLine(answer);






Building a new tree is a combination of visiting the nodes in
the existing tree, and creating new nodes and inserting them
into the tree.


This example shows the importance of expression trees being
immutable. Notice that the new tree created above contains a
mixture of newly created nodes, and nodes from the existing
tree. That’s safe, because the nodes in the existing tree cannot be
modified. This can result in significant memory efficiencies.
The same nodes can be used throughout a tree, or in multiple
expression trees. Since nodes can’t be modified, the
same node can be reused whenever its needed.





Traversing and Executing an Addition


Let’s verify this by building a second visitor that walks the tree
of addition nodes and computes the result. You can do this by
making a couple modifications to the vistor that you’ve seen so
far. In this new version, the visitor will return the partial sum
of the addition operation up to this point. For a constant expression,
that is simply the value of the constant expression. For an addition
expression, the result is the sum of the left and right operands, once
those trees have been traversed.


var one = Expression.Constant(1, typeof(int));
var two = Expression.Constant(2, typeof(int));
var three= Expression.Constant(3, typeof(int));
var four = Expression.Constant(4, typeof(int));
var addition = Expression.Add(one, two);
var add2 = Expression.Add(three, four);
var sum = Expression.Add(addition, add2);

// Declare the delegate, so we can call it 
// from itself recursively:
Func<Expression, int> aggregate = null;
// Aggregate, return constants, or the sum of the left and right operand.
// Major simplification: Assume every binary expression is an addition.
aggregate = (exp) =>
    exp.NodeType == ExpressionType.Constant ?
    (int)((ConstantExpression)exp).Value :
    aggregate(((BinaryExpression)exp).Left) + aggregate(((BinaryExpression)exp).Right);

var theSum = aggregate(sum);
Console.WriteLine(theSum);






There’s quite a bit of code here, but the concepts are very approachable.
This code visits children in a depth first search. When it encounters a
constant node, the visitor returns the value of the constant. After the
visitor has visited both children, those children will have computed the sum
computed for that sub-tree. The addition node can now compute its sum.
Once all the nodes in the expression tree have been visited, the sum
will have been computed. You can trace the execution by running the sample
in the debugger and tracing the execution.


Let’s make it easier to trace how the nodes are analyzed and how the sum
is computed by travsersing the tree. Here’s an updated version of the
Aggregate method that includes quite a bit of tracing information:


private static int Aggregate(Expression exp)
{
    if (exp.NodeType == ExpressionType.Constant)
    {
        var constantExp = (ConstantExpression)exp;
        Console.Error.WriteLine($"Found Constant: {constantExp.Value}");
        return (int)constantExp.Value;
    }
    else if (exp.NodeType == ExpressionType.Add)
    {
        var addExp = (BinaryExpression)exp;
        Console.Error.WriteLine("Found Addition Expression");
        Console.Error.WriteLine("Computing Left node");
        var leftOperand = Aggregate(addExp.Left);
        Console.Error.WriteLine($"Left is: {leftOperand}");
        Console.Error.WriteLine("Computing Right node");
        var rightOperand = Aggregate(addExp.Right);
        Console.Error.WriteLine($"Right is: {rightOperand}");
        var sum = leftOperand + rightOperand;
        Console.Error.WriteLine($"Computed sum: {sum}");
        return sum;
    }
    else throw new NotSupportedException("Haven't written this yet");
}






Running it on the same expression yields the following output:


10
Found Addition Expression
Computing Left node
Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Constant: 2
Right is: 2
Computed sum: 3
Left is: 3
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 10
10






Trace the output and follow along in the code above. You should be able
to work out how the code visits each node and computes the sum as it goes
through the tree and finds the sum.


Now, let’s look at a different run, with the expression given by sum1:


Expression<Func<int> sum1 = () => 1 + (2 + (3 + 4));






Here’s the output from examining this expression:


Found Addition Expression
Computing Left node
Found Constant: 1
Left is: 1
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 2
Left is: 2
Computing Right node
Found Addition Expression
Computing Left node
Found Constant: 3
Left is: 3
Computing Right node
Found Constant: 4
Right is: 4
Computed sum: 7
Right is: 7
Computed sum: 9
Right is: 9
Computed sum: 10
10






While the final answer is the same, the tree traversal is completely
different. The nodes are traveled in a different order, because the
tree was constructed with different operations occurring first.





Learning More


This sample shows a small subset of the code you would build to traverse
and interpret the algorithms represented by an expression tree. For a complete
discussion of all the work necessary to build a general purpose library that
translates expression trees into another language, please read
this series [http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx]
by Matt Warren. It goes into great detail on how to translate any of the code
you might find in an expression tree.


I hope you’ve now seen the true power of expression trees.
You can examine a set of code, make any changes you’d like to
that code, and execute the changed version. Because the
expression trees are immutable, you can create new trees by
using the components of existing trees. This minimizes the
amount of memory needed to create modified expression trees.


Next – Summing up








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Dates, times, and time zones
description: Dates, times, and time zones
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 07/22/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 76e6cacc-1c0c-4a71-8cb8-018c112385ba





Dates, times, and time zones


In addition to the basic System.DateTime structure, .NET provides the following classes that support working with time zones:



		System.TimeZoneInfo


Use this class to work with the system’s local time zone and the Coordinated Universal Time (UTC) zone.





		System.DateTimeOffset


Use this structure to work with dates and times whose offset (or difference) from UTC is known. The DateTimeOffset] structure combines a date and time value with that time’s offset from UTC. Because of its relationship to UTC, an individual date and time value unambiguously identifies a single point in time. This makes a DateTimeOffset] value more portable from one computer to another than a DateTime] value.








This section of the documentation provides the information that you need to work with time zones and to create time zone-aware applications that can convert dates and times from one time zone to another.



In This Section


Time Zone Overview - Discusses the terminology, concepts, and issues involved in creating time zone-aware applications.


Choosing Between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo - Discusses when to use the System.DateTime, System.DateTimeOffset, and System.TimeZoneInfo types when working with date and time data.


Finding the Time Zones Defined on a Local System - Describes how to enumerate the time zones found on a local system.


Instantiating a DateTimeOffset Object - Discusses the ways in which a System.DateTimeOffset object can be instantiated, and the ways in which a System.DateTime value can be converted to a System.DateTimeOffset value.


Performing Arithmetic Operations with Dates and Times - Discusses the issues involved in adding, subtracting, and comparing System.DateTime and System.DateTimeOffset values.


Converting Between DateTime and DateTimeOffset - Describes how to convert between System.DateTime and System.DateTimeOffset values.


Converting Times Between Time Zones - Describes how to convert times from one time zone to another.


How to: Enumerate Time Zones Present on a Computer - Provides examples that enumerate the time zones defined in a computer’s registry and that let users select a predefined time zone from a list.


How to: Access the Predefined UTC and Local Time Zone Objects - Describes how to access Coordinated Universal Time and the local time zone.


How to: Instantiate a TimeZoneInfo Object - Describes how to instantiate a System.TimeZoneInfo object from the local system registry.


How to: Use Time Zones in Date and Time Arithmetic - Discusses how to perform date and time arithmetic that reflects a time zone’s adjustment rules.


How to: Resolve Ambiguous Times - Describes how to resolve an ambiguous time by mapping it to the time zone’s standard time.


How to: Let Users Resolve Ambiguous Times - Describes how to let a user determine the mapping between an ambiguous local time and Coordinated Universal Time.





Reference


System.TimeZoneInfo


System.DateTimeOffset


System.DateTime








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/parallel.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Parallel programming
description: Parallel programming
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8045b1b8-7835-4a7a-980d-bc9c70d62a0c





🔧 Parallel programming



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/491] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/enumerate-time-zones.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: enumerate time zones present on a computer”
description: How to enumerate time zones present on a computer
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c5ae4a6c-1790-4355-b5b1-879aaf956129





How to: enumerate time zones present on a computer


Successfully working with a designated time zone requires that information about that time zone be available to the system. For example, the Windows operating system stores this information in the registry. However, although the total number of time zones that exist throughout the world is large, the registry contains information about only a subset of them. In addition, the registry itself is a dynamic structure whose contents are subject to both deliberate and accidental change. As a result, an application cannot always assume that a particular time zone is defined and available on a system. The first step for many applications that use time zone information applications is to determine whether required time zones are available on the local system, or to give the user a list of time zones from which to select. This requires that an application enumerate the time zones defined on a local system.



To enumerate the time zones present on the local system



		Call the TimeZoneInfo.GetSystemTimeZones method. The method returns a generic ReadOnlyCollection

&lt;


T&gt;


 collection of TimeZoneInfo objects. The entries in the collection are sorted by their DisplayName property. For example:


ReadOnlyCollection<TimeZoneInfo> tzCollection;
tzCollection = TimeZoneInfo.GetSystemTimeZones();






Dim tzCollection As ReadOnlyCollection(Of TimeZoneInfo) = TimeZoneInfo.GetSystemTimeZones









		Enumerate the individual TimeZoneInfo objects in the collection by using a foreach loop (in C#) or a For Each…Next loop (in Visual Basic), and perform any necessary processing on each object. For example, the following code enumerates the ReadOnlyCollection

&lt;


T&gt;


 collection of TimeZoneInfo objects returned in step 1 and lists the display name of each time zone on the console.


foreach (TimeZoneInfo timeZone in tzCollection)
Console.WriteLine("   {0}: {1}", timeZone.Id, timeZone.DisplayName);






For Each timeZone As TimeZoneInfo In tzCollection
    Console.WriteLine("   {0}: {1}", timeZone.Id, timeZone.DisplayName)
Next















See Also


Dates, times, and time zones


Finding the time zones defined on a local system








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/delegates-strongly-typed.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Strongly Typed Delegates
description: Strongly Typed Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 564a683d-352b-4e57-8bac-b466529daf6b





Strongly Typed Delegates


Previous


In the previous article, you saw that you create specific delegate
types using the delegate keyword.


The abstract Delegate class provide the infrastructure for loose coupling
and invocation. Concrete Delegate types become much more useful by embracing
and enforcing type safety for the methods that are added to the invocation
list for a delegate object. When you use the delegate keyword and define
a concrete delegate type, the compiler generates those methods.


In practice, this would lead to creating new delegate types
whenever you need a different method signature. This work could get tedious
after a time. Every new feature requires new delegate types.


Thankfully, this isn’t necessary. The .NET Core framework contains several
types that you can reuse whenever you need delegate types. These are
generic definitions so you can declare customizations
when you need new method declarations.


The first of these types is the @System.Action type, and several variations:


public delegate void Action();
public delegate void Action<in T>(T arg);
public delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);
// Other variations removed for brevity.






The in modifier on the generic type argument is covered in the article
on covariance.


There are variations of the Action delegate that contain up to
16 arguments such as @System.Action%6016 .
It’s important that these definitions use different generic arguments for each of the
delegate arguments: That gives you maximum flexibility. The method arguments need not be, but may be, the same type.


Use one of the Action types for any delegate type that has a void return type.


The framework also includes several generic delegate types that you can use for
delegate types that return values:


public delegate TResult Func<out TResult>();
public delegate TResult Func<in T1, out TResult>(T1 arg);
public delegate TResult Func<in T1, in T2, out TResult>(T1 arg1, T2 arg2);
// Other variations removed for brevity






The out modifier on the result generic type argument is covered in the
article on covariance.


There are variations of the Func delegate with up to
16 input arguments such as @System.Func%6017 .
The type of the result is always the last type parameter in all the Func
declarations, by convention.


Use one of the Func types for any delegate type that returns a value.


There’s also a specialized
@System.Predicate%601
type for a delegate that returns a test on a single value:


public delegate bool Predicate<in T>(T obj);






You may notice that for any Predicate type, a structurally equivalent Func
type exists For example:


Func<string, bool> TestForString;
Predicate<string> AnotherTestForString;






You might think these two types are equivalent. They are not.
These two variables cannot be used interchangeably. A variable of one type cannot
be assigned the other type. The C# type system uses the names of the defined types,
not the structure.


All these delegate type definitions in the .NET Core Library should mean that
you do not need to define a new delegate type for any new feature you create
that requires delegates. These generic definitions should provide all the
delegate types you need under most situations. You can simply instantiate
one of these types with the required type parameters. In the case of algorithms
that can be made generic, these delegates can be used as generic types.


This should save time, and minimize the number of new types that you need
to create in order to work with delegates.


In the next article, you’ll see several common patterns for working
with delegates in practice.


Next






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/choosing-between-datetime.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo
description: Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/11/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2dd84ee8-9f0f-4054-9537-155857a460cd





Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo


.NET applications that use date and time information are very diverse and can use that information in several ways. The more common uses of date and time information include one or more of the following:



		To reflect a date only, so that time information is not important.


		To reflect a time only, so that date information is not important.


		To reflect an abstract date and time that is not tied to a specific time and place (for example, most stores in an international chain open on weekdays at 9:00 A.M.).


		To retrieve date and time information from sources outside of the .NET application, typically where date and time information is stored in a simple data type.


		To uniquely and unambiguously identify a single point in time. Some applications require that a date and time be unambiguous only on the host system; others require that it be unambiguous across systems (that is, a date serialized on one system can be meaningfully deserialized and used on another system anywhere in the world).


		To preserve multiple related times (such as the requestor’s local time and the server’s time of receipt for a Web request).


		To perform date and time arithmetic, possibly with a result that uniquely and unambiguously identifies a single point in time.





.NET includes the System.DateTime, System.DateTimeOffset, System.TimeSpan, and System.TimeZoneInfo types, all of which can be used to build applications that work with dates and times.



[!NOTE]
This topic does not discuss the older TimeZone type, because its functionality is almost entirely incorporated in the System.TimeZoneInfo class. Whenever possible, developers should use the System.TimeZoneInfo class instead of the TimeZone class.




The DateTime structure


A System.DateTime value defines a particular date and time. It includes a Kind property that provides limited information about the time zone to which that date and time belongs. The DateTimeKind value returned by the Kind property indicates whether the DateTime value represents the local time DateTimeKind.Local), Coordinated Universal Time (UTC) DateTimeKind.Utc, or an unspecified time DateTimeKind.Unspecified.


The DateTime structure is suitable for applications that do the following:



		Work with dates only.


		Work with times only.


		Work with abstract dates and times.


		Work with dates and times for which time zone information is missing.


		Work with UTC dates and times only.


		Retrieve date and time information from sources outside the .NET Framework, such as SQL databases. Typically, these sources store date and time information in a simple format that is compatible with the DateTime structure.


		Perform date and time arithmetic, but are concerned with general results. For example, in an addition operation that adds six months to a particular date and time, it is often not important whether the result is adjusted for daylight saving time.





Unless a particular DateTime value represents UTC, that date and time value is often ambiguous or limited in its portability. For example, if a DateTime value represents the local time, it is portable within that local time zone (that is, if the value is deserialized on another system in the same time zone, that value still unambiguously identifies a single point in time). Outside the local time zone, that DateTime value can have multiple interpretations. If the value’s Kind property is DateTimeKind.Unspecified, it is even less portable: it is now ambiguous within the same time zone and possibly even on the same system on which it was first serialized. Only if a DateTime value represents UTC does that value unambiguously identify a single point in time regardless of the system or time zone in which the value is used.



[!IMPORTANT]
When saving or sharing DateTime data, UTC should be used and the DateTime value’s Kind property should be set to DateTimeKind.Utc.






The DateTimeOffset structure


The System.DateTimeOffset structure represents a date and time value, together with an offset that indicates how much that value differs from UTC. Thus, the value always unambiguously identifies a single point in time.


The DateTimeOffset type includes all of the functionality of the DateTime type along with time zone awareness. This makes it is suitable for applications that do the following:



		Uniquely and unambiguously identify a single point in time. The DateTimeOffset type can be used to unambiguously define the meaning of “now”, to log transaction times, to log the times of system or application events, and to record file creation and modification times.


		Perform general date and time arithmetic.


		Preserve multiple related times, as long as those times are stored as two separate values or as two members of a structure.






[!NOTE]
These uses for DateTimeOffset values are much more common than those for DateTime values. As a result, DateTimeOffset should be considered the default date and time type for application development.



A DateTimeOffset value is not tied to a particular time zone, but can originate from any of a variety of time zones. To illustrate this, the following example lists the time zones to which a number of DateTimeOffset values (including a local Pacific Standard Time) can belong.


using System;
using System.Collections.ObjectModel;

public class TimeOffsets
{
   public static void Main()
   {
      DateTime thisDate = new DateTime(2007, 3, 10, 0, 0, 0);
      DateTime dstDate = new DateTime(2007, 6, 10, 0, 0, 0);
      DateTimeOffset thisTime;

      thisTime = new DateTimeOffset(dstDate, new TimeSpan(-7, 0, 0));
      ShowPossibleTimeZones(thisTime);

      thisTime = new DateTimeOffset(thisDate, new TimeSpan(-6, 0, 0));  
      ShowPossibleTimeZones(thisTime);

      thisTime = new DateTimeOffset(thisDate, new TimeSpan(+1, 0, 0));
      ShowPossibleTimeZones(thisTime);
   }

   private static void ShowPossibleTimeZones(DateTimeOffset offsetTime)
   {
      TimeSpan offset = offsetTime.Offset;
      ReadOnlyCollection<TimeZoneInfo> timeZones;

      Console.WriteLine("{0} could belong to the following time zones:", 
                        offsetTime.ToString());
      // Get all time zones defined on local system
      timeZones = TimeZoneInfo.GetSystemTimeZones();     
      // Iterate time zones 
      foreach (TimeZoneInfo timeZone in timeZones)
      {
         // Compare offset with offset for that date in that time zone
         if (timeZone.GetUtcOffset(offsetTime.DateTime).Equals(offset))
            Console.WriteLine("   {0}", timeZone.DisplayName);
      }
      Console.WriteLine();
   } 
}
// This example displays the following output to the console:
//       6/10/2007 12:00:00 AM -07:00 could belong to the following time zones:
//          (GMT-07:00) Arizona
//          (GMT-08:00) Pacific Time (US & Canada)
//          (GMT-08:00) Tijuana, Baja California
//       
//       3/10/2007 12:00:00 AM -06:00 could belong to the following time zones:
//          (GMT-06:00) Central America
//          (GMT-06:00) Central Time (US & Canada)
//          (GMT-06:00) Guadalajara, Mexico City, Monterrey - New
//          (GMT-06:00) Guadalajara, Mexico City, Monterrey - Old
//          (GMT-06:00) Saskatchewan
//       
//       3/10/2007 12:00:00 AM +01:00 could belong to the following time zones:
//          (GMT+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna
//          (GMT+01:00) Belgrade, Bratislava, Budapest, Ljubljana, Prague
//          (GMT+01:00) Brussels, Copenhagen, Madrid, Paris
//          (GMT+01:00) Sarajevo, Skopje, Warsaw, Zagreb
//          (GMT+01:00) West Central Africa






Imports System.Collections.ObjectModel

Module TimeOffsets
   Public Sub Main()
      Dim thisTime As DateTimeOffset 

      thisTime = New DateTimeOffset(#06/10/2007#, New TimeSpan(-7, 0, 0))
      ShowPossibleTimeZones(thisTime) 

      thisTime = New DateTimeOffset(#03/10/2007#, New TimeSpan(-6, 0, 0))  
      ShowPossibleTimeZones(thisTime)

      thisTime = New DateTimeOffset(#03/10/2007#, New TimeSpan(+1, 0, 0))
      ShowPossibleTimeZones(thisTime)
   End Sub

   Private Sub ShowPossibleTimeZones(offsetTime As DateTimeOffset)
      Dim offset As TimeSpan = offsetTime.Offset
      Dim timeZones As ReadOnlyCollection(Of TimeZoneInfo)

      Console.WriteLine("{0} could belong to the following time zones:", _
                        offsetTime.ToString())
      ' Get all time zones defined on local system
      timeZones = TimeZoneInfo.GetSystemTimeZones()     
      ' Iterate time zones
      For Each timeZone As TimeZoneInfo In timeZones
         ' Compare offset with offset for that date in that time zone
         If timeZone.GetUtcOffset(offsetTime.DateTime).Equals(offset) Then
            Console.WriteLine("   {0}", timeZone.DisplayName)
         End If   
      Next
      Console.WriteLine()
   End Sub
End Module
' This example displays the following output to the console:
'       6/10/2007 12:00:00 AM -07:00 could belong to the following time zones:
'          (GMT-07:00) Arizona
'          (GMT-08:00) Pacific Time (US & Canada)
'          (GMT-08:00) Tijuana, Baja California
'       
'       3/10/2007 12:00:00 AM -06:00 could belong to the following time zones:
'          (GMT-06:00) Central America
'          (GMT-06:00) Central Time (US & Canada)
'          (GMT-06:00) Guadalajara, Mexico City, Monterrey - New
'          (GMT-06:00) Guadalajara, Mexico City, Monterrey - Old
'          (GMT-06:00) Saskatchewan
'       
'       3/10/2007 12:00:00 AM +01:00 could belong to the following time zones:
'          (GMT+01:00) Amsterdam, Berlin, Bern, Rome, Stockholm, Vienna
'          (GMT+01:00) Belgrade, Bratislava, Budapest, Ljubljana, Prague
'          (GMT+01:00) Brussels, Copenhagen, Madrid, Paris
'          (GMT+01:00) Sarajevo, Skopje, Warsaw, Zagreb
'          (GMT+01:00) West Central Africa






The output shows that each date and time value in this example can belong to at least three different time zones. The DateTimeOffset value of 6/10/2007 shows that if a date and time value represents a daylight saving time, its offset from UTC does not even necessarily correspond to the originating time zone’s base UTC offset or to the offset from UTC found in its display name. This means that, because a single DateTimeOffset  value is not tightly coupled with its time zone, it cannot reflect a time zone’s transition to and from daylight saving time. This can be particularly problematic when date and time arithmetic is used to manipulate a DateTimeOffset value. For a discussion of how to perform date and time arithmetic in a way that takes account of a time zone’s adjustment rules, see Performing arithmetic operations with dates and times.





The TimeSpan structure


The System.TimeSpan structure represents a time interval. Its two typical uses are:



		Reflecting the time interval between two date and time values. For example, subtracting one DateTime value from another returns a TimeSpan value.


		Measuring elapsed time. For example, the Stopwatch.Elapsed property returns a TimeSpan value that reflects the time interval that has elapsed since the call to one of the System.Diagnostics.Stopwatch methods that begins to measure elapsed time.





A TimeSpan value can also be used as a replacement for a DateTime value when that value reflects a time without reference to a particular time of day. This usage is similar to the DateTime.TimeOfDay and DateTimeOffset.TimeOfDay properties, which return a TimeSpan value that represents the time without reference to a date. For example, the TimeSpan structure can be used to reflect a store’s daily opening or closing time, or it can be used to represent the time at which any regular event occurs.


The following example defines a StoreInfo structure that includes TimeSpan objects for store opening and closing times, as well as a TimeZoneInfo object that represents the store’s time zone. The structure also includes two methods, IsOpenNow and IsOpenAt, that indicates whether the store is open at a time specified by the user, who is assumed to be in the local time zone.


using System;

public struct StoreInfo
{
   public String store;
   public TimeZoneInfo tz;
   public TimeSpan open;
   public TimeSpan close;

   public bool IsOpenNow()
   {
      return IsOpenAt(DateTime.TimeOfDay);
   }

   public bool IsOpenAt(TimeSpan time)
   {
      TimeZoneInfo local = TimeZoneInfo.Local;
      TimeSpan offset = TimeZoneInfo.BaseUtcOffset;

      // Is the store in the same time zone?
      if (tz.Equals(local)) {
         return time >= open & time <= close;
      }
   }
}






Public Structure StoreInfo
   Dim store As String
   Dim tz As TimeZoneInfo
   Dim open As TimeSpan
   Dim close As TimeSpan

   Public Function IsOpenNow() As Boolean
      Return IsOpenAt(Date.Now.TimeOfDay)
   End Function

   Public Function IsOpenAt(time As TimeSpan) As Boolean
      Dim local As TimeZoneInfo = TimeZoneInfo.Local
      Dim offset As TimeSpan = TimeZoneInfo.Local.BaseUtcOffset

      ' Is the store in the same time zone?
      If tz.Equals(local) Then
         Return time >= open And time <= close
      Else
         Dim delta As TimeSpan = TimeSpan.Zero
         Dim storeDelta As TimeSpan = TimeSpan.Zero

         ' Is it daylight saving time in either time zone?
         If local.IsDaylightSavingTime(Date.Now.Date + time) Then
            delta = local.GetAdjustmentRules(local.GetAdjustmentRules().Length - 1).DaylightDelta
         End If
         If tz.IsDaylightSavingTime(TimeZoneInfo.ConvertTime(Date.Now.Date + time, local, tz))
            storeDelta = tz.GetAdjustmentRules(local.GetAdjustmentRules().Length - 1).DaylightDelta
         End If
         Dim comparisonTime As TimeSpan = time + (offset - tz.BaseUtcOffset).Negate() + (delta - storeDelta).Negate
         Return (comparisonTime >= open And comparisonTime <= close)
      End If
   End Function
End Structure






The StoreInfo structure can then be used by client code like the following.


public class Example
{
   public static void Main()
   {
      // Instantiate a StoreInfo object.
      var store103 = new StoreInfo();
      store103.store = "Store #103";
      store103.tz = TimeZoneInfo.FindSystemTimeZoneById("Eastern Standard Time");
      // Store opens at 8:00.
      store103.open = new TimeSpan(8, 0, 0);
      // Store closes at 9:30.
      store103.close = new TimeSpan(21, 30, 0);

      Console.WriteLine("Store is open now at {0}: {1}",
                        DateTime.TimeOfDay, store103.IsOpenNow());
      TimeSpan[] times = { new TimeSpan(8, 0, 0), new TimeSpan(21, 0, 0),
                           new TimeSpan(4, 59, 0), new TimeSpan(18, 31, 0) };
      foreach (var time in times)
         Console.WriteLine("Store is open at {0}: {1}",
                           time, store103.IsOpenAt(time));
   }
}
// The example displays the following output:
//       Store is open now at 15:29:01.6129911: True
//       Store is open at 08:00:00: True
//       Store is open at 21:00:00: False
//       Store is open at 04:59:00: False
//       Store is open at 18:31:00: False






Module Example
   Public Sub Main()
      ' Instantiate a StoreInfo object.
      Dim store103 As New StoreInfo()
      store103.store = "Store #103"
      store103.tz = TimeZoneInfo.FindSystemTimeZoneById("Eastern Standard Time")
      ' Store opens at 8:00.
      store103.open = new TimeSpan(8, 0, 0)
      ' Store closes at 9:30.
      store103.close = new TimeSpan(21, 30, 0)

      Console.WriteLine("Store is open now at {0}: {1}",
                        Date.Now.TimeOfDay, store103.IsOpenNow())
      Dim times() As TimeSpan = { New TimeSpan(8, 0, 0),
                                  New TimeSpan(21, 0, 0),
                                  New TimeSpan(4, 59, 0),
                                  New TimeSpan(18, 31, 0) }
      For Each time In times
         Console.WriteLine("Store is open at {0}: {1}",
                           time, store103.IsOpenAt(time))
      Next
   End Sub
End Module
' The example displays the following output:
'       Store is open now at 15:29:01.6129911: True
'       Store is open at 08:00:00: True
'       Store is open at 21:00:00: False
'       Store is open at 04:59:00: False
'       Store is open at 18:31:00: False









The TimeZoneInfo class


The System.TimeZoneInfo class represents any of the earth’s time zones, and enables the conversion of any date and time in one time zone to its equivalent in another time zone. The TimeZoneInfo class makes it possible to work with dates and times so that any date and time value unambiguously identifies a single point in time.


In some cases, taking full advantage of the TimeZoneInfo class may require further development work. Date and time values are not tightly coupled with the time zones to which they belong. As a result, unless your application provides some mechanism for linking a date and time with its associated time zone, it is easy for a particular date and time value to become disassociated from its time zone. One method of linking this information is to define a class or structure that contains both the date and time value and its associated time zone object.


Taking advantage of time zone support in .NET is possible only if the time zone to which a date and time value belongs is known when that date and time object is instantiated. This is often not the case, particularly in Web or network applications.





See Also


Dates, times, and time zones








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/csharp-7.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: What’s New in C# 7 | C# Guide
description: What’s New in C# 7keywords: .NET, .NET Core, Latest Features, What’s New
author:  tdykstra
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fd41596d-d0c2-4816-b94d-c4d00a5d0243





🔧 What’s new in C# 7



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/961] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/instantiate-time-zone-info.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: instantiate a TimeZoneInfo object”
description: How to instantiate a TimeZoneInfo object
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bff137e5-d550-44c3-b460-b3f2dabd4035





How to: instantiate a TimeZoneInfo object


The most common way to instantiate a TimeZoneInfo object is to retrieve information about it from the operating system. This topic discusses how to instantiate a TimeZoneInfo object from the local system.



To instantiate a TimeZoneInfo Object



		Declare a TimeZoneInfo object.


		Call the static (Shared in Visual Basic) TimeZoneInfo.FindSystemTimeZoneById method.


		Handle any exceptions thrown by the method.








Example


The following code retrieves a TimeZoneInfo object that represents the Eastern Standard Time zone and displays the Eastern Standard time that corresponds to the local time.


DateTime timeNow = DateTime.Now;
try
{
   TimeZoneInfo easternZone = TimeZoneInfo.FindSystemTimeZoneById("Eastern Standard Time");
   DateTime easternTimeNow = TimeZoneInfo.ConvertTime(timeNow, TimeZoneInfo.Local, 
                                                   easternZone);
   Console.WriteLine("{0} {1} corresponds to {2} {3}.",
                     timeNow, 
                     TimeZoneInfo.Local.IsDaylightSavingTime(timeNow) ?
                               TimeZoneInfo.Local.DaylightName : 
                               TimeZoneInfo.Local.StandardName,
                     easternTimeNow, 
                     easternZone.IsDaylightSavingTime(easternTimeNow) ?
                                 easternZone.DaylightName : 
                                 easternZone.StandardName);
}
// Handle exception
//
// As an alternative to simply displaying an error message, an alternate Eastern
// Standard Time TimeZoneInfo object could be instantiated here either by restoring
// it from a serialized string or by providing the necessary data to the
// CreateCustomTimeZone method.
catch (InvalidTimeZoneException)
{
   Console.WriteLine("The Eastern Standard Time Zone contains invalid or missing data.");
}
catch (SecurityException)
{
   Console.WriteLine("The application lacks permission to read time zone information from the registry.");
}
catch (OutOfMemoryException)
{
   Console.WriteLine("Not enough memory is available to load information on the Eastern Standard Time zone.");
}
// If we weren't passing FindSystemTimeZoneById a literal string, we also 
// would handle an ArgumentNullException.






Dim timeNow As Date = Date.Now
Try
   Dim easternZone As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById("Eastern Standard Time")
   Dim easternTimeNow As Date = TimeZoneInfo.ConvertTime(timeNow, TimeZoneInfo.Local, easternZone)
   Console.WriteLine("{0} {1} corresponds to {2} {3}.", _
                     timeNow, _
                     IIf(TimeZoneInfo.Local.IsDaylightSavingTime(timeNow), _
                         TimeZoneInfo.Local.DaylightName, TimeZoneInfo.Local.StandardName), _
                     easternTimeNow, _
                     IIf(easternZone.IsDaylightSavingTime(easternTimeNow), _
                         easternZone.DaylightName, easternZone.StandardName))
' Handle exception
'
' As an alternative to simply displaying an error message, an alternate Eastern
' Standard Time TimeZoneInfo object could be instantiated here either by restoring
' it from a serialized string or by providing the necessary data to the
' CreateCustomTimeZone method.
Catch e As InvalidTimeZoneException
   Console.WriteLine("The Eastern Standard Time Zone contains invalid or missing data.")   
Catch e As SecurityException
   Console.WriteLine("The application lacks permission to read time zone information from the registry.")
Catch e As OutOfMemoryException
   Console.WriteLine("Not enough memory is available to load information on the Eastern Standard Time zone.")
' If we weren't passing FindSystemTimeZoneById a literal string, we also 
' would handle an ArgumentNullException.
End






The TimeZoneInfo.FindSystemTimeZoneById method’s single parameter is the identifier of the time zone that you want to retrieve, which corresponds to the object’s TimeZoneInfo.Id property. The time zone identifier is a key field that uniquely identifies the time zone. While most keys are relatively short, the time zone identifier is comparatively long. In most cases, its value corresponds to the StandardName property of a TimeZoneInfo object, which is used to provide the name of the time zone’s standard time. However, there are exceptions. The best way to make sure that you supply a valid identifier is to enumerate the time zones available on your system and note the identifiers of the time zones present on them. For an illustration, see How to: enumerate time zones present on a computer. The Finding the time zones defined on a local system topic also contains a list of selected time zone identifiers.


If the time zone is found, the method returns its TimeZoneInfo object. If the time zone is found but its data is corrupted or incomplete, the method throws an InvalidTimeZoneException.





See Also


Dates, times, and time zones


Finding the time zones defined on a local system








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/reflection.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Reflection & code generation
description: Reflection & code generation
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 53339c51-0fbc-4827-9de2-39c805bfc06b





🔧 Reflection & code generation



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/493] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/use-time-zones-in-arithmetic.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: use time zones in date and time arithmetic”
description: How to use time zones in date and time arithmetic
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 26870cdc-1709-4978-831b-ff2a2f24856f





How to: use time zones in date and time arithmetic


Ordinarily, when you perform date and time arithmetic using System.DateTimeOffset values, the result does not reflect any time zone adjustment rules. This is true even when the time zone of the date and time value is clearly identifiable. This article shows how to perform arithmetic operations on date and time values that belong to a particular time zone. The results of the arithmetic operations will reflect the time zone’s adjustment rules.



To apply adjustment rules to date and time arithmetic



		Implement some method of closely coupling a date and time value with the time zone to which it belongs. For example, declare a structure that includes both the date and time value and its time zone. The following example uses this approach to link a DateTimeOffset value with its time zone.


// Define a structure for DateTime values for internal use only
internal struct TimeWithTimeZone
{
TimeZoneInfo TimeZone;
DateTimeOffset Time;
}






' Define a structure for DateTime values for internal use only
Friend Structure TimeWithTimeZone
   Dim TimeZone As TimeZoneInfo
   Dim Time As Date
End Structure









		Convert a time to Coordinated Universal Time (UTC) by calling the TimeZoneInfo.ConvertTime(DateTime, TimeZoneInfo) method.





		Perform the arithmetic operation on the UTC time.





		Convert the time from UTC to the original time’s associated time zone by calling the TimeZoneInfo.ConvertTime(DateTime, TimeZoneInfo) method.











Example


The following example adds two hours and thirty minutes to March 9, 2008, at 1:30 A.M. Central Standard Time. The time zone’s transition to daylight saving time occurs thirty minutes later, at 2:00 A.M. on March 9, 2008. Because the example follows the four steps listed in the previous section, it correctly reports the resulting time as 5:00 A.M. on March 9, 2008.


using System;

public struct TimeZoneTime
{
   public TimeZoneInfo TimeZone;
   public DateTimeOffset Time;

   public TimeZoneTime(TimeZoneInfo tz, DateTimeOffset time)
   {
      if (tz == null) 
         throw new ArgumentNullException("The time zone cannot be a null reference.");

      this.TimeZone = tz;
      this.Time = time;   
   }

   public TimeZoneTime AddTime(TimeSpan interval)
   {
      // Convert time to UTC
      DateTimeOffset utcTime = TimeZoneInfo.ConvertTime(this.Time, TimeZoneInfo.Utc);      
      // Add time interval to time
      utcTime = utcTime.Add(interval);
      // Convert time back to time in time zone
      return new TimeZoneTime(this.TimeZone, TimeZoneInfo.ConvertTime(utcTime, this.TimeZone));
   }
}

public class TimeArithmetic
{
   public const string tzName = "Central Standard Time";

   public static void Main()
   {
      try
      {
         TimeZoneTime cstTime1, cstTime2;

         TimeZoneInfo cst = TimeZoneInfo.FindSystemTimeZoneById(tzName);
         DateTime time1 = new DateTime(2008, 3, 9, 1, 30, 0);          
         TimeSpan twoAndAHalfHours = new TimeSpan(2, 30, 0);

         cstTime1 = new TimeZoneTime(cst, 
                        new DateTimeOffset(time1, cst.GetUtcOffset(time1)));
         cstTime2 = cstTime1.AddTime(twoAndAHalfHours);
         Console.WriteLine("{0} + {1} hours = {2}", cstTime1.Time, 
                                                    twoAndAHalfHours.ToString(),  
                                                    cstTime2.Time);
      }
      catch
      {
         Console.WriteLine("Unable to find {0}.", tzName);
      }
   }
}






Public Structure TimeZoneTime
   Public TimeZone As TimeZoneInfo
   Public Time As Date

   Public Sub New(tz As TimeZoneInfo, time As Date)
      If tz Is Nothing Then _
         Throw New ArgumentNullException("The time zone cannot be a null reference.")

      Me.TimeZone = tz
      Me.Time = time
   End Sub

   Public Function AddTime(interval As TimeSpan) As TimeZoneTime
      ' Convert time to UTC
      Dim utcTime As DateTime = TimeZoneInfo.ConvertTimeToUtc(Me.Time, _
                                                              Me.TimeZone)      
      ' Add time interval to time
      utcTime = utcTime.Add(interval)
      ' Convert time back to time in time zone
      Return New TimeZoneTime(Me.TimeZone, TimeZoneInfo.ConvertTime(utcTime, _
                              TimeZoneInfo.Utc, Me.TimeZone))
   End Function
End Structure

Module TimeArithmetic
   Public Const tzName As String = "Central Standard Time"

   Public Sub Main()
      Try
         Dim cstTime1, cstTime2 As TimeZoneTime

         Dim cst As TimeZoneInfo = TimeZoneInfo.FindSystemTimeZoneById(tzName)
         Dim time1 As Date = #03/09/2008 1:30AM#
         Dim twoAndAHalfHours As New TimeSpan(2, 30, 0)

         cstTime1 = New TimeZoneTime(cst, time1)
         cstTime2 = cstTime1.AddTime(twoAndAHalfHours)

         Console.WriteLine("{0} + {1} hours = {2}", cstTime1.Time, _
                                                    twoAndAHalfHours.ToString(), _ 
                                                    cstTime2.Time)  
      Catch
         Console.WriteLine("Unable to find {0}.", tzName)
      End Try   
   End Sub   
End Module






Note that if this addition is simply performed on the DateTimeOffset value without first converting it to UTC, the result reflects the correct point in time but its offset does not reflect that of the designated time zone for that time.


DateTimeOffset values are disassociated from any time zone to which they might belong. To perform date and time arithmetic in a way that automatically applies a time zone’s adjustment rules, the time zone to which any date and time value belongs must be immediately identifiable. This means that a date and time and its associated time zone must be tightly coupled. There are several ways to do this, which include the following:



		Assume that all times used in an application belong to a particular time zone. Although appropriate in some cases, this approach offers limited flexibility and possibly limited portability.


		Define a type that tightly couples a date and time with its associated time zone by including both as fields of the type. This approach is used in the code example, which defines a structure to store the date and time and the time zone in two member fields.








See Also


Dates, times, and time zones


Performing arithmetic operations with dates and times








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/async.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Asynchronous programming
description: Asynchronous programming
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b878c34c-a78f-419e-a594-a2b44fa521a4





Asynchronous programming


If you have any I/O-bound needs (such as requesting data from a network or accessing a database), you’ll want to utilize asynchronous programming.  You could also have CPU-bound code, such as performing an expensive calculation, which is also a good scenario for writing async code.


C# has a language-level asynchronous programming model which allows for easily writing asynchronous code without having to juggle callbacks or conform to a library which supports asynchrony. It follows what is known as the Task-based Asynchronous Pattern (TAP) [https://msdn.microsoft.com/library/hh873175.aspx].



Basic Overview of the Asynchronous Model


The core of async programming are the Task and Task<T> objects, which model asynchronous operations.  They are supported by the async and await keywords.  The model is fairly simple in most cases:


For I/O-bound code, you await an operation which returns a Task or Task<T> inside of an async method.


For CPU-bound code, you await an operation which is started on a background thread with the Task.Run method.


The await keyword is where the magic happens, because it yields control to the caller of the method which performed the await.  It is what ultimately allows a UI to be responsive, or a service to be elastic.


There are other ways to approach async code than async and await outlined in the TAP article linked above, but this document will focus on the language-level constructs from this point forward.



I/O-Bound Example: Downloading data from a web service


You may need to download some data from a web service when a button is pressed, but don’t want to block the UI thread. It can be accomplished simply like this:


private readonly HttpClient _httpClient = new HttpClient();

downloadButton.Clicked += async (o, e) =>
{
    // This line will yield control to the UI as the request
    // from the web service is happening.
    //
    // The UI thread is now free to perform other work.
    var stringData = await _httpClient.GetStringAsync(URL);
    DoSomethingWithData(stringData);
};






And that’s it! The code expresses the intent (downloading some data asynchronously) without getting bogged down in interacting with Task objects.





CPU-bound Example: Performing a Calculation for a Game


Say you’re writing a mobile game where pressing a button can inflict damage on many enemies on the screen.  Performing the damage calculation can be expensive, and doing it on the UI thread would make the game appear to pause as the calculation is performed!


The best way to handle this is to start a background thread which does the work using Task.Run, and await its result.  This will allow the UI to feel smooth as the work is being done.


private DamageResult CalculateDamageDone()
{
    // Code omitted:
    //
    // Does an expensive calculation and returns
    // the result of that calculation.
}


calculateButton.Clicked += async (o, e) =>
{
    // This line will yield control to the UI CalculateDamageDone()
    // performs its work.  The UI thread is free to perform other work.
    var damageResult = await Task.Run(() => CalculateDamageDone());
    DisplayDamage(damageResult);
};






And that’s it!  This code cleanly expresses the intent of the button’s click event, it doesn’t require managing a background thread manually, and it does so in a non-blocking way.





What happens under the covers


There’s a lot of moving pieces where asynchronous operations are concerned.  If you’re curious about what’s happening underneath the covers of Task and Task<T>, checkout the Async in-depth article for more information.


On the C# side of things, the compiler transforms your code into a state machine which keeps track of things like yielding execution when an await is reached and resuming execution when a background job has finished.


For the theoretically-inclined, this is an implementation of the Promise Model of asynchrony [https://en.wikipedia.org/wiki/Futures_and_promises].







Key Pieces to Understand



		Async code can be used for both I/O-bound and CPU-bound code, but differently for each scenario.


		Async code uses Task<T> and Task, which are constructs used to model work being done in the background.


		The async keyword turns a method into an async method, which allows you to use the await keyword in its body.


		When the await keyword is applied, it suspends the calling method and yields control back to its caller until the awaited task is complete.


		await can only be used inside an async method.








Recognize CPU-Bound and I/O-Bound Work


The first two examples of this guide showed how you can use async and await for I/O-bound and CPU-bound work.  It’s key that you can identify when a job you need to do is I/O-bound or CPU-bound, because it can greatly affect the performance of your code and could potentially lead to misusing certain constructs.


Here are two questions you should ask before you write any code:



		Will you code be “waiting” for something, such as data from a database?


If your answer is “yes”, then your work is I/O-bound.





		Will your code be performing a very expensive computation?


If you answered “yes”, then your work is CPU-bound.








If the work you have is I/O-bound, use async and await without Task.Run.  You should not use the Task Parallel Library.  The reason for this is outlined in the Async in Depth article.


If the work you have is CPU-bound and you care about responsiveness, use async and await but spawn the work off on another thread with Task.Run.  If the work is appropriate for concurrency and parallelism, you should also consider using the Task Parallel Library.


Additionally, you should always measure the execution of your code.  For example, you may find yourself in a situation where your CPU-bound work is not costly enough compared with the overhead of context switches when multithreading.  Every choice has its tradeoff, and you should pick the correct tradeoff for your situation.





More Examples


The following examples demonstrate various ways you can write async code in C#.  They cover a few different scenarios you may come across.



Extracting Data from a Network


This snippet downloads the HTML from www.dotnetfoundation.org and counts the number of times the string ”.NET” occurs in the HTML.  It uses ASP.NET MVC to define a web controller method which performs this task, returning the number.



[!NOTE]
You shouldn’t ever use regular expressions if you plan on doing actual HTML parsing.  Please using a parsing library if this is your aim in production code.



private readonly HttpClient _httpClient = new HttpClient();

[HttpGet]
[Route("DotNetCount")]
public async Task<int> GetDotNetCountAsync()
{
    // Suspends GetDotNetCountAsync() to allow the caller (the web server)
    // to accept another request, rather than blocking on this one.
    var html = await _httpClient.DownloadStringAsync("http://dotnetfoundation.org");

    return Regex.Matches(html, ".NET").Count;
}






Here’s the same scenario written for a Universal Windows App, which performs the same task when a Button is pressed:


private readonly HttpClient _httpClient = new HttpClient();

private async void SeeTheDotNets_Click(object sender, RoutedEventArgs e)
{
    // Capture the task handle here so we can await the background task later.
    var getDotNetFoundationHtmlTask = _httpClient.GetStringAsync("http://www.dotnetfoundation.org");

    // Any other work on the UI thread can be done here, such as enabling a Progress Bar.
    // This is important to do here, before the "await" call, so that the user
    // sees the progress bar before execution of this method is yielded.
    NetworkProgressBar.IsEnabled = true;
    NetworkProgressBar.Visibility = Visibility.Visible;

    // The await operator suspends SeeTheDotNets_Click, returning control to its caller.
    // This is what allows the app to be responsive and not hang on the UI thread.
    var html = await getDotNetFoundationHtmlTask;
    int count = Regex.Matches(html, ".NET").Count;

    DotNetCountLabel.Text = $"Number of .NETs on dotnetfoundation.org: {count}";

    NetworkProgressBar.IsEnabled = false;
    NetworkProgressBar.Visbility = Visibility.Collapsed;
}









Waiting for Multiple Tasks to Complete


You may find yourself in a situation where you need to retrieve multiple pieces of data concurrently.  The Task API contains two methods, Task.WhenAll and Task.WhenAny which allow you to write asynchronous code which performs a non-blocking wait on mulitple background jobs.


This example shows how you might grab User data for a set of userIds.



public async Task<User> GetUser(int userId)
{
    // Code omitted:
    //
    // Given a user Id {userId}, retrieves a User object corresponding
    // to the entry in the database with {userId} as its Id.
}

public static Task<IEnumerable<User>> GetUsers(IEnumerable<int> userIds)
{
    var getUserTasks = new List<Task<User>>();
    
    foreach (int userId in userIds)
    {
        getUserTasks.Add(GetUser(id));
    }
    
    return await Task.WhenAll(getUserTasks);
}






Here’s another way to write this a bit more succinctly, using LINQ:



public async Task<User> GetUser(int userId)
{
    // Code omitted:
    //
    // Given a user Id {userId}, retrieves a User object corresponding
    // to the entry in the database with {userId} as its Id.
}

public static async Task<User[]> GetUsers(IEnumerable<int> userIds)
{
    var getUserTasks = userIds.Select(id => GetUser(id));
    return await Task.WhenAll(getUserTasks);
}






Although it’s less code, take care when mixing LINQ with asynchronous code.  Because LINQ uses deferred (lazy) execution, async calls won’t happen immediately as they do in a foreach() loop unless you force the generated sequence to iterate with a call to .ToList() or .ToArray().







Important Info and Advice


Although async programming is relatively straightforward, there are some details to keep in mind which can prevent unexpected behavior.



		async methods need to have an await keyword in their body or they will never yield!





This is important to keep in mind.  If await is not used in the body of an async method, the C# compiler will generate a warning, but the code will compile and run as if it were a normal method.  Note that this would also be incredibly inefficient, as the state machine generated by the C# compiler for the async method would not be accomplishing anything.



		You should add “Async” as the suffix of every async method name you write.





This is the convention used in .NET to more-easily differentiate synchronous and asynchronous methods. Note that certain methods which aren’t explicitly called by your code (such as event handlers or web controller methods) don’t necessarily apply. Because these are not explicitly called by your code, being explicit about their naming isn’t as important.



		async void should only be used for event handlers.





async void is the only way to allow asynchronous event handlers to work because events do not have return types (thus cannot make use of Task and Task<T>). Any other use of async void does not follow the TAP model and can be challenging to use, such as:



		Exceptions thrown in an async void method can’t be caught outside of that method.


		async void methods are very difficult to test.


		async void methods can cause bad side effects if the caller isn’t expecting them to be async.


		Tread carefully when using async lambdas in LINQ expressions





Lambda expressions in LINQ use deferred execution, meaning code could end up executing at a time when you’re not expecting it to. The introduction of blocking tasks into this can easily result in a deadlock if not written correctly. Additionally, the nesting of asynchronous code like this can also make it more difficult to reason about the execution of the code. Async and LINQ are powerful, but should be used together as carefully and clearly as possible.



		Write code that awaits Tasks in a non-blocking manner





Blocking the current thread as a means to wait for a Task to complete can result in deadlocks and blocked context threads, and can require significantly more complex error-handling. The following table provides guidance on how to deal with waiting for Tasks in a non-blocking way:


Use this...	Instead of this...	When wishing to do this
—	—	—
await	Task.Wait or Task.Result	Retrieving the result of a background task
await Task.WhenAny	Task.WaitAny	Waiting for any task to complete
await Task.WhenAll	Task.WaitAll	Waiting for all tasks to complete
await Task.Delay	Thread.Sleep	Waiting for a period of time



		Write less stateful code





Don’t depend on the state of global objects or the execution of certain methods. Instead, depend only on the return values of methods. Why?



		Code will be easier to reason about.


		Code will be easier to test.


		Mixing async and synchronous code is far simpler.


		Race conditions can typically be avoided altogether.


		Depending on return values makes coordinating async code simple.


		(Bonus) it works really well with dependency injection.





A recommended goal is to achieve complete or near-complete Referential Transparency [https://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29] in your code. Doing so will result in an extremely predictable, testable, and maintainable codebase.





Other Resources



		Async in-depth provides more information about how Tasks work.


		Lucian Wischik’s Six Essential Tips for Async [https://channel9.msdn.com/Series/Three-Essential-Tips-for-Async] are a wonderful resource for async programming











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/resolve-ambiguous-times.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: resolve ambiguous times”
description: How to resolve ambiguous times
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e86050c6-d16d-405e-8bba-7205945c9a81





How to: resolve ambiguous times


An ambiguous time is a time that maps to more than one Coordinated Universal Time (UTC). It occurs when the clock time is adjusted back in time, such as during the transition from a time zone’s daylight saving time to its standard time. When handling an ambiguous time, you can do one of the following:



		Make an assumption about how the time maps to UTC. For example, you can assume that an ambiguous time is always expressed in the time zone’s standard time.


		If the ambiguous time is an item of data entered by the user, you can leave it to the user to resolve the ambiguity.





This article shows how to resolve an ambiguous time by assuming that it represents the time zone’s standard time.



To map an ambiguous time to a time zone’s standard time



		Call the System.TimeZoneInfo.IsAmbiguousTime(DateTime) or System.TimeZoneInfo.IsAmbiguousTime(DateTimeOffset) method to determine whether the time is ambiguous.


		If the time is ambiguous, subtract the time from the TimeSpan object returned by the time zone’s BaseUtcOffset property.


		Call the static (Shared in Visual Basic) SpecifyKind method to set the UTC date and time value’s Kind property to DateTimeKind.Utc.








Example


The following example illustrates how to convert an ambiguous DateTime to UTC by assuming that it represents the local time zone’s standard time.


private DateTime ResolveAmbiguousTime(DateTime ambiguousTime)
{
   // Time is not ambiguous
   if (! TimeZoneInfo.Local.IsAmbiguousTime(ambiguousTime))
   { 
      return ambiguousTime; 
   }
   // Time is ambiguous
   else
   {
      DateTime utcTime = DateTime.SpecifyKind(ambiguousTime - TimeZoneInfo.Local.BaseUtcOffset, 
                                              DateTimeKind.Utc);      
      Console.WriteLine("{0} local time corresponds to {1} {2}.", 
                        ambiguousTime, utcTime, utcTime.Kind.ToString());
      return utcTime;            
   }   
}






Private Function ResolveAmbiguousTime(ambiguousTime As Date) As Date
   ' Time is not ambiguous
   If Not TimeZoneInfo.Local.IsAmbiguousTime(ambiguousTime) Then 
      Return TimeZoneInfo.ConvertTimeToUtc(ambiguousTime) 
   ' Time is ambiguous
   Else
      Dim utcTime As Date = DateTime.SpecifyKind(ambiguousTime - TimeZoneInfo.Local.BaseUtcOffset, DateTimeKind.Utc)      
      Console.WriteLine("{0} local time corresponds to {1} {2}.", ambiguousTime, utcTime, utcTime.Kind.ToString())
      Return utcTime            
   End If   
End Function






The example consists of a method named ResolveAmbiguousTime that determines whether the DateTime value passed to it is ambiguous. If the value is ambiguous, the method returns a DateTime value that represents the corresponding UTC time. The method handles this conversion by subtracting the value of the local time zone’s BaseUtcOffset property from the local time.


Ordinarily, an ambiguous time is handled by calling the GetAmbiguousTimeOffsets method to retrieve an array of TimeSpan objects that contain the ambiguous time’s possible UTC offsets. However, this example makes the arbitrary assumption that an ambiguous time should always be mapped to the time zone’s standard time. The BaseUtcOffset property returns the offset between UTC and a time zone’s standard time.





See Also


Dates, times, and time zones


How to: let users resolve ambiguous times








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/time-zone-overview.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Time zone overview
description: Time zone overview
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/16/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e3a10f62-d403-4441-8621-adc964e32c07





Time zone overview


The System.TimeZoneInfo class simplifies the creation of time zone-aware applications. The TimeZoneInfo class supports working with the local time zone and Coordinated Universal Time (UTC), as well as any time zone about which information is predefined in the registry. You can also use TimeZoneInfo to define custom time zones that the system has no information about.



Time Zone Essentials


A time zone is a geographical region in which the same time is used. Typically, but not always, adjacent time zones are one hour apart. The time in any of the world’s time zones can be expressed as an offset from Coordinated Universal Time (UTC).


Many of the world’s time zones support daylight saving time. Daylight saving time tries to maximize daylight hours by advancing the time forward by one hour in the spring or early summer, and returning to the normal (or standard) time in the late summer or fall. These changes to and from standard time are known as adjustment rules.


The transition to and from daylight saving time in a particular time zone can be defined either by a fixed or a floating adjustment rule. A fixed adjustment rule sets a particular date on which the transition to or from daylight saving time occurs each year. For example, a transition from daylight saving time to standard time that occurs each year on October 25 follows a fixed adjustment rule. Much more common are floating adjustment rules, which set a particular day of a particular week of a particular month for the transition to or from daylight saving time. For example, a transition from standard time to daylight saving time that occurs on the third Sunday of March follows a floating adjustment rule.


For time zones that support adjustment rules, the transition to and from daylight saving time creates two kinds of anomalous times: invalid times and ambiguous times. An invalid time is a nonexistent time created by the transition from standard time to daylight saving time. For example, if this transition occurs on a particular day at 2:00 A.M. and causes the time to change to 3:00 A.M., each time interval between 2:00 A.M. and 2:59:99 A.M. is invalid. An ambiguous time is a time that can be mapped to two different times in a single time zone. It is created by the transition from daylight saving time to standard time. For example, if this transition occurs on a particular day at 2:00 A.M. and causes the time to change to 1:00 A.M., each time interval between 1:00 A.M. and 1:59:99 A.M. can be interpreted as either a standard time or a daylight saving time.





Time Zone Terminology


The following table defines terms commonly used when working with time zones and developing time zone-aware applications.


Term | Definition
—- | ———-
Adjustment rule | A rule that defines when the transition from standard time to daylight saving time and back from daylight saving time to standard time occurs. Each adjustment rule has a start and end date that defines when the rule is in place (for example, the adjustment rule is in place from January 1, 1986, to December 31, 2020), a delta (the amount of time by which the standard time changes as a result of the application of the adjustment rule), and information about the specific date and time that the transitions are to occur during the adjustment period. Transitions can follow either a fixed rule or a floating rule.
Ambiguous time | A time that can be mapped to two different times in a single time zone. It occurs when the clock time is adjusted back in time, such as during the transition from a time zone’s daylight saving time to its standard time. For example, if this transition occurs on a particular day at 2:00 A.M. and causes the time to change to 1:00 A.M., each time interval between 1:00 A.M. and 1:59:99 A.M. can be interpreted as either a standard time or a daylight saving time.
Fixed rule | An adjustment rule that sets a particular date for the transition to or from daylight saving time. For example, a transition from daylight saving time to standard time that occurs each year on October 25 follows a fixed adjustment rule.
Floating rule | An adjustment rule that sets a particular day of a particular week of a particular month for the transition to or from daylight saving time. For example, a transition from standard time to daylight saving time that occurs on the third Sunday of March follows a floating adjustment rule.
Invalid time | A nonexistent time that is an artifact of the transition from standard time to daylight saving time. It occurs when the clock time is adjusted forward in time, such as during the transition from a time zone’s standard time to its daylight saving time. For example, if this transition occurs on a particular day at 2:00 A.M. and causes the time to change to 3:00 A.M., each time interval between 2:00 A.M. and 2:59:99 A.M. is invalid.
Transition time | Information about a specific time change, such as the change from daylight saving time to standard time or vice versa, in a particular time zone.





Time Zones and the TimeZoneInfo Class


In .NET, a System.TimeZoneInfo object represents a time zone, based on information provided by the operating system. The dependence of the TimeZoneInfo class on the operating system means that a time zone-aware application cannot be certain that a particular time zone is defined on all operating systems. As a result, the attempt to instantiate a specific time zone (other than the local time zone or the time zone that represents UTC) should use exception handling. It should also provide some method of letting the application to continue if a required TimeZoneInfo object cannot be instantiated.


Because each time zone is characterized by a base offset from UTC, as well as by an offset from UTC that reflects any existing adjustment rules, a time in one time zone can be easily converted to the time in another time zone. For this purpose, the TimeZoneInfo object includes several conversion methods, including:



		ConvertTime(DateTime, TimeZoneInfo), which converts a System.DateTime to the time in a particular time zone.


		ConvertTime(DateTime, TimeZoneInfo, TimeZoneInfo), which converts a DateTime from one time zone to another.


		ConvertTime(DateTimeOffset, TimeZoneInfo), which converts a System.DateTimeOffset to the time in a particular time zone.





For details on converting times between time zones, see Converting times between time zones.





See Also


Dates, times, and time zones








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Expression Trees
description: Expression Trees
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: aceb4719-0d5a-4b19-b01f-b51063bcc54f





Expression Trees


If you have used LINQ, you have experience with a rich library
where the Func types are part of the API set. (If you are not familiar
with LINQ, you probably want to read the LINQ tutorial and
the tutorial on lambda expressions before this one.)
Expression Trees provide richer interaction with the arguments that
are functions.


You write function arguments, typically using Lambda Expressions, when
you create LINQ queries. In a typical LINQ query, those function arguments are
transformed into a delegate the compiler creates.


When you want to have a richer interaction, you need to use Expression Trees.
Expression Trees represent code as a structure that you can examine,
modify, or execute. These tools give you the power to manipulate code during
run time. You can write code that examines running algorithms, or injects new
capabilities. In more advanced scenarios, you can modify running algorithms,
and even translate C# expressions into another form for execution in another
environment.


You’ve likely already written code that uses Expression Trees. Entity Framework’s
LINQ APIs accept Expression Trees as the arguments for the LINQ Query Expression Pattern.
That enables Entity Framework [http://docs.efproject.net/en/latest/] to translate the query you wrote in C# into SQL
that executes in the database engine. Another example is Moq [https://github.com/Moq/moq],
which is a popular mocking framework for .NET.


The remaining sections of this tutorial will explore what Expression Trees are,
examine the framework classes that support expression trees, and show you how to work
with expression trees. You’ll learn how to read expression trees, how to create
expression trees, how to create modified expression trees, and how to execute the
code represented by expression trees. After reading, you will be ready to use these
structures to create rich adaptive algorithms.



1. [Expression Trees Explained](expression-trees-explained.md)Understand the structure and concepts behind *Expression Trees*.







		Framework Types Supporting Expression Trees


Learn about the structures and classes that define and manipulate expression trees.





		Executing Expressions


Learn how to convert an expression tree represented as a Lambda Expression into a delegate and execute the resulting delegate.





		Interpreting Expressions


Learn how to traverse and examine expression trees to understand what code the expression tree represents.





		Building Expressions


Learn how to construct the nodes for an expression tree and build expression trees.





		Translating Expressions


Learn how to build a modified copy of an expression tree, or translate an expression tree into a different format.





		Summing up


Review the information on expression trees.












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/datetime/let-users-resolve-ambiguous-times.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: let users resolve ambiguous times”
description: How to let users resolve ambiguous times
keywords: .NET, .NET Core
author: stevehoag
manager: wpickett
ms.date: 08/15/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d6858a5c-02ab-4367-9e08-fa22c051c38d





How to: let users resolve ambiguous times


An ambiguous time is a time that maps to more than one Coordinated Universal Time (UTC). It occurs when the clock time is adjusted back in time, such as during the transition from a time zone’s daylight saving time to its standard time. When handling an ambiguous time, you can do one of the following:



		If the ambiguous time is an item of data entered by the user, you can leave it to the user to resolve the ambiguity.


		Make an assumption about how the time maps to UTC. For example, you can assume that an ambiguous time is always expressed in the time zone’s standard time.





This article shows how to let a user resolve an ambiguous time.



To let a user resolve an ambiguous time



		Get the date and time input by the user.


		Call the IsAmbiguousTime(DateTime) or IsAmbiguousTime(DateTimeOffset) method to determine whether the time is ambiguous.


		Let the user select the desired offset.


		Get the UTC date and time by subtracting the offset selected by the user from the local time.


		Call the static (Shared in Visual Basic ) SpecifyKind method to set the UTC date and time value’s Kind property to DateTimeKind.Utc.








Example


The following example prompts the user to enter a date and time and, if it is ambiguous, lets the user select the UTC time that the ambiguous time maps to. The example uses a DateTime object; you can substitute a DateTimeOffset object if desired.


private void GetUserDateInput()
{
   // Get date and time from user
   DateTime inputDate = GetUserDateTime();
   DateTime utcDate;

   // Exit if date has no significant value
   if (inputDate == DateTime.MinValue) return;

   if (TimeZoneInfo.Local.IsAmbiguousTime(inputDate))
   {
      Console.WriteLine("The date you've entered is ambiguous.");
      Console.WriteLine("Please select the correct offset from Universal Coordinated Time:");
      TimeSpan[] offsets = TimeZoneInfo.Local.GetAmbiguousTimeOffsets(inputDate);
      for (int ctr = 0; ctr < offsets.Length; ctr++)
      {
         Console.WriteLine("{0}.) {1} hours, {2} minutes", ctr, offsets[ctr].Hours, offsets[ctr].Minutes);
      }
      Console.Write("> ");
      int selection = Convert.ToInt32(Console.ReadLine());

      // Convert local time to UTC, and set Kind property to DateTimeKind.Utc
      utcDate = DateTime.SpecifyKind(inputDate - offsets[selection], DateTimeKind.Utc);

      Console.WriteLine("{0} local time corresponds to {1} {2}.", inputDate, utcDate, utcDate.Kind.ToString());
   }
   else
   {
      utcDate = inputDate.ToUniversalTime();
      Console.WriteLine("{0} local time corresponds to {1} {2}.", inputDate, utcDate, utcDate.Kind.ToString());    
   }
}

private DateTime GetUserDateTime() 
{
   bool exitFlag = false;             // flag to exit loop if date is valid
   string dateString;  
   DateTime inputDate = DateTime.MinValue;

   Console.Write("Enter a local date and time: ");
   while (! exitFlag)
   {
      dateString = Console.ReadLine();
      if (dateString.ToUpper() == "E")
         exitFlag = true;

      if (DateTime.TryParse(dateString, out inputDate))
         exitFlag = true;
      else
         Console.Write("Enter a valid date and time, or enter 'e' to exit: ");
   }

   return inputDate;        
}






Private Sub GetUserDateInput()
   ' Get date and time from user
   Dim inputDate As Date = GetUserDateTime()
   Dim utcDate As Date

   ' Exit if date has no significant value
   If inputDate = Date.MinValue Then Exit Sub

   If TimeZoneInfo.Local.IsAmbiguousTime(inputDate) Then
      Console.WriteLine("The date you've entered is ambiguous.")
      Console.WriteLine("Please select the correct offset from Universal Coordinated Time:")
      Dim offsets() As TimeSpan = TimeZoneInfo.Local.GetAmbiguousTimeOffsets(inputDate)
      For ctr As Integer = 0 to offsets.Length - 1
         Dim zoneDescription As String
         If offsets(ctr).Equals(TimeZoneInfo.Local.BaseUtcOffset) Then 
            zoneDescription = TimeZoneInfo.Local.StandardName
         Else
            zoneDescription = TimeZoneInfo.Local.DaylightName
         End If
         Console.WriteLine("{0}.) {1} hours, {2} minutes ({3})", _
                           ctr, offsets(ctr).Hours, offsets(ctr).Minutes, zoneDescription)
      Next         
      Console.Write("> ")
      Dim selection As Integer = CInt(Console.ReadLine())

      ' Convert local time to UTC, and set Kind property to DateTimeKind.Utc
      utcDate = Date.SpecifyKind(inputDate - offsets(selection), DateTimeKind.Utc)

      Console.WriteLine("{0} local time corresponds to {1} {2}.", inputDate, utcDate, utcDate.Kind.ToString())
   Else
      utcDate = inputDate.ToUniversalTime()
      Console.WriteLine("{0} local time corresponds to {1} {2}.", inputDate, utcDate, utcDate.Kind.ToString())    
   End If
End Sub

Private Function GetUserDateTime() As Date
   Dim exitFlag As Boolean = False            ' flag to exit loop if date is valid
   Dim dateString As String 
   Dim inputDate As Date = Date.MinValue

   Console.Write("Enter a local date and time: ")
   Do While Not exitFlag
      dateString = Console.ReadLine()
      If dateString.ToUpper = "E" Then exitFlag = True
      If Date.TryParse(dateString, inputDate) Then
         exitFlag = true
      Else   
         Console.Write("Enter a valid date and time, or enter 'e' to exit: ")
      End If
   Loop

   Return inputDate        
End Function






The core of the example code uses an array of TimeSpan objects to indicate possible offsets of the ambiguous time from UTC. However, these offsets are unlikely to be meaningful to the user. To clarify the meaning of the offsets, the code also notes whether an offset represents the local time zone’s standard time or its daylight saving time. The code determines which time is standard and which time is daylight by comparing the offset with the value of the BaseUtcOffset property. This property indicates the difference between the UTC and the time zone’s standard time.


In this example, all references to the local time zone are made through the TimeZoneInfo.Local property; the local time zone is never assigned to an object variable. This is a recommended practice because another call could clear the cached data and invalidate any objects that the local time zone is assigned to.





See Also


Dates, times, and time zones


How to: resolve ambiguous times








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/fsharp-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Types
description: F# Types
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c7272a0d-5ab6-4eae-bceb-e49af498b917





F# Types


This topic describes the types that are used in F# and how F# types are named and described.



Summary of F# Types


Some types are considered primitive types, such as the Boolean type bool and integral and floating point types of various sizes, which include types for bytes and characters. These types are described in Primitive Types.


Other types that are built into the language include tuples, lists, arrays, sequences, records, and discriminated unions. If you have experience with other .NET languages and are learning F#, you should read the topics for each of these types. Links to more information about these types are included in the Related Topics [https://msdn.microsoft.com/library/#rel] section of this topic. These F#-specific types support styles of programming that are common to functional programming languages. Many of these types have associated modules in the F# library that support common operations on these types.


The type of a function includes information about the parameter types and return type.


The .NET Framework is the source of object types, interface types, delegate types, and others. You can define your own object types just as you can in any other .NET language.


Also, F# code can define aliases, which are named type abbreviations, that are alternative names for types. You might use type abbreviations when the type might change in the future and you want to avoid changing the code that depends on the type. Or, you might use a type abbreviation as a friendly name for a type that can make code easier to read and understand.


F# provides useful collection types that are designed with functional programming in mind. Using these collection types helps you write code that is more functional in style. For more information, see F# Collection Types.





Syntax for Types


In F# code, you often have to write out the names of types. Every type has a syntactic form, and you use these syntactic forms in type annotations, abstract method declarations, delegate declarations, signatures, and other constructs. Whenever you declare a new program construct in the interpreter, the interpreter prints the name of the construct and the syntax for its type. This syntax might be just an identifier for a user-defined type or a built-in identifier such as for int or string, but for more complex types, the syntax is more complex.


The following table shows aspects of the type syntax for F# types.


|Type|Type syntax|Examples|
|—-|———–|——–|
|primitive type|type-name|int

float

string|
|aggregate type (class, structure, union, record, enum, and so on)|type-name|System.DateTime

Color|
|type abbreviation|type-abbreviation-name|bigint|
|fully qualified type|namespaces.type-name

or

modules.type-name

or

namespaces.modules.type-name|System.IO.StreamWriter|
|array|type-name[] or

type-name array|int[]

array<int>

int array|
|two-dimensional array|type-name[,]|int[,]

float[,]|
|three-dimensional array|type-name[,,]|float[,,]|
|tuple|type-name1 

*


 type-name2 ...|For example, (1,'b',3) has type int * char * int|
|generic type|type-parametergeneric-type-name*<br /><br />or<br /><br />*generic-type-name*&lt;*type-parameter-list*&gt;|‘a list<br /><br />list<‘a><br /><br />Dictionary<‘key, ‘value>| |constructed type (a generic type that has a specific type argument supplied)|*type-argumentgeneric-type-name

or

generic-type-name&lt;


type-argument-list&gt;


|int option

string list

int ref

option<int>

list<string>

ref<int>

Dictionary<int, string>|
|function type that has a single parameter|parameter-type1 -&gt;


 return-type|A function that takes an int and returns a string has type int -> string|
|function type that has multiple parameters|parameter-type1 -&gt;


 parameter-type2 -&gt;


 ... -&gt;


 return-type|A function that takes an int and a float and returns a string has type int -> float -> string|
|higher order function as a parameter|(function-type)|List.map has type ('a -> 'b) -> 'a list -> 'b list|
|delegate|delegate of function-type|delegate of unit -> int|
|flexible type|#type-name|#System.Windows.Forms.Control

#seq<int>|





Related Topics


Topic	Description
—–	———–
Primitive Types	Describes built-in simple types such as integral types, the Boolean type, and character types.
Unit Type	Describes the unit type, a type that has one value and that is indicated by (); equivalent to void in C# and Nothing in Visual Basic.
Tuples	Describes the tuple type, a type that consists of associated values of any type grouped in pairs, triples, quadruples, and so on.
Options	Describes the option type, a type that may either have a value or be empty.
Lists	Describes lists, which are ordered, immutable series of elements all of the same type.
Arrays	Describes arrays, which are ordered sets of mutable elements of the same type that occupy a contiguous block of memory and are of fixed size.
Sequences	Describes the sequence type, which represents a logical series of values; individual values are computed only as necessary.
Records	Describes the record type, a small aggregate of named values.
Discriminated Unions	Describes the discriminated union type, a type whose values can be any one of a set of possible types.
Functions	Describes function values.
Classes	Describes the class type, an object type that corresponds to a .NET reference type. Class types can contain members, properties, implemented interfaces, and a base type.
Structures	Describes the struct type, an object type that corresponds to a .NET value type. The struct type usually represents a small aggregate of data.
Interfaces	Describes interface types, which are types that represent a set of members that provide certain functionality but that contain no data. An interface type must be implemented by an object type to be useful.
Delegates	Describes the delegate type, which represents a function as an object.
Enumerations	Describes enumeration types, whose values belong to a set of named values.
Attributes	Describes attributes, which are used to specify metadata for another type.
Exception Types	Describes exceptions, which specify error information.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/code-quotations.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Code Quotations (F#)
description: Code Quotations (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 4559e659-2b04-48bd-8a0b-8527920eec95





Code Quotations



[!NOTE]
The API reference link will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This topic describes code quotations, a language feature that enables you to generate and work with F# code expressions programmatically. This feature lets you generate an abstract syntax tree that represents F# code. The abstract syntax tree can then be traversed and processed according to the needs of your application. For example, you can use the tree to generate F# code or generate code in some other language.



Quoted Expressions


A quoted expression is an F# expression in your code that is delimited in such a way that it is not compiled as part of your program, but instead is compiled into an object that represents an F# expression. You can mark a quoted expression in one of two ways: either with type information or without type information. If you want to include type information, you use the symbols <@ and @> to delimit the quoted expression. If you do not need type information, you use the symbols <@@ and @@>. The following code shows typed and untyped quotations.


[!code-fsharpMain]


Traversing a large expression tree is faster if you do not include type information. The resulting type of an expression quoted with the typed symbols is Expr<'T>, where the type parameter has the type of the expression as determined by the F# compiler’s type inference algorithm. When you use code quotations without type information, the type of the quoted expression is the non-generic type Expr [https://msdn.microsoft.com/library/ed6a2caf-69d4-45c2-ab97-e9b3be9bce65]. You can call the Raw [https://msdn.microsoft.com/library/47fb94f1-e77f-4c68-aabc-2b0ba40d59c2] property on the typed Expr class to obtain the untyped Expr object.


There are a variety of static methods that allow you to generate F# expression objects programmatically in the Expr class without using quoted expressions.


Note that a code quotation must include a complete expression. For a let binding, for example, you need both the definition of the bound name and an additional expression that uses the binding. In verbose syntax, this is an expression that follows the in keyword. At the top-level in a module, this is just the next expression in the module, but in a quotation, it is explicitly required.


Therefore, the following expression is not valid.


// Not valid:
// <@ let f x = x + 1 @>






But the following expressions are valid.


[!code-fsharpMain]


To use code quotations, you must add an import declaration (by using the open keyword) that opens the Microsoft.FSharp.Quotations [https://msdn.microsoft.com/library/e9ce8a3a-e00c-4190-bad5-cce52ee089b2] namespace.


The F# PowerPack provides support for evaluating and executing F# expression objects.





Expr Type


An instance of the Expr type represents an F# expression. Both the generic and the non-generic Expr types are documented in the F# library documentation. For more information, see Microsoft.FSharp.Quotations Namespace [https://msdn.microsoft.com/visualfsharpdocs/conceptual/microsoft.fsharp.quotations-namespace-%5bfsharp%5d] and Quotations.Expr Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/quotations.expr-class-%5bfsharp%5d].





Splicing Operators


Splicing enables you to combine literal code quotations with expressions that you have created programmatically or from another code quotation. The % and %% operators enable you to add an F# expression object into a code quotation. You use the % operator to insert a typed expression object into a typed quotation; you use the %% operator to insert an untyped expression object into an untyped quotation. Both operators are unary prefix operators. Thus if expr is an untyped expression of type Expr, the following code is valid.


<@@ 1 + %%expr @@>






And if expr is a typed quotation of type Expr<int>, the following code is valid.


<@ 1 + %expr @>









Example



Description


The following example illustrates the use of code quotations to put F# code into an expression object and then print the F# code that represents the expression. A function println is defined that contains a recursive function print that displays an F# expression object (of type Expr) in a friendly format. There are several active patterns in the Microsoft.FSharp.Quotations.Patterns [https://msdn.microsoft.com/library/093944a9-c752-403a-8983-5fcd5dbf92a4] and Microsoft.FSharp.Quotations.DerivedPatterns [https://msdn.microsoft.com/library/d2434a6e-ae7b-4f3d-b567-c162938bc9cd] modules that can be used to analyze expression objects. This example does not include all the possible patterns that might appear in an F# expression. Any unrecognized pattern triggers a match to the wildcard pattern (_) and is rendered by using the ToString method, which, on the Expr type, lets you know the active pattern to add to your match expression.





Code


[!code-fsharpMain]





Output


fun (x:System.Int32) -> x + 1
a + 1
let f = fun (x:System.Int32) -> x + 10 in f 10











Example



Description


You can also use the three active patterns in the ExprShape module [https://msdn.microsoft.com/library/7685150e-2432-4d39-9338-57292eff18de] to traverse expression trees with fewer active patterns. These active patterns can be useful when you want to traverse a tree but you do not need all the information in most of the nodes. When you use these patterns, any F# expression matches one of the following three patterns: ShapeVar if the expression is a variable, ShapeLambda if the expression is a lambda expression, or ShapeCombination if the expression is anything else. If you traverse an expression tree by using the active patterns as in the previous code example, you have to use many more patterns to handle all possible F# expression types, and your code will be more complex. For more information, see ExprShape.ShapeVar

|


ShapeLambda|


ShapeCombination Active Pattern [https://msdn.microsoft.com/visualfsharpdocs/conceptual/exprshape.shapevarhshapelambdahshapecombination-active-pattern-%5bfsharp%5d].


The following code example can be used as a basis for more complex traversals. In this code, an expression tree is created for an expression that involves a function call, add. The SpecificCall [https://msdn.microsoft.com/library/05a77b21-20fe-4b9a-8e07-aa999538198d] active pattern is used to detect any call to add in the expression tree. This active pattern assigns the arguments of the call to the exprList value. In this case, there are only two, so these are pulled out and the function is called recursively on the arguments. The results are inserted into a code quotation that represents a call to mul by using the splice operator (%%). The println function from the previous example is used to display the results.


The code in the other active pattern branches just regenerates the same expression tree, so the only change in the resulting expression is the change from add to mul.





Code


[!code-fsharpMain]





Output


1 + Module1.add(2,Module1.add(3,4))
1 + Module1.mul(2,Module1.mul(3,4))











See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/delegates.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Delegates (F#)
description: Delegates (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 719948a3-83ba-4618-82d6-a22945c3f4b0





Delegates


A delegate represents a function call as an object. In F#, you ordinarily should use function values to represent functions as first-class values; however, delegates are used in the .NET Framework and so are needed when you interoperate with APIs that expect them. They may also be used when authoring libraries designed for use from other .NET Framework languages.



Syntax


type delegate-typename = delegate of type1 -> type2









Remarks


In the previous syntax, type1 represents the argument type or types and type2 represents the return type. The argument types that are represented by type1 are automatically curried. This suggests that for this type you use a tuple form if the arguments of the target function are curried, and a parenthesized tuple for arguments that are already in the tuple form. The automatic currying removes a set of parentheses, leaving a tuple argument that matches the target method. Refer to the code example for the syntax you should use in each case.


Delegates can be attached to F# function values, and static or instance methods. F# function values can be passed directly as arguments to delegate constructors. For a static method, you construct the delegate by using the name of the class and the method. For an instance method, you provide the object instance and method in one argument. In both cases, the member access operator (.) is used.


The Invoke method on the delegate type calls the encapsulated function. Also, delegates can be passed as function values by referencing the Invoke method name without the parentheses.


The following code shows the syntax for creating delegates that represent various methods in a class. Depending on whether the method is a static method or an instance method, and whether it has arguments in the tuple form or the curried form, the syntax for declaring and assigning the delegate is a little different.


[!code-fsharpMain]


The following code shows some of the different ways you can work with delegates.


[!code-fsharpMain]


The output of the previous code example is as follows.


aaaaa
bbbbb
ccccc
[|"aaa"; "bbb"|]









See Also


F# Language Reference


Parameters and Arguments


Events








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/tuples.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Tuples (F#)
description: Tuples (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 35069073-9a82-410f-8dea-912e2a152e6d





Tuples



[!NOTE]
The following article does not cover struct tuples yet, which are an F# 4.1 feature.  They will be documented here.



A tuple is a grouping of unnamed but ordered values, possibly of different types.



Syntax


( element , ... , element )









Remarks


Each element in the previous syntax can be any expression.





Examples


Examples of tuples include pairs, triples, and so on, of the same or different types. Some examples are illustrated in the following code.


[!code-fsharpMain]





Obtaining Individual Values


You can use pattern matching to access and assign names for tuple elements, as shown in the following code.


[!code-fsharpMain]


You can use tuple patterns in let bindings as follows.


let (a, b) = (1, 2)






This binds values a and b at the same time. If you need only one element of the tuple, the wildcard character (the underscore) can be used to avoid creating a new name for a variable that you do not need.


let (a, _) = (1, 2)






The functions fst and snd return the first and second elements of a tuple, respectively.


[!code-fsharpMain]


There is no built-in function that returns the third element of a triple, but you can easily write one as follows.


[!code-fsharpMain]


Generally, it is better to use pattern matching to access individual tuple elements.





Using Tuples


Tuples provide a convenient way to return multiple values from a function, as shown in the following example. This example performs integer division and returns the rounded result of the operation as a first member of a tuple pair and the remainder as a second member of the pair.


[!code-fsharpMain]


Tuples can also be used as function arguments when you want to avoid the implicit currying of function arguments that is implied by the usual function syntax.


[!code-fsharpMain]


The usual syntax for defining the function let sum a b = a + b enables you to define a function that is the partial application of the first argument of the function, as shown in the following code.


[!code-fsharpMain]


Using a tuple as the parameter disables currying. For more information, see “Partial Application of Arguments” in Functions.





Names of Tuple Types


When you write out the name of a type that is a tuple, you use the 

*


 symbol to separate elements. For a tuple that consists of an int, a float, and a string, such as (10, 10.0, "ten"), the type would be written as follows.


int * float * string









Compiled Form of Tuples


If you are only using tuples from F# and not exposing them to other languages, and if you are not targeting a version of the .NET Framework that preceded version 4, you can ignore this section.


Tuples are compiled into objects of one of several generic types, all named System.Tuple, that are overloaded on the arity, or number of type parameters. Tuple types appear in this form when you view them from another language, such as C# or Visual Basic, or when you are using a tool that is not aware of F# constructs. The Tuple types were introduced in .NET Framework 4. If you are targeting an earlier version of the .NET Framework, the compiler uses versions of System.Tuple [https://msdn.microsoft.com/library/5ac7953d-acdc-4a58-bfb7-c1f6406c0fa3] from the 2.0 version of the F# Core Library. The types in this library are used only for applications that target the 2.0, 3.0, and 3.5 versions of the .NET Framework. Type forwarding is used to ensure binary compatibility between .NET Framework 2.0 and .NET Framework 4 F# components.





See Also


F# Language Reference


F# Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/loops-for-in-expression.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Loops: for...in Expression (F#)”
description: “Loops: for...in Expression (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: f54e3228-4aec-4d0a-ae37-bc3376508284





Loops: for...in Expression


This looping construct is used to iterate over the matches of a pattern in an enumerable collection such as a range expression, sequence, list, array, or other construct that supports enumeration.



Syntax


for pattern in enumerable-expression do
    body-expression









Remarks


The for...in expression can be compared to the for each statement in other .NET languages because it is used to loop over the values in an enumerable collection. However, for...in also supports pattern matching over the collection instead of just iteration over the whole collection.


The enumerable expression can be specified as an enumerable collection or, by using the .. operator, as a range on an integral type. Enumerable collections include lists, sequences, arrays, sets, maps, and so on. Any type that implements System.Collections.IEnumerable can be used.


When you express a range by using the .. operator, you can use the following syntax.


start .. finish


You can also use a version that includes an increment called the skip, as in the following code.


start .. skip .. finish


When you use integral ranges and a simple counter variable as a pattern, the typical behavior is to increment the counter variable by 1 on each iteration, but if the range includes a skip value, the counter is incremented by the skip value instead.


Values matched in the pattern can also be used in the body expression.


The following code examples illustrate the use of the for...in expression.


[!code-fsharpMain]


The output is as follows.


1
5
100
450
788






The following example shows how to loop over a sequence, and how to use a tuple pattern instead of a simple variable.


[!code-fsharpMain]


The output is as follows.


1 squared is 1
2 squared is 4
3 squared is 9
4 squared is 16
5 squared is 25
6 squared is 36
7 squared is 49
8 squared is 64
9 squared is 81
10 squared is 100






The following example shows how to loop over a simple integer range.


[!code-fsharpMain]


The output of function1 is as follows.


1 2 3 4 5 6 7 8 9 10






The following example shows how to loop over a range with a skip of 2, which includes every other element of the range.


[!code-fsharpMain]


The output of function2 is as follows.


1 3 5 7 9






The following example shows how to use a character range.


[!code-fsharpMain]


The output of function3 is as follows.


a b c d e f g h i j k l m n o p q r s t u v w x y z






The following example shows how to use a negative skip value for a reverse iteration.


[!code-fsharpMain]


The output of function4 is as follows.


10 9 8 7 6 5 4 3 2 1 ... Lift off!






The beginning and ending of the range can also be expressions, such as functions, as in the following code.


[!code-fsharpMain]


The output of function5 with this input is as follows.


2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18






The next example shows the use of a wildcard character (_) when the element is not needed in the loop.


[!code-fsharpMain]


The output is as follows.


Number of elements in list1: 5






Note You can use for...in in sequence expressions and other computation expressions, in which case a customized version of the for...in expression is used. For more information, see Sequences, Asynchronous Workflows, and Computation Expressions.





See Also


F# Language Reference


Loops: for...to Expression


Loops: while...do Expression








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/query-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Query Expressions (F#)
description: Query Expressions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 35df2d80-e6d2-4873-b2de-9b45b9e9e650





Query Expressions



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



Query expressions enable you to query a data source and put the data in a desired form. Query expressions provide support for LINQ in F#.



Syntax


query { expression }









Remarks


Query expressions are a type of computation expression similar to sequence expressions. Just as you specify a sequence by providing code in a sequence expression, you specify a set of data by providing code in a query expression. In a sequence expression, the yield keyword identifies data to be returned as part of the resulting sequence. In query expressions, the select keyword performs the same function. In addition to the select keyword, F# also supports a number of query operators that are much like the parts of a SQL SELECT statement. Here is an example of a simple query expression, along with code that connects to the Northwind OData source.


// Use the OData type provider to create types that can be used to access the Northwind database.
// Add References to FSharp.Data.TypeProviders and System.Data.Services.Client
open Microsoft.FSharp.Data.TypeProviders

type Northwind = ODataService<"http://services.odata.org/Northwind/Northwind.svc">
let db = Northwind.GetDataContext()

// A query expression.
let query1 =
    query {
        for customer in db.Customers do
            select customer
    }

// Print results
query1
|> Seq.iter (fun customer -> printfn "Company: %s Contact: %s" customer.CompanyName customer.ContactName)






In the previous code example, the query expression is in curly braces. The meaning of the code in the expression is, return every customer in the Customers table in the database in the query results. Query expressions return a type that implements System.Linq.IQueryable&#96;1 and System.Collections.Generic.IEnumerable&#96;1, and so they can be iterated using the Seq module [https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684] as the example shows.


Every computation expression type is built from a builder class. The builder class for the query computation expression is QueryBuilder. For more information, see Computation Expressions and Linq.QueryBuilder Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.querybuilder-class-%5bfsharp%5d].





Query Operators


Query operators enable you to specify the details of the query, such as to put criteria on records to be returned, or specify the sorting order of results. The query source must support the query operator. If you attempt to use an unsupported query operator, System.NotSupportedException will be thrown.


Only expressions that can be translated to SQL are allowed in query expressions. For example, no function calls are allowed in the expressions when you use the where query operator.


Table 1 shows available query operators. In addition, see Table2, which compares SQL queries and the equivalent F# query expressions later in this topic. Some query operators aren’t supported by some type providers. In particular, the OData type provider is limited in the query operators that it supports due to limitations in OData. For more information, see ODataService Type Provider (F#) [https://msdn.microsoft.com/library/bac609dd-9d12-4bf9-a662-24bdf4faa43e].


This table assumes a database in the following form:


[image: Sample Database Diagram]


The code in the tables that follow also assumes the following database connection code. Projects should add references to System.Data,  System.Data.Linq, and FSharp.Data.TypeProviders assemblies. The code that creates this database is included at the end of this topic.


open System
open Microsoft.FSharp.Data.TypeProviders
open System.Data.Linq.SqlClient
open System.Linq
open Microsoft.FSharp.Linq

type schema = SqlDataConnection< @"Data Source=SERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;" >

let db = schema.GetDataContext()

// Needed for some query operator examples:
let data = [ 1; 5; 7; 11; 18; 21]







Table 1. Query Operators



  
    		Operator
    		Description
  


  
  		`contains`
		Determines whether the selected elements include a specified element.

query {
    for student in db.Student do
    select student.Age.Value
    contains 11
}






  		`count`		Returns the number of selected elements.

query {
    for student in db.Student do
    select student
    count
}





		`last`		Selects the last element of those selected so far.

query {
    for number in data do
    last
}





		`lastOrDefault`		Selects the last element of those selected so far, or a default value if no element is found.

query {
    for number in data do
    where (number < 0)
    lastOrDefault
}





		`exactlyOne`		Selects the single, specific element selected so far. If multiple elements are present, an exception is thrown.

query {
    for student in db.Student do
    where (student.StudentID = 1)
    select student
    exactlyOne
}





		`exactlyOneOrDefault`		Selects the single, specific element of those selected so far, or a default value if that element is not found.

query {
    for student in db.Student do
    where (student.StudentID = 1)
    select student
    exactlyOneOrDefault
}





		`headOrDefault`		Selects the first element of those selected so far, or a default value if the sequence contains no elements.

query {
    for student in db.Student do
    select student
    headOrDefault
}





		`select`		Projects each of the elements selected so far.

query {
    for student in db.Student do
    select student
}





		`where`		Selects elements based on a specified predicate.

query {
    for student in db.Student do
    where (student.StudentID > 4)
    select student
}





		`minBy`		Selects a value for each element selected so far and returns the minimum resulting value.

query {
    for student in db.Student do
    minBy student.StudentID
}





		`maxBy`		Selects a value for each element selected so far and returns the maximum resulting value.

query {
    for student in db.Student do
    maxBy student.StudentID
}





		`groupBy`		Groups the elements selected so far according to a specified key selector.

query {
    for student in db.Student do
    groupBy student.Age into g
    select (g.Key, g.Count())
}





		`sortBy`		Sorts the elements selected so far in ascending order by the given sorting key.

query {
    for student in db.Student do
    sortBy student.Name
    select student
}





		`sortByDescending`		Sorts the elements selected so far in descending order by the given sorting key.

query {
    for student in db.Student do
    sortByDescending student.Name
    select student
}





		`thenBy`		Performs a subsequent ordering of the elements selected so far in ascending order by the given sorting key. This operator may only be used after a `sortBy`, `sortByDescending`, `thenBy`, or `thenByDescending`.

query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenBy student.Name
    select student
}





		`thenByDescending`		Performs a subsequent ordering of the elements selected so far in descending order by the given sorting key. This operator may only be used after a `sortBy`, `sortByDescending`, `thenBy`, or `thenByDescending`.

query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenByDescending student.Name
    select student
}





		`groupValBy`		Selects a value for each element selected so far and groups the elements by the given key.

query {
    for student in db.Student do
    groupValBy student.Name student.Age into g
    select (g, g.Key, g.Count())
}





		`join`		Correlates two sets of selected values based on matching keys. Note that the order of the keys around the = sign in a join expression is significant. In all joins, if the line is split after the `->` symbol, the indentation must be indented at least as far as the keyword `for`.

query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}





		`groupJoin`		Correlates two sets of selected values based on matching keys and groups the results. Note that the order of the keys around the = sign in a join expression is significant.

query {
    for student in db.Student do
    groupJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g
    for courseSelection in g do
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}





		`leftOuterJoin`		Correlates two sets of selected values based on matching keys and groups the results. If any group is empty, a group with a single default value is used instead. Note that the order of the keys around the = sign in a join expression is significant.

query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}





		`sumByNullable`		Selects a nullable value for each element selected so far and returns the sum of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    sumByNullable student.Age
}





		`minByNullable`		Selects a nullable value for each element selected so far and returns the minimum of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    minByNullable student.Age
}





		`maxByNullable`		Selects a nullable value for each element selected so far and returns the maximum of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    maxByNullable student.Age
}





		`averageByNullable`		Selects a nullable value for each element selected so far and returns the average of these values. If any nullable does not have a value, it is ignored.

query {
    for student in db.Student do
    averageByNullable (Nullable.float student.Age)
}





		`averageBy`		Selects a value for each element selected so far and returns the average of these values.

query {
    for student in db.Student do
    averageBy (float student.StudentID)
}





		`distinct`		Selects distinct elements from the elements selected so far.

query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct       
}





		`exists`		Determines whether any element selected so far satisfies a condition.

query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) })
    select student
}





		`find`		Selects the first element selected so far that satisfies a specified condition.

query {
    for student in db.Student do
    find (student.Name = "Abercrombie, Kim")
}





		`all`		Determines whether all elements selected so far satisfy a condition.

query {
    for student in db.Student do
    all (SqlMethods.Like(student.Name, "%,%"))
}





		`head`		Selects the first element from those selected so far.

query {
    for student in db.Student do
    head
}





		`nth`		Selects the element at a specified index amongst those selected so far.

query {
    for numbers in data do
    nth 3
}





		`skip`		Bypasses a specified number of the elements selected so far and then selects the remaining elements.

query {
    for student in db.Student do
    skip 1
}





		`skipWhile`		Bypasses elements in a sequence as long as a specified condition is true and then selects the remaining elements.

query {
    for number in data do
    skipWhile (number < 3)
    select student
}





		`sumBy`		Selects a value for each element selected so far and returns the sum of these values.

query {
    for student in db.Student do
    sumBy student.StudentID
}





		`take`		Selects a specified number of contiguous elements from those selected so far.

query {
    for student in db.Student do
    select student
    take 2
}





		`takeWhile`		Selects elements from a sequence as long as a specified condition is true, and then skips the remaining elements.

query {
    for number in data do
    takeWhile (number < 10)
}





		`sortByNullable`		Sorts the elements selected so far in ascending order by the given nullable sorting key.

query {
    for student in db.Student do
    sortByNullable student.Age
    select student
}





		`sortByNullableDescending`		Sorts the elements selected so far in descending order by the given nullable sorting key.

query {
    for student in db.Student do
    sortByNullableDescending student.Age
    select student
}





		`thenByNullable`		Performs a subsequent ordering of the elements selected so far in ascending order by the given nullable sorting key. This operator may only be used immediately after a `sortBy`, `sortByDescending`, `thenBy`, or `thenByDescending`, or their nullable variants.

query {
    for student in db.Student do
    sortBy student.Name
    thenByNullable student.Age
    select student
}





		`thenByNullableDescending`		Performs a subsequent ordering of the elements selected so far in descending order by the given nullable sorting key. This operator may only be used immediately after a `sortBy`, `sortByDescending`, `thenBy`, or `thenByDescending`, or their nullable variants.

query {
    for student in db.Student do
    sortBy student.Name
    thenByNullableDescending student.Age
    select student
}












Comparison of Transact-SQL and F# Query Expressions


The following table shows some common Transact-SQL queries and their equivalents in F#. The code in this table also assumes the same database as the previous table and the same initial code to set up the type provider.



Table 2. Transact-SQL and F# Query Expressions



  
    		Transact-SQL (not case sensitive)
    		F# Query Expression (case sensitive)
  


		
Select all fields from table.
SELECT * FROM Student


		
// All students.
query {
    for student in db.Student do
    select student
}





		
Count records in a table.
SELECT COUNT( * ) FROM Student


		// Count of students.
query {
    for student in db.Student do       
    count
}





		`EXISTS`

SELECT * FROM Student
WHERE EXISTS
  (SELECT * FROM CourseSelection
   WHERE CourseSelection.StudentID = Student.StudentID)



		// Find students who have signed up at least one course.
query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) })
    select student
}





		Grouping
SELECT Student.Age, COUNT( * ) FROM Student
GROUP BY Student.Age


		// Group by age and count.
query {
    for n in db.Student do
    groupBy n.Age into g
    select (g.Key, g.Count())
}
// OR
query {
    for n in db.Student do
    groupValBy n.Age n.Age into g
    select (g.Key, g.Count())
}





		
Grouping with condition.
SELECT Student.Age, COUNT( * )
FROM Student
GROUP BY Student.Age
HAVING student.Age > 10


		// Group students by age where age > 10.
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Key.HasValue && g.Key.Value > 10)
    select (g.Key, g.Count())
}




		
Grouping with count condition.
SELECT Student.Age, COUNT( * )
FROM Student
GROUP BY Student.Age
HAVING COUNT( * ) > 1


		// Group students by age and count number of students
// at each age with more than 1 student.
query {
    for student in db.Student do
    groupBy student.Age into group
    where (group.Count() > 1)
    select (group.Key, group.Count())
}




		
Grouping, counting, and summing.
SELECT Student.Age, COUNT( * ), SUM(Student.Age) as total
FROM Student
GROUP BY Student.Age


		// Group students by age and sum ages.
query {
    for student in db.Student do
    groupBy student.Age into g       
    let total =
        query {
            for student in g do
            sumByNullable student.Age
        }
    select (g.Key, g.Count(), total)
}




		
Grouping, counting, and ordering by count.
SELECT Student.Age, COUNT( * ) as myCount
FROM Student
GROUP BY Student.Age
HAVING COUNT( * ) > 1
ORDER BY COUNT( * ) DESC


		// Group students by age, count number of students
// at each age, and display all with count > 1
// in descending order of count.
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Count() > 1)       
    sortByDescending (g.Count())
    select (g.Key, g.Count())
}




		
`IN` a set of specified values
SELECT *
FROM Student
WHERE Student.StudentID IN (1, 2, 5, 10)


		// Select students where studentID is one of a given list.
let idQuery =
    query {
        for id in [1; 2; 5; 10] do
        select id
    }
query {
    for student in db.Student do
    where (idQuery.Contains(student.StudentID))
    select student
}




		
`LIKE` and `TOP`.
-- '_e%' matches strings where the second character is 'e'
SELECT TOP 2 * FROM Student
WHERE Student.Name LIKE '_e%'


		
// Look for students with Name match _e% pattern and take first two.
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "_e%") )
    select student
    take 2
}




		
`LIKE` with pattern match set.
-- '[abc]%' matches strings where the first character is
-- 'a', 'b', 'c', 'A', 'B', or 'C'
SELECT * FROM Student
WHERE Student.Name LIKE '[abc]%'



		query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[abc]%") )
    select student 
}




		
`LIKE` with set exclusion pattern.
-- '[^abc]%' matches strings where the first character is
-- not 'a', 'b', 'c', 'A', 'B', or 'C'
SELECT * FROM Student
WHERE Student.Name LIKE '[^abc]%'


		// Look for students with name matching [^abc]%% pattern.
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[^abc]%") )
    select student
}




		
`LIKE` on one field, but select a different field.
SELECT StudentID AS ID FROM Student
WHERE Student.Name LIKE '[^abc]%'


		query {
    for n in db.Student do
    where (SqlMethods.Like( n.Name, "[^abc]%") )
    select n.StudentID   
}




		`LIKE`, with substring search.
SELECT * FROM Student
WHERE Student.Name like '%A%'


		// Using Contains as a query filter.
query {
    for student in db.Student do
    where (student.Name.Contains("a"))
    select student
}




		
Simple `JOIN` with two tables.
SELECT * FROM Student
JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID


		// Join Student and CourseSelection tables.
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}




		`LEFT JOIN` with two tables.
SELECT * FROM Student
LEFT JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID


		//Left Join Student and CourseSelection tables.
query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}




		`JOIN` with `COUNT`
SELECT COUNT( * ) FROM Student
JOIN CourseSelection
ON Student.StudentID = CourseSelection.StudentID


		// Join with count.
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    count
}




		`DISTINCT`
SELECT DISTINCT StudentID FROM CourseSelection


		// Join with distinct.
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct
}




		Distinct count.
SELECT DISTINCT COUNT(StudentID) FROM CourseSelection


		// Join with distinct and count.
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    distinct
    count
}




		`BETWEEN`
SELECT * FROM Student
WHERE Student.Age BETWEEN 10 AND 15


		// Selecting students with ages between 10 and 15.
query {
    for student in db.Student do
    where (student.Age ?>= 10 && student.Age ?< 15)
    select student
}




		`OR`
SELECT * FROM Student
WHERE Student.Age = 11 OR Student.Age = 12


		// Selecting students with age that's either 11 or 12.
query {
    for student in db.Student do
    where (student.Age.Value = 11 || student.Age.Value = 12)
    select student
}




		`OR` with ordering
SELECT * FROM Student
WHERE Student.Age = 12 OR Student.Age = 13
ORDER BY Student.Age DESC


		// Selecting students in a certain age range and sorting.
query {
    for n in db.Student do
    where (n.Age.Value = 12 || n.Age.Value = 13)
    sortByNullableDescending n.Age
    select n
}




		`TOP`, `OR`, and ordering.
SELECT TOP 2 student.Name FROM Student
WHERE Student.Age = 11 OR Student.Age = 12
ORDER BY Student.Name DESC


		// Selecting students with certain ages,
// taking account of the possibility of nulls.
query {
    for student in db.Student do
    where
        ((student.Age.HasValue && student.Age.Value = 11) ||
         (student.Age.HasValue && student.Age.Value = 12))
    sortByDescending student.Name
    select student.Name
    take 2
}




		`UNION` of two queries.
SELECT * FROM Student
UNION
SELECT * FROM lastStudent


		
let query1 =
    query {
        for n in db.Student do
        select (n.Name, n.Age)
    }let query2 =
query {
for n in db.LastStudent do
select (n.Name, n.Age)
}


query2.Union (query1)









		Intersection of two queries.
SELECT * FROM Student
INTERSECT
SELECT * FROM LastStudent



		
let query1 =
    query {
        for n in db.Student do
        select (n.Name, n.Age)
    }let query2 =
query {
for n in db.LastStudent do
select (n.Name, n.Age)
}


query1.Intersect(query2)









		`CASE` condition.
SELECT student.StudentID,
CASE Student.Age
  WHEN -1 THEN 100
  ELSE Student.Age
END,
Student.Age
FROM Student


		
// Using if statement to alter results for special value.
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
             (student.StudentID, System.Nullable(100), student.Age)
         else (student.StudentID, student.Age, student.Age))
}




		Multiple cases.
SELECT Student.StudentID,
CASE Student.Age
  WHEN -1 THEN 100
  WHEN 0 THEN 1000
  ELSE Student.Age
END,
Student.Age
FROM Student


		// Using if statement to alter results for special values.
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
             (student.StudentID, System.Nullable(100), student.Age)
         elif student.Age.HasValue && student.Age.Value = 0 then
             (student.StudentID, System.Nullable(1000), student.Age)
         else (student.StudentID, student.Age, student.Age))
}




		Multiple tables.
SELECT * FROM Student, Course


		// Multiple table select.
query {
    for student in db.Student do
    for course in db.Course do
    select (student, course)
}




		Multiple joins.
SELECT Student.Name, Course.CourseName
FROM Student
JOIN CourseSelection
ON CourseSelection.StudentID = Student.StudentID
JOIN Course
ON Course.CourseID = CourseSelection.CourseID


		// Multiple joins.
query {
    for student in db.Student do
    join courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID)
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}




		Multiple left outer joins.
SELECT Student.Name, Course.CourseName
FROM Student
LEFT OUTER JOIN CourseSelection
ON CourseSelection.StudentID = Student.StudentID
LEFT OUTER JOIN Course
ON Course.CourseID = CourseSelection.CourseID


		// Using leftOuterJoin with multiple joins.
query {
    for student in db.Student do
    leftOuterJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g1
    for courseSelection in g1.DefaultIfEmpty() do
    leftOuterJoin course in db.Course
        on (courseSelection.CourseID = course.CourseID) into g2
    for course in g2.DefaultIfEmpty() do
    select (student.Name, course.CourseName)
}






The following code can be used to create the sample database for these examples.


SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GOUSE [master];
GO


IF EXISTS (SELECT * FROM sys.databases WHERE name = ‘MyDatabase’)
DROP DATABASE MyDatabase;
GO


– Create the MyDatabase database.
CREATE DATABASE MyDatabase COLLATE SQL_Latin1_General_CP1_CI_AS;
GO


– Specify a simple recovery model
– to keep the log growth to a minimum.
ALTER DATABASE MyDatabase
SET RECOVERY SIMPLE;
GO


USE MyDatabase;
GO


CREATE TABLE [dbo].[Course] (
[CourseID]   INT           NOT NULL,
[CourseName] NVARCHAR (50) NOT NULL,
PRIMARY KEY CLUSTERED ([CourseID] ASC)
);


CREATE TABLE [dbo].[Student] (
[StudentID] INT           NOT NULL,
[Name]      NVARCHAR (50) NOT NULL,
[Age]       INT           NULL,
PRIMARY KEY CLUSTERED ([StudentID] ASC)
);


CREATE TABLE [dbo].[CourseSelection] (
[ID]        INT NOT NULL,
[StudentID] INT NOT NULL,
[CourseID]  INT NOT NULL,
PRIMARY KEY CLUSTERED ([ID] ASC),
CONSTRAINT [FK_CourseSelection_ToTable] FOREIGN KEY ([StudentID]) REFERENCES [dbo].[Student] ([StudentID]) ON DELETE NO ACTION ON UPDATE NO ACTION,
CONSTRAINT [FK_CourseSelection_Course_1] FOREIGN KEY ([CourseID]) REFERENCES [dbo].[Course] ([CourseID]) ON DELETE NO ACTION ON UPDATE NO ACTION
);


CREATE TABLE [dbo].[LastStudent] (
[StudentID] INT           NOT NULL,
[Name]      NVARCHAR (50) NOT NULL,
[Age]       INT           NULL,
PRIMARY KEY CLUSTERED ([StudentID] ASC)
);


– Insert data into the tables.
USE MyDatabase
INSERT INTO Course (CourseID, CourseName)
VALUES(1, ‘Algebra I’);
INSERT INTO Course (CourseID, CourseName)
VALUES(2, ‘Trigonometry’);
INSERT INTO Course (CourseID, CourseName)
VALUES(3, ‘Algebra II’);
INSERT INTO Course (CourseID, CourseName)
VALUES(4, ‘History’);
INSERT INTO Course (CourseID, CourseName)
VALUES(5, ‘English’);
INSERT INTO Course (CourseID, CourseName)
VALUES(6, ‘French’);
INSERT INTO Course (CourseID, CourseName)
VALUES(7, ‘Chinese’);


INSERT INTO Student (StudentID, Name, Age)
VALUES(1, ‘Abercrombie, Kim’, 10);
INSERT INTO Student (StudentID, Name, Age)
VALUES(2, ‘Abolrous, Hazen’, 14);
INSERT INTO Student (StudentID, Name, Age)
VALUES(3, ‘Hance, Jim’, 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(4, ‘Adams, Terry’, 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(5, ‘Hansen, Claus’, 11);
INSERT INTO Student (StudentID, Name, Age)
VALUES(6, ‘Penor, Lori’, 13);
INSERT INTO Student (StudentID, Name, Age)
VALUES(7, ‘Perham, Tom’, 12);
INSERT INTO Student (StudentID, Name, Age)
VALUES(8, ‘Peng, Yun-Feng’, NULL);


INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(1, 1, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(2, 1, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(3, 1, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(4, 2, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(5, 2, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(6, 2, 6);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(7, 2, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(8, 3, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(9, 3, 1);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(10, 4, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(11, 4, 5);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(12, 4, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(13, 5, 3);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(14, 5, 2);
INSERT INTO CourseSelection (ID, StudentID, CourseID)
VALUES(15, 7, 3);







The following code contains  the sample code that appears in this topic.


#if INTERACTIVE
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.dll"
#r "System.Data.Linq.dll"
#endif
open System
open Microsoft.FSharp.Data.TypeProviders
open System.Data.Linq.SqlClient
open System.Linq

type schema = SqlDataConnection<"Data Source=SERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;">

let db = schema.GetDataContext()

let data = [1; 5; 7; 11; 18; 21]

type Nullable<'T when 'T : ( new : unit -> 'T) and 'T : struct and 'T :> ValueType > with
    member this.Print() =
        if this.HasValue then this.Value.ToString()
        else "NULL"

printfn "\ncontains query operator"
query {
    for student in db.Student do
    select student.Age.Value
    contains 11
}
|> printfn "Is at least one student age 11? %b"

printfn "\ncount query operator"
query {
    for student in db.Student do
    select student
    count
}
|> printfn "Number of students: %d"

printfn "\nlast query operator."
let num =
    query {
        for number in data do
        sortBy number
        last
    }
printfn "Last number: %d" num


open Microsoft.FSharp.Linq

printfn "\nlastOrDefault query operator."
query {
    for number in data do
    sortBy number
    lastOrDefault
}
|> printfn "lastOrDefault: %d"

printfn "\nexactlyOne query operator."
let student2 =
    query {
        for student in db.Student do
        where (student.StudentID = 1)
        select student
        exactlyOne
    }
printfn "Student with StudentID = 1 is %s" student2.Name

printfn "\nexactlyOneOrDefault query operator."
let student3 =
    query {
        for student in db.Student do
        where (student.StudentID = 1)
        select student
        exactlyOneOrDefault
    }
printfn "Student with StudentID = 1 is %s" student3.Name

printfn "\nheadOrDefault query operator."
let student4 =
    query {
        for student in db.Student do
        select student
        headOrDefault
    }
printfn "head student is %s" student4.Name

printfn "\nselect query operator."
query {
    for student in db.Student do
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nwhere query operator."
query {
    for student in db.Student do
    where (student.StudentID > 4)
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nminBy query operator."
let student5 =
    query {
        for student in db.Student do
        minBy student.StudentID
    }

printfn "\nmaxBy query operator."
let student6 =
    query {
        for student in db.Student do
        maxBy student.StudentID
    }

printfn "\ngroupBy query operator."
query {
    for student in db.Student do
    groupBy student.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "Age: %s Count at that age: %d" (age.Print()) count)

printfn "\nsortBy query operator."
query {
    for student in db.Student do
    sortBy student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nsortByDescending query operator."
query {
    for student in db.Student do
    sortByDescending student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.StudentID student.Name)

printfn "\nthenBy query operator."
query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenBy student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.Age.Value student.Name)

printfn "\nthenByDescending query operator."
query {
    for student in db.Student do
    where student.Age.HasValue
    sortBy student.Age.Value
    thenByDescending student.Name
    select student
}
|> Seq.iter (fun student -> printfn "StudentID, Name: %d %s" student.Age.Value student.Name)

printfn "\ngroupValBy query operator."
query {
    for student in db.Student do
    groupValBy student.Name student.Age into g
    select (g, g.Key, g.Count())
}
|> Seq.iter (fun (group, age, count) ->
    printfn "Age: %s Count at that age: %d" (age.Print()) count
    group |> Seq.iter (fun name -> printfn "Name: %s" name))

printfn "\n sumByNullable query operator"
query {
    for student in db.Student do
    sumByNullable student.Age
}
|> (fun sum -> printfn "Sum of ages: %s" (sum.Print()))

printfn "\n minByNullable"
query {
    for student in db.Student do
    minByNullable student.Age
}
|> (fun age -> printfn "Minimum age: %s" (age.Print()))

printfn "\n maxByNullable"
query {
    for student in db.Student do
    maxByNullable student.Age
}
|> (fun age -> printfn "Maximum age: %s" (age.Print()))

printfn "\n averageBy"
query {
    for student in db.Student do
    averageBy (float student.StudentID)
}
|> printfn "Average student ID: %f"

printfn "\n averageByNullable"
query {
    for student in db.Student do
    averageByNullable (Nullable.float student.Age)
}
|> (fun avg -> printfn "Average age: %s" (avg.Print()))

printfn "\n find query operator"
query {
    for student in db.Student do
    find (student.Name = "Abercrombie, Kim")
}
|> (fun student -> printfn "Found a match with StudentID = %d" student.StudentID)

printfn "\n all query operator"
query {
    for student in db.Student do
    all (SqlMethods.Like(student.Name, "%,%"))
}
|> printfn "Do all students have a comma in the name? %b"

printfn "\n head query operator"
query {
    for student in db.Student do
    head
}
|> (fun student -> printfn "Found the head student with StudentID = %d" student.StudentID)

printfn "\n nth query operator"
query {
    for numbers in data do
    nth 3
}
|> printfn "Third number is %d"

printfn "\n skip query operator"
query {
    for student in db.Student do
    skip 1
}
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID)

printfn "\n skipWhile query operator"
query {
    for number in data do
    skipWhile (number < 3)
    select number
}
|> Seq.iter (fun number -> printfn "Number = %d" number)


printfn "\n sumBy query operator"
query {
    for student in db.Student do
    sumBy student.StudentID
}
|> printfn "Sum of student IDs: %d"

printfn "\n take query operator"
query {
    for student in db.Student do
    select student
    take 2
}
|> Seq.iter (fun student -> printfn "StudentID = %d" student.StudentID)

printfn "\n takeWhile query operator"
query {
    for number in data do
    takeWhile (number < 10)
}
|> Seq.iter (fun number -> printfn "Number = %d" number)

printfn "\n sortByNullable query operator"
query {
    for student in db.Student do
    sortByNullable student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n sortByNullableDescending query operator"
query {
    for student in db.Student do
    sortByNullableDescending student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n thenByNullable query operator"
query {
    for student in db.Student do
    sortBy student.Name
    thenByNullable student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "\n thenByNullableDescending query operator"
query {
    for student in db.Student do
    sortBy student.Name
    thenByNullableDescending student.Age
    select student
}
|> Seq.iter (fun student ->
    printfn "StudentID, Name, Age: %d %s %s" student.StudentID student.Name (student.Age.Print()))

printfn "All students: "
query {
    for student in db.Student do
    select student
}
|> Seq.iter (fun student -> printfn "%s %d %s" student.Name student.StudentID (student.Age.Print()))

printfn "\nCount of students: "
query {
    for student in db.Student do
    count
}
|> (fun count -> printfn "Student count: %d" count)

printfn "\nExists."
query {
    for student in db.Student do
    where
        (query {
            for courseSelection in db.CourseSelection do
            exists (courseSelection.StudentID = student.StudentID) })
    select student
}
|> Seq.iter (fun student -> printfn "%A" student.Name)

printfn "\n Group by age and count"
query {
    for n in db.Student do
    groupBy n.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count)

printfn "\n Group value by age."
query {
    for n in db.Student do
    groupValBy n.Age n.Age into g
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, count) -> printfn "%s %d" (age.Print()) count)

printfn "\nGroup students by age where age > 10."
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Key.HasValue && g.Key.Value > 10)
    select (g, g.Key)
}
|> Seq.iter (fun (students, age) ->
    printfn "Age: %s" (age.Value.ToString())
    students
    |> Seq.iter (fun student -> printfn "%s" student.Name))

printfn "\nGroup students by age and print counts of number of students at each age with more than 1 student."
query {
    for student in db.Student do
    groupBy student.Age into group
    where (group.Count() > 1)
    select (group.Key, group.Count())
}
|> Seq.iter (fun (age, ageCount) ->
    printfn "Age: %s Count: %d" (age.Print()) ageCount)

printfn "\nGroup students by age and sum ages."
query {
    for student in db.Student do
    groupBy student.Age into g
    let total = query { for student in g do sumByNullable student.Age }
    select (g.Key, g.Count(), total)
}
|> Seq.iter (fun (age, count, total) ->
    printfn "Age: %d" (age.GetValueOrDefault())
    printfn "Count: %d" count
    printfn "Total years: %s" (total.ToString()))

printfn "\nGroup students by age and count number of students at each age, and display all with count > 1 in descending order of count."
query {
    for student in db.Student do
    groupBy student.Age into g
    where (g.Count() > 1)
    sortByDescending (g.Count())
    select (g.Key, g.Count())
}
|> Seq.iter (fun (age, myCount) ->
    printfn "Age: %s" (age.Print())
    printfn "Count: %d" myCount)

printfn "\n Select students from a set of IDs"
let idList = [1; 2; 5; 10]
let idQuery =
    query { for id in idList do select id }
query {
    for student in db.Student do
    where (idQuery.Contains(student.StudentID))
    select student
}
|> Seq.iter (fun student ->
    printfn "Name: %s" student.Name)

printfn "\nLook for students with Name match _e%% pattern and take first two."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "_e%") )
    select student
    take 2
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with Name matching [abc]%% pattern."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[abc]%") )
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with name matching [^abc]%% pattern."
query {
    for student in db.Student do
    where (SqlMethods.Like( student.Name, "[^abc]%") )
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nLook for students with name matching [^abc]%% pattern and select ID."
query {
    for n in db.Student do
    where (SqlMethods.Like( n.Name, "[^abc]%") )
    select n.StudentID
}
|> Seq.iter (fun id -> printfn "%d" id)

printfn "\n Using Contains as a query filter."
query {
    for student in db.Student do
    where (student.Name.Contains("a"))
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nSearching for names from a list."
let names = [|"a";"b";"c"|]
query {
    for student in db.Student do
    if names.Contains (student.Name) then select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\nJoin Student and CourseSelection tables."
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    select (student, selection)
}
|> Seq.iter (fun (student, selection) -> printfn "%d %s %d" student.StudentID student.Name selection.CourseID)

printfn "\nLeft Join Student and CourseSelection tables."
query {
    for student in db.Student do
    leftOuterJoin selection in db.CourseSelection
        on (student.StudentID = selection.StudentID) into result
    for selection in result.DefaultIfEmpty() do
    select (student, selection)
}
|> Seq.iter (fun (student, selection) ->
    let selectionID, studentID, courseID =
        match selection with
        | null -> "NULL", "NULL", "NULL"
        | sel -> (sel.ID.ToString(), sel.StudentID.ToString(), sel.CourseID.ToString())
    printfn "%d %s %d %s %s %s" student.StudentID student.Name (student.Age.GetValueOrDefault()) selectionID studentID courseID)

printfn "\nJoin with count"
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    count
}
|> printfn "%d"

printfn "\n Join with distinct."
query {
    for student in db.Student do
    join selection in db.CourseSelection
        on (student.StudentID = selection.StudentID)
    distinct
}
|> Seq.iter (fun (student, selection) -> printfn "%s %d" student.Name selection.CourseID)

printfn "\n Join with distinct and count."
query {
    for n in db.Student do
    join e in db.CourseSelection
        on (n.StudentID = e.StudentID)
    distinct
    count
}
|> printfn "%d"

printfn "\n Selecting students with age between 10 and 15."
query {
    for student in db.Student do
    where (student.Age.Value >= 10 && student.Age.Value < 15)
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\n Selecting students with age either 11 or 12."
query {
    for student in db.Student do
    where (student.Age.Value = 11 || student.Age.Value = 12)
    select student
}
|> Seq.iter (fun student -> printfn "%s" student.Name)

printfn "\n Selecting students in a certain age range and sorting."
query {
    for n in db.Student do
    where (n.Age.Value = 12 || n.Age.Value = 13)
    sortByNullableDescending n.Age
    select n
}
|> Seq.iter (fun student -> printfn "%s %s" student.Name (student.Age.Print()))

printfn "\n Selecting students with certain ages, taking account of possibility of nulls."
query {
    for student in db.Student do
    where
        ((student.Age.HasValue && student.Age.Value = 11) ||
         (student.Age.HasValue && student.Age.Value = 12))
    sortByDescending student.Name
    select student.Name
    take 2
}
|> Seq.iter (fun name -> printfn "%s" name)

printfn "\n Union of two queries."
module Queries =
    let query1 = query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

    let query2 = query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

    query2.Union (query1)
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print()))

printfn "\n Intersect of two queries."
module Queries2 =
    let query1 = query {
        for n in db.Student do
        select (n.Name, n.Age)
    }

    let query2 = query {
        for n in db.LastStudent do
        select (n.Name, n.Age)
    }

    query1.Intersect(query2)
    |> Seq.iter (fun (name, age) -> printfn "%s %s" name (age.Print()))

printfn "\n Using if statement to alter results for special value."
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         else (student.StudentID, student.Age, student.Age))
}
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) (age.Print()))

printfn "\n Using if statement to alter results special values."
query {
    for student in db.Student do
    select
        (if student.Age.HasValue && student.Age.Value = -1 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         elif student.Age.HasValue && student.Age.Value = 0 then
            (student.StudentID, System.Nullable<int>(100), student.Age)
         else (student.StudentID, student.Age, student.Age))
}
|> Seq.iter (fun (id, value, age) -> printfn "%d %s %s" id (value.Print()) (age.Print()))

printfn "\n Multiple table select."
query {
    for student in db.Student do
    for course in db.Course do
    select (student, course)
}
|> Seq.iteri (fun index (student, course) ->
    if index = 0 then
        printfn "StudentID Name Age CourseID CourseName"
    printfn "%d %s %s %d %s" student.StudentID student.Name (student.Age.Print()) course.CourseID course.CourseName)

printfn "\nMultiple Joins"
query {
    for student in db.Student do
    join courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID)
    join course in db.Course
        on (courseSelection.CourseID = course.CourseID)
    select (student.Name, course.CourseName)
}
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName courseName)

printfn "\nMultiple Left Outer Joins"
query {
    for student in db.Student do
    leftOuterJoin courseSelection in db.CourseSelection
        on (student.StudentID = courseSelection.StudentID) into g1
    for courseSelection in g1.DefaultIfEmpty() do
    leftOuterJoin course in db.Course
        on (courseSelection.CourseID = course.CourseID) into g2
    for course in g2.DefaultIfEmpty() do
    select (student.Name, course.CourseName)
}
|> Seq.iter (fun (studentName, courseName) -> printfn "%s %s" studentName courseName)






And here is the full output when this code is run in F# Interactive.


--> Referenced 'C:\Program Files (x86)\Reference Assemblies\Microsoft\FSharp\3.0\Runtime\v4.0\Type Providers\FSharp.Data.TypeProviders.dll'


--> Referenced 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.dll'


--> Referenced 'C:\Windows\Microsoft.NET\Framework\v4.0.30319\System.Data.Linq.dll'


contains query operator
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp5E3C.dll'...
Binding session to 'C:\Users\ghogen\AppData\Local\Temp\tmp611A.dll'...
Is at least one student age 11? true

count query operator
Number of students: 8

last query operator.
Last number: 21

lastOrDefault query operator.
lastOrDefault: 21

exactlyOne query operator.
Student with StudentID = 1 is Abercrombie, Kim

exactlyOneOrDefault query operator.
Student with StudentID = 1 is Abercrombie, Kim

headOrDefault query operator.
head student is Abercrombie, Kim

select query operator.
StudentID, Name: 1 Abercrombie, Kim
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 3 Hance, Jim
StudentID, Name: 4 Adams, Terry
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom
StudentID, Name: 8 Peng, Yun-Feng

where query operator.
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom
StudentID, Name: 8 Peng, Yun-Feng

minBy query operator.

maxBy query operator.

groupBy query operator.
Age: NULL Count at that age: 1
Age: 10 Count at that age: 1
Age: 11 Count at that age: 1
Age: 12 Count at that age: 3
Age: 13 Count at that age: 1
Age: 14 Count at that age: 1

sortBy query operator.
StudentID, Name: 1 Abercrombie, Kim
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 4 Adams, Terry
StudentID, Name: 3 Hance, Jim
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 6 Penor, Lori
StudentID, Name: 7 Perham, Tom

sortByDescending query operator.
StudentID, Name: 7 Perham, Tom
StudentID, Name: 6 Penor, Lori
StudentID, Name: 8 Peng, Yun-Feng
StudentID, Name: 5 Hansen, Claus
StudentID, Name: 3 Hance, Jim
StudentID, Name: 4 Adams, Terry
StudentID, Name: 2 Abolrous, Hazen
StudentID, Name: 1 Abercrombie, Kim

thenBy query operator.
StudentID, Name: 10 Abercrombie, Kim
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Adams, Terry
StudentID, Name: 12 Hance, Jim
StudentID, Name: 12 Perham, Tom
StudentID, Name: 13 Penor, Lori
StudentID, Name: 14 Abolrous, Hazen

thenByDescending query operator.
StudentID, Name: 10 Abercrombie, Kim
StudentID, Name: 11 Hansen, Claus
StudentID, Name: 12 Perham, Tom
StudentID, Name: 12 Hance, Jim
StudentID, Name: 12 Adams, Terry
StudentID, Name: 13 Penor, Lori
StudentID, Name: 14 Abolrous, Hazen

groupValBy query operator.
Age: NULL Count at that age: 1
Name: Peng, Yun-Feng
Age: 10 Count at that age: 1
Name: Abercrombie, Kim
Age: 11 Count at that age: 1
Name: Hansen, Claus
Age: 12 Count at that age: 3
Name: Hance, Jim
Name: Adams, Terry
Name: Perham, Tom
Age: 13 Count at that age: 1
Name: Penor, Lori
Age: 14 Count at that age: 1
Name: Abolrous, Hazen

sumByNullable query operator
Sum of ages: 84

minByNullable
Minimum age: 10

maxByNullable
Maximum age: 14

averageBy
Average student ID: 4.500000

averageByNullable
Average age: 12

find query operator
Found a match with StudentID = 1

all query operator
Do all students have a comma in the name? true

head query operator
Found the head student with StudentID = 1

nth query operator
Third number is 11

skip query operator
StudentID = 2
StudentID = 3
StudentID = 4
StudentID = 5
StudentID = 6
StudentID = 7
StudentID = 8

skipWhile query operator
Number = 5
Number = 7
Number = 11
Number = 18
Number = 21

sumBy query operator
Sum of student IDs: 36

take query operator
StudentID = 1
StudentID = 2

takeWhile query operator
Number = 1
Number = 5
Number = 7

sortByNullable query operator
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 7 Perham, Tom 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 2 Abolrous, Hazen 14

sortByNullableDescending query operator
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 8 Peng, Yun-Feng NULL

thenByNullable query operator
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12

thenByNullableDescending query operator
StudentID, Name, Age: 1 Abercrombie, Kim 10
StudentID, Name, Age: 2 Abolrous, Hazen 14
StudentID, Name, Age: 4 Adams, Terry 12
StudentID, Name, Age: 3 Hance, Jim 12
StudentID, Name, Age: 5 Hansen, Claus 11
StudentID, Name, Age: 8 Peng, Yun-Feng NULL
StudentID, Name, Age: 6 Penor, Lori 13
StudentID, Name, Age: 7 Perham, Tom 12
All students:
Abercrombie, Kim 1 10
Abolrous, Hazen 2 14
Hance, Jim 3 12
Adams, Terry 4 12
Hansen, Claus 5 11
Penor, Lori 6 13
Perham, Tom 7 12
Peng, Yun-Feng 8 NULL

Count of students:
Student count: 8

Exists.
"Abercrombie, Kim"
"Abolrous, Hazen"
"Hance, Jim"
"Adams, Terry"
"Hansen, Claus"
"Perham, Tom"

Group by age and count
NULL 1
10 1
11 1
12 3
13 1
14 1

Group value by age.
NULL 1
10 1
11 1
12 3
13 1
14 1

Group students by age where age > 10.
Age: 11
Hansen, Claus
Age: 12
Hance, Jim
Adams, Terry
Perham, Tom
Age: 13
Penor, Lori
Age: 14
Abolrous, Hazen

Group students by age and print counts of number of students at each age with more than 1 student.
Age: 12 Count: 3

Group students by age and sum ages.
Age: 0
Count: 1
Total years:
Age: 10
Count: 1
Total years: 10
Age: 11
Count: 1
Total years: 11
Age: 12
Count: 3
Total years: 36
Age: 13
Count: 1
Total years: 13
Age: 14
Count: 1
Total years: 14

Group students by age and count number of students at each age, and display all with count > 1 in descending order of count.
Age: 12
Count: 3

Select students from a set of IDs
Name: Abercrombie, Kim
Name: Abolrous, Hazen
Name: Hansen, Claus

Look for students with Name match _e% pattern and take first two.
Penor, Lori
Perham, Tom

Look for students with Name matching [abc]% pattern.
Abercrombie, Kim
Abolrous, Hazen
Adams, Terry

Look for students with name matching [^abc]% pattern.
Hance, Jim
Hansen, Claus
Penor, Lori
Perham, Tom
Peng, Yun-Feng

Look for students with name matching [^abc]% pattern and select ID.
3
5
6
7
8

Using Contains as a query filter.
Abercrombie, Kim
Abolrous, Hazen
Hance, Jim
Adams, Terry
Hansen, Claus
Perham, Tom

Searching for names from a list.

Join Student and CourseSelection tables.
2 Abolrous, Hazen 2
3 Hance, Jim 3
5 Hansen, Claus 5
2 Abolrous, Hazen 2
5 Hansen, Claus 5
6 Penor, Lori 6
3 Hance, Jim 3
2 Abolrous, Hazen 2
1 Abercrombie, Kim 1
2 Abolrous, Hazen 2
5 Hansen, Claus 5
2 Abolrous, Hazen 2
3 Hance, Jim 3
2 Abolrous, Hazen 2
3 Hance, Jim 3

Left Join Student and CourseSelection tables.
1 Abercrombie, Kim 10 9 3 1
2 Abolrous, Hazen 14 1 1 2
2 Abolrous, Hazen 14 4 2 2
2 Abolrous, Hazen 14 8 3 2
2 Abolrous, Hazen 14 10 4 2
2 Abolrous, Hazen 14 12 4 2
2 Abolrous, Hazen 14 14 5 2
3 Hance, Jim 12 2 1 3
3 Hance, Jim 12 7 2 3
3 Hance, Jim 12 13 5 3
3 Hance, Jim 12 15 7 3
4 Adams, Terry 12 NULL NULL NULL
5 Hansen, Claus 11 3 1 5
5 Hansen, Claus 11 5 2 5
5 Hansen, Claus 11 11 4 5
6 Penor, Lori 13 6 2 6
7 Perham, Tom 12 NULL NULL NULL
8 Peng, Yun-Feng 0 NULL NULL NULL

Join with count
15

Join with distinct.
Abercrombie, Kim 2
Abercrombie, Kim 3
Abercrombie, Kim 5
Abolrous, Hazen 2
Abolrous, Hazen 5
Abolrous, Hazen 6
Abolrous, Hazen 3
Hance, Jim 2
Hance, Jim 1
Adams, Terry 2
Adams, Terry 5
Adams, Terry 2
Hansen, Claus 3
Hansen, Claus 2
Perham, Tom 3

Join with distinct and count.
15

Selecting students with age between 10 and 15.
Abercrombie, Kim
Abolrous, Hazen
Hance, Jim
Adams, Terry
Hansen, Claus
Penor, Lori
Perham, Tom

Selecting students with age either 11 or 12.
Hance, Jim
Adams, Terry
Hansen, Claus
Perham, Tom

Selecting students in a certain age range and sorting.
Penor, Lori 13
Perham, Tom 12
Hance, Jim 12
Adams, Terry 12

Selecting students with certain ages, taking account of possibility of nulls.
Hance, Jim
Adams, Terry

Union of two queries.
Abercrombie, Kim 10
Abolrous, Hazen 14
Hance, Jim 12
Adams, Terry 12
Hansen, Claus 11
Penor, Lori 13
Perham, Tom 12
Peng, Yun-Feng NULL

Intersect of two queries.

Using if statement to alter results for special value.
1 10 10
2 14 14
3 12 12
4 12 12
5 11 11
6 13 13
7 12 12
8 NULL NULL

Using if statement to alter results special values.
1 10 10
2 14 14
3 12 12
4 12 12
5 11 11
6 13 13
7 12 12
8 NULL NULL

Multiple table select.
StudentID Name Age CourseID CourseName
1 Abercrombie, Kim 10 1 Algebra I
2 Abolrous, Hazen 14 1 Algebra I
3 Hance, Jim 12 1 Algebra I
4 Adams, Terry 12 1 Algebra I
5 Hansen, Claus 11 1 Algebra I
6 Penor, Lori 13 1 Algebra I
7 Perham, Tom 12 1 Algebra I
8 Peng, Yun-Feng NULL 1 Algebra I
1 Abercrombie, Kim 10 2 Trigonometry
2 Abolrous, Hazen 14 2 Trigonometry
3 Hance, Jim 12 2 Trigonometry
4 Adams, Terry 12 2 Trigonometry
5 Hansen, Claus 11 2 Trigonometry
6 Penor, Lori 13 2 Trigonometry
7 Perham, Tom 12 2 Trigonometry
8 Peng, Yun-Feng NULL 2 Trigonometry
1 Abercrombie, Kim 10 3 Algebra II
2 Abolrous, Hazen 14 3 Algebra II
3 Hance, Jim 12 3 Algebra II
4 Adams, Terry 12 3 Algebra II
5 Hansen, Claus 11 3 Algebra II
6 Penor, Lori 13 3 Algebra II
7 Perham, Tom 12 3 Algebra II
8 Peng, Yun-Feng NULL 3 Algebra II
1 Abercrombie, Kim 10 4 History
2 Abolrous, Hazen 14 4 History
3 Hance, Jim 12 4 History
4 Adams, Terry 12 4 History
5 Hansen, Claus 11 4 History
6 Penor, Lori 13 4 History
7 Perham, Tom 12 4 History
8 Peng, Yun-Feng NULL 4 History
1 Abercrombie, Kim 10 5 English
2 Abolrous, Hazen 14 5 English
3 Hance, Jim 12 5 English
4 Adams, Terry 12 5 English
5 Hansen, Claus 11 5 English
6 Penor, Lori 13 5 English
7 Perham, Tom 12 5 English
8 Peng, Yun-Feng NULL 5 English
1 Abercrombie, Kim 10 6 French
2 Abolrous, Hazen 14 6 French
3 Hance, Jim 12 6 French
4 Adams, Terry 12 6 French
5 Hansen, Claus 11 6 French
6 Penor, Lori 13 6 French
7 Perham, Tom 12 6 French
8 Peng, Yun-Feng NULL 6 French
1 Abercrombie, Kim 10 7 Chinese
2 Abolrous, Hazen 14 7 Chinese
3 Hance, Jim 12 7 Chinese
4 Adams, Terry 12 7 Chinese
5 Hansen, Claus 11 7 Chinese
6 Penor, Lori 13 7 Chinese
7 Perham, Tom 12 7 Chinese
8 Peng, Yun-Feng NULL 7 Chinese

Multiple Joins
Abercrombie, Kim Trigonometry
Abercrombie, Kim Algebra II
Abercrombie, Kim English
Abolrous, Hazen Trigonometry
Abolrous, Hazen English
Abolrous, Hazen French
Abolrous, Hazen Algebra II
Hance, Jim Trigonometry
Hance, Jim Algebra I
Adams, Terry Trigonometry
Adams, Terry English
Adams, Terry Trigonometry
Hansen, Claus Algebra II
Hansen, Claus Trigonometry
Perham, Tom Algebra II

Multiple Left Outer Joins
Abercrombie, Kim Trigonometry
Abercrombie, Kim Algebra II
Abercrombie, Kim English
Abolrous, Hazen Trigonometry
Abolrous, Hazen English
Abolrous, Hazen French
Abolrous, Hazen Algebra II
Hance, Jim Trigonometry
Hance, Jim Algebra I
Adams, Terry Trigonometry
Adams, Terry English
Adams, Terry Trigonometry
Hansen, Claus Algebra II
Hansen, Claus Trigonometry
Penor, Lori
Perham, Tom Algebra II
Peng, Yun-Feng

type schema
val db : schema.ServiceTypes.SimpleDataContextTypes.MyDatabase1
val student : System.Data.Linq.Table<schema.ServiceTypes.Student>
val data : int list = [1; 5; 7; 11; 18; 21]
type Nullable<'T
                when 'T : (new : unit ->  'T) and 'T : struct and
                     'T :> System.ValueType> with
  member Print : unit -> string
val num : int = 21
val student2 : schema.ServiceTypes.Student
val student3 : schema.ServiceTypes.Student
val student4 : schema.ServiceTypes.Student
val student5 : int = 1
val student6 : int = 8
val idList : int list = [1; 2; 5; 10]
val idQuery : seq<int>
val names : string [] = [|"a"; "b"; "c"|]
module Queries = begin
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>>
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>>
end
module Queries2 = begin
  val query1 : System.Linq.IQueryable<string * System.Nullable<int>>
  val query2 : System.Linq.IQueryable<string * System.Nullable<int>>
end











See Also


F# Language Reference


Linq.QueryBuilder Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.querybuilder-class-%5bfsharp%5d]


Computation Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/import-declarations-the-open-keyword.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Import Declarations: The open Keyword (F#)”
description: “Import Declarations: The open Keyword (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 1e98e48c-52e9-4314-8954-85d5583125f0





Import Declarations: The open Keyword



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



An import declaration specifies a module or namespace whose elements you can reference without using a fully qualified name.



Syntax


open module-or-namespace-name









Remarks


Referencing code by using the fully qualified namespace or module path every time can create code that is hard to write, read, and maintain. Instead, you can use the open keyword for frequently used modules and namespaces so that when you reference a member of that module or namespace, you can use the short form of the name instead of the fully qualified name. This keyword is similar to the using keyword in C#, using``namespace in Visual C++, and Imports in Visual Basic.


The module or namespace provided must be in the same project or in a referenced project or assembly. If it is not, you can add a reference to the project, or use the -reference command-line option (or its abbreviation, -r). For more information, see Compiler Options.


The import declaration makes the names available in the code that follows the declaration, up to the end of the enclosing namespace, module, or file.


When you use multiple import declarations, they should appear on separate lines.


The following code shows the use of the open keyword to simplify code.


[!code-fsharpMain]


The F# compiler does not emit an error or warning when ambiguities occur when the same name occurs in more than one open module or namespace. When ambiguities occur, F# gives preference to the more recently opened module or namespace. For example, in the following code, empty means Seq.empty, even though empty is located in both the List and Seq modules.


open List
open Seq
printfn "%A" empty






Therefore, be careful when you open modules or namespaces such as List or Seq that contain members that have identical names; instead, consider using the qualified names. You should avoid any situation in which the code is dependent upon the order of the import declarations.





Namespaces That Are Open by Default


Some namespaces are so frequently used in F# code that they are opened implicitly without the need of an explicit import declaration. The following table shows the namespaces that are open by default.


Namespace	Description
———	———–
Microsoft.FSharp.Core	Contains basic F# type definitions for built-in types such as int and float.
Microsoft.FSharp.Core.Operators	Contains basic arithmetic operations such as + and *.
Microsoft.FSharp.Collections	Contains immutable collection classes such as List and Array.
Microsoft.FSharp.Control	Contains types for control constructs such as lazy evaluation and asynchronous workflows.
Microsoft.FSharp.Text	Contains functions for formatted IO, such as the printf function.





AutoOpen Attribute


You can apply the AutoOpen attribute to an assembly if you want to automatically open a namespace or module when the assembly is referenced. You can also apply the AutoOpen attribute to a module to automatically open that module when the parent module or namespace is opened. For more information, see Core.AutoOpenAttribute Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.autoopenattribute-class-%5bfsharp%5d].





RequireQualifiedAccess Attribute


Some modules, records, or union types may specify the RequireQualifiedAccess attribute. When you reference elements of those modules, records, or unions, you must use a qualified name regardless of whether you include an import declaration. If you use this attribute strategically on types that define commonly used names, you help avoid name collisions and thereby make code more resilient to changes in libraries. For more information, see Core.RequireQualifiedAccessAttribute Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.requirequalifiedaccessattribute-class-%5Bfsharp%5D].





See Also


# Language Reference


Namespaces


Modules








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/unit-type.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Unit Type (F#)
description: Unit Type (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: eabbb6d7-80f3-4fa5-80b4-0f48982466a7





Unit Type


The unit type is a type that indicates the absence of a specific value; the unit type has only a single value, which acts as a placeholder when no other value exists or is needed.



Syntax


// The value of the unit type.
()









Remarks


Every F# expression must evaluate to a value. For expressions that do not generate a value that is of interest, the value of type unit is used. The unit type resembles the void type in languages such as C# and C++.


The unit type has a single value, and that value is indicated by the token ().


The value of the unit type is often used in F# programming to hold the place where a value is required by the language syntax, but when no value is needed or desired. An example might be the return value of a printf function. Because the important actions of the printf operation occur in the function, the function does not have to return an actual value. Therefore, the return value is of type unit.


Some constructs expect a unit value. For example, a do binding or any code at the top level of a module is expected to evaluate to a unit value. The compiler reports a warning when a do binding or code at the top level of a module produces a result other than the unit value that is not used, as shown in the following example.


[!code-fsharpMain]


This warning is a characteristic of functional programming; it does not appear in other .NET programming languages. In a purely functional program, in which functions do not have any side effects, the final return value is the only result of a function call. Therefore, when the result is ignored, it is a possible programming error. Although F# is not a purely functional programming language, it is a good practice to follow functional programming style whenever possible.





See Also


Primitive


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/parameters-and-arguments.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Parameters and Arguments (F#)
description: Parameters and Arguments (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 9b37a5c4-9263-4513-822a-fbb0d1004254





Parameters and Arguments


This topic describes language support for defining parameters and passing arguments to functions, methods, and properties. It includes information about how to pass by reference, and how to define and use methods that can take a variable number of arguments.



Parameters and Arguments


The term parameter is used to describe the names for values that are expected to be supplied. The term argument is used for the values provided for each parameter.


Parameters can be specified in tuple or curried form, or in some combination of the two. You can pass arguments by using an explicit parameter name. Parameters of methods can be specified as optional and given a default value.





Parameter Patterns


Parameters supplied to functions and methods are, in general, patterns separated by spaces. This means that, in principle, any of the patterns described in Match Expressions can be used in a parameter list for a function or member.


Methods usually use the tuple form of passing arguments. This achieves a clearer result from the perspective of other .NET languages because the tuple form matches the way arguments are passed in .NET methods.


The curried form is most often used with functions created by using let bindings.


The following pseudocode shows examples of tuple and curried arguments.


// Tuple form.
member this.SomeMethod(param1, param2) = ...
// Curried form.
let function1 param1 param2 = ...






Combined forms are possible when some arguments are in tuples and some are not.


let function2 param1 (param2a, param2b) param3 = ...






Other patterns can also be used in parameter lists, but if the parameter pattern does not match all possible inputs, there might be an incomplete match at run time. The exception MatchFailureException is generated when the value of an argument does not match the patterns specified in the parameter list. The compiler issues a warning when a parameter pattern allows for incomplete matches. At least one other pattern is commonly useful for parameter lists, and that is the wildcard pattern. You use the wildcard pattern in a parameter list when you simply want to ignore any arguments that are supplied. The following code illustrates the use of the wildcard pattern in an argument list.


[!code-fsharpMain]


The wildcard pattern can be useful whenever you do not need the arguments passed in, such as in the main entry point to a program, when you are not interested in the command-line arguments that are normally supplied as a string array, as in the following code.


[!code-fsharpMain]


Other patterns that are sometimes used in arguments are the as pattern, and identifier patterns associated with discriminated unions and active patterns. You can use the single-case discriminated union pattern as follows.


[!code-fsharpMain]


The output is as follows.


Data begins at 0 and ends at 4 in string Et tu, Brute?
Et tu






Active patterns can be useful as parameters, for example, when transforming an argument into a desired format, as in the following example:


type Point = { x : float; y : float }

let (| Polar |) { x = x; y = y} =
    ( sqrt (x*x + y*y), System.Math.Atan (y/ x) )

let radius (Polar(r, _)) = r
let angle (Polar(_, theta)) = theta






You can use the as pattern to store a matched value as a local value, as is shown in the following line of code.


[!code-fsharpMain]


Another pattern that is used occasionally is a function that leaves the last argument unnamed by providing, as the body of the function, a lambda expression that immediately performs a pattern match on the implicit argument. An example of this is the following line of code.


[!code-fsharpMain]


This code defines a function that takes a generic list and returns true if the list is empty, and false otherwise. The use of such techniques can make code more difficult to read.


Occasionally, patterns that involve incomplete matches are useful, for example, if you know that the lists in your program have only three elements, you might use a pattern like the following in a parameter list.


[!code-fsharpMain]


The use of patterns that have incomplete matches is best reserved for quick prototyping and other temporary uses. The compiler will issue a warning for such code. Such patterns cannot cover the general case of all possible inputs and therefore are not suitable for component APIs.





Named Arguments


Arguments for methods can be specified by position in a comma-separated argument list, or they can be passed to a method explicitly by providing the name, followed by an equal sign and the value to be passed in. If specified by providing the name, they can appear in a different order from that used in the declaration.


Named arguments can make code more readable and more adaptable to certain types of changes in the API, such as a reordering of method parameters.


Named arguments are allowed only for methods, not for let-bound functions, function values, or lambda expressions.


The following code example demonstrates the use of named arguments.


[!code-fsharpMain]


In a call to a class constructor, you can set the values of properties of the class by using a syntax similar to that of named arguments. The following example shows this syntax.


[!code-fsharpMain]


For more information, see Constructors (F#) [https://msdn.microsoft.com/library/2cd0ed07-d214-4125-8317-4f288af99f05].





Optional Parameters


You can specify an optional parameter for a method by using a question mark in front of the parameter name. Optional parameters are interpreted as the F# option type, so you can query them in the regular way that option types are queried, by using a match expression with Some and None. Optional parameters are permitted only on members, not on functions created by using let bindings.


You can also use a function defaultArg, which sets a default value of an optional argument. The defaultArg function takes the optional parameter as the first argument and the default value as the second.


The following example illustrates the use of optional parameters.


[!code-fsharpMain]


The output is as follows.


Baud Rate: 9600 Duplex: Full Parity: false
Baud Rate: 4800 Duplex: Half Parity: false
Baud Rate: 300 Duplex: Half Parity: true









Passing by Reference


F# supports the byref keyword, which specifies that a parameter is passed by reference. This means that any changes to the value are retained after the execution of the function. Values provided to a byref parameter must be mutable. Alternatively, you can pass reference cells of the appropriate type.


Passing by reference in .NET languages evolved as a way to return more than one value from a function. In F#, you can return a tuple for this purpose, or use a mutable reference cell as a parameter. The byref parameter is mainly provided for interoperability with .NET libraries.


The following examples illustrate the use of the byref keyword. Note that when you use a reference cell as a parameter, you must create a reference cell as a named value and use that as the parameter, not just add the ref operator as shown in the first call to Increment in the following code. Because creating a reference cell creates a copy of the underlying value, the first call just increments a temporary value.


[!code-fsharpMain]


You can use a tuple as a return value to store any out parameters in .NET library methods. Alternatively, you can treat the out parameter as a byref parameter. The following code example illustrates both ways.


[!code-fsharpMain]





Parameter Arrays


Occasionally it is necessary to define a function that takes an arbitrary number of parameters of heterogeneous type. It would not be practical to create all the possible overloaded methods to account for all the types that could be used. The .NET platform provides support for such methods through the parameter array feature. A method that takes a parameter array in its signature can be provided with an arbitrary number of parameters. The parameters are put into an array. The type of the array elements determines the parameter types that can be passed to the function. If you define the parameter array with System.Object as the element type, then client code can pass values of any type.


In F#, parameter arrays can only be defined in methods. They cannot be used in standalone functions or functions that are defined in modules.


You define a parameter array by using the ParamArray attribute. The ParamArray attribute can only be applied to the last parameter.


The following code illustrates both calling a .NET method that takes a parameter array and the definition of a type in F# that has a method that takes a parameter array.


[!code-fsharpMain]


When run in a project, the output of the previous code is as follows:


a 1 10 Hello world 1 True
"a"
1
10.0
"Hello world"
1u
true









See Also


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/getting-started/getting-started-vscode.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Getting Started with F# in Visual Studio Code with Ionide



[!NOTE]
This is still in-progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/managing-package-dependency-versions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: How to Manage Package Dependency Versions for .NET Core 1.0
description: How to Manage Package Dependency Versions for .NET Core 1.0
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4424a947-bdf9-4775-8d48-dc350a4e0aee





How to Manage Package Dependency Versions for .NET Core 1.0


This article covers what you need to know about package versions for your .NET Core libraries and apps.



Glossary


Fix - Fixing dependencies means you are using the same “family” of packages released on NuGet for .NET Core 1.0.


Metapackage - A NuGet package that represents a set of NuGet packages.


Trimming - The act of removing the packages you do not depend on from a metapackage.  This is something relevant for NuGet package authors.  See Reducing Package Dependencies with project.json for more information.





Fix your dependencies to .NET Core 1.0


To reliably restore packages and write reliable code, it’s important that you fix your dependencies to the versions of packages shipping alongside .NET Core 1.0.  This means every package should have a single version with no additional qualifiers.


Examples of packages fixed to 1.0


"System.Collections":"4.0.11"


"NETStandard.Library":"1.6.0"


"Microsoft.NETCore.App":"1.0.0"


Examples of packages that are NOT fixed to 1.0


"Microsoft.NETCore.App":"1.0.0-rc4-00454-00"


"System.Net.Http":"4.1.0-*"


"System.Text.RegularExpressions":"4.0.10-rc3-24021-00"



Why does this matter?


We guarantee that if you fixed your dependencies to what ships alongside .NET Core 1.0, those packages will all work together.  There is no such guarantee if you use packages which aren’t fixed in this way.





Scenarios


Although there is a big list of all packages and their versions released with .NET Core 1.0, you may not have to look through it if your code falls under certain scenarios.


Are you depending only on NETStandard.Library?


If so, you should fixed your NETStandard.Library package to version 1.6.  Because this is a curated metapackage, its package closure is also fixed to 1.0.


Are you depending only on Microsoft.NETCore.App?


If so, you should fixed your Microsoft.NETCore.App package to version 1.0.0.  Because this is a curated metapackage, its package closure is also fixed to 1.0.


Are you trimming your NETStandard.Library or Microsoft.NETCore.App metapackage dependencies?


If so, you should ensure that the metapackage you start with is fixed to 1.0.  The individual packages you depend on after trimming are also fixed to 1.0.


Are you depending on packages outside the NETStandard.Library or Microsoft.NETCore.App metapackages?


If so, you need to fixed your other dependencies to 1.0.  See the correct package versions and build numbers at the end of this article.





A note on using a splat string (*) when versioning


You may have adopted a versioning pattern which uses a splat (*) string like this:
"System.Collections":"4.0.11-*".


You should not do this.  Using the splat string could result in restoring packages from different builds, some of which may be further along than .NET Core 1.0.  This could then result in some packages being incompatible.







Packages and Version Numbers organized by Metapackage


List of all .NET Standard library packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/corefx/release/1.0.0/Latest_Packages.txt].


List of all runtime packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/coreclr/release/1.0.0/LKG_Packages.txt].


List of all .NET Core application packages and their versions for 1.0 [https://github.com/dotnet/versions/blob/master/build-info/dotnet/core-setup/release/1.0.0/Latest_Packages.txt].








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/loops-while-do-expression.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Loops: while...do Expression (F#)”
description: “Loops: while...do Expression (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 0416ffca-7ed9-4aff-9493-e001fdba8c9b





Loops: while...do Expression


The while...do expression is used to perform iterative execution (looping) while a specified test condition is true.



Syntax


while test-expression do
    body-expression









Remarks


The test-expression is evaluated; if it is true, the body-expression is executed and the test expression is evaluated again. The body-expression must have type unit. If the test expression is false, the iteration ends.


The following example illustrates the use of the while...do expression.


[!code-fsharpMain]


The output of the previous code is a stream of random numbers between 1 and 20, the last of which is 10.


13 19 8 18 16 2 10
Found a 10!







[!NOTE]
You can use while...do in sequence expressions and other computation expressions, in which case a customized version of the while...do expression is used. For more information, see Sequences, Asynchronous Workflows, and Computation Expressions.






See Also


F# Language Reference


Loops: for...in Expression


Loops: for...to Expression








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/aspnet-core.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with ASP.NET Core
description: Getting started with ASP.NET Corekeywords: .NET, .NET Core
author:  tdykstra
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4172512e-b93d-4169-abdb-bd0b0b2d657e





Getting started with ASP.NET Core


For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation [https://docs.asp.net].






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/getting-started/getting-started-visual-studio.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting Started with F# in Visual Studio
description: Getting Started with F# in Visual Studio
keywords: visual f#, f#, functional programming
author: cartermp
manager: danielfe
ms.date: 09/08/2016
ms.topic: article
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 8db75596-19a9-4eda-b20d-a12d517c8cc1





Getting Started with F# in Visual Studio


F# and the Visual F# tooling are supported in the Visual Studio IDE.  To begin, you should download Visual Studio [https://visualstudio.com/downloads/], if you haven’t already.  This article uses the Visual Studio 2015 Community Edition, but you can use F# with the version of your choice.



Installing the Visual F# Tools


Visual Studio will first initialize the installer.  After it is intilized, select Custom as shown here:


[image: ]


Select the Visual F# Tools under Programming Languages here:


[image: ]


Feel free to customize your installation further, and then continue with the installation.  After a while, Visual Studio will complete installation and you can create an F# project!





Creating a Console Application


One of the most basic projects in Visual Studio is the Console Application.  Here’s how to do it.  Once Visual Studio is open:



		On the File menu, point to New, and then choose Project.





[image: ]



		In the New Project dialog, under Templates, you should see Visual F#.  Choose this to show the F# templates.





[image: ]



		Choose the Okay button to create the F# project!  You should see something like this under Solution Explorer:





[image: ]





Writing your code


Let’s get started by writing some code first.  Make sure that the Program.fs file is open, and then replace its contents with the following:


[!code-fsharpHelloSquare]


In the previous code sample, a function square has been defined which takes an input named x and multiplies it by itself.  Because F# uses Type Inference, the type of x doesn’t need to be specified.  The F# compiler understands the types where multiplication is valid, and will assign a type to x based on how square is called.  If you hover over square, you should see the following:


val square: x:int -> int






This is what is known as the function’s type signature.  It can be read like this: “Square is a function which takes an integer named x and produces an integer”.  Note that the compiler gave square the int type for now - this is because multiplication is not generic across all types, but rather is generic across a closed set of types.  The F# compiler picked int at this point, but it will adjust the type signature if you call square with a different input type, such as a float.


Another function, main, is defined, which is decorated with the EntryPoint attribute to tell the F# compiler that program execution should start there.  It follows the same convention as other C-style programming languages [https://en.wikipedia.org/wiki/Entry_point#C_and_C.2B.2B], where command-line arguments can be passed to this function, and an integer code is returned (typically 0).


It is in this function that we call the square function with an argument of 12.  The F# compiler then assigns the type of square to be int -> int (that is, a function which takes an int and produces an int).  The call to printfn is a formatted printing function which uses a format string, similar to C-style programming languages, parameters which correspond to those specified in the format string, and then prints the result and a new line.





Running Your Code


You can run the code and see results by pressing ctrl-f5.  This will run the program without debugging and allows you to see the results.  Alternatively, you can choose the Debug top-level menu item in Visual Studio and choose Start Without Debugging.


You should now see the following printed to the console window that Visual Studio popped up:


12 squared is 144!






Congratulations!  You’ve created your first F# project in Visual Studio, written an F# function printed the results of calling that function, and run the project to see some results.





Using F# Interactive


One of the best features of the Visual F# tooling in Visual Studio is the F# Interactive Window.  It allows you to send code over to a process where you can call that code and see the result interactively.


To begin using it, highlight the square function defined in your code.  Next, hold the Alt key and press Enter.  This executes the code in the F# Interactive Window.  You should see the F# Interactive Window appear with the following in it:


>

val square : x:int -> int

>






This shows the same function signature for the square function, which you saw earlier when you hovered over the function.  Because square is now defined in the F# Interactive process, you can call it with different values:


> square 12;;
val it : int = 144
>square 13;;
val it : int = 169






This executes the function, binds the result to a new name it, and displays the type and value of it.  Note that you must terminate each line with ;;.  This is how F# Interactive knows when your function call is finished.  You can also define new functions in F# Interactive:


> let isOdd x = x % 2 <> 0;;

val isOdd : x:int -> bool

> isOdd 12;;
val it : bool = false






The above defines a new function, isOdd, which takes an int and checks to see if it’s odd!  You can call this function to see what it returns with different inputs.  You can call functions within function calls:


> isOdd (square 15);;
val it : bool = true






You can also use the pipe-forward operator to pipeline the value into the two functions:


> 15 |> square |> isOdd;;
val it : bool = true






The pipe-forward operator, and more, are covered in later tutorials.


This is only a glimpse into what you can do with F# Interactive.  To learn more, check out Interactive Programming with F#.





Next Steps


If you haven’t already, check out the Tour of F#, which covers some of the core features of the F# language.  It will give you an overview of some of the capabilities of F#, and provide ample code samples that you can copy into Visual Studio and run.  There are also some great external resources you can use, showcased in the F# Guide.





See Also


Visual F#


Tour of F#


F# Language Reference


Type Inference


Symbol and Operator Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/using-on-windows.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with .NET Core on Windows
description: Getting started with .NET Core on Windows, using Visual Studio 2015
keywords: .NET, .NET Core
author: bleroy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d743134a-08a3-4ff6-aab7-49f71f0568c3





Getting started with .NET Core on Windows, using Visual Studio 2015


by Bertrand Le Roy [https://github.com/bleroy] and Phillip Carter [https://github.com/cartermp]


Visual Studio 2015 provides a full-featured development environment for developing .NET Core applications. The procedures in this document describe the steps necessary to build a number of typical .NET Core solutions, or solutions that include .NET Core components, using Visual Studio. The scenarios include testing and using third-party libraries that have not been explicitly built for the most recent version of .NET Core.



Prerequisites


Follow the instructions on our prerequisites page to update your environment.





Getting Started


The following steps will set up Visual Studio 2015 for .NET Core development:



		Open Visual Studio, and on the File menu, choose New, Project.


		In the New Project dialog, in the Templates list, expand the Visual C# node and choose .NET Core. You should see three new project templates for Class Library (.NET Core), Console Application (.NET Core), and ASP.NET Core Web Application (.NET Core).








A solution using only .NET Core projects



Writing the library



		In Visual Studio, choose File, New, Project. In the New Project dialog, expand the Visual C# node and choose the .NET Core node, and then choose Class Library (.NET Core).





		Name the project “Library” and the solution “Golden”. Leave Create directory for solution checked. Click OK.





		In Solution Explorer, open the context menu for the References node and choose Manage NuGet Packages.





		Choose “nuget.org” as the Package source, and choose the Browse tab. Browse for Newtonsoft.Json. Click Install.





		Open the context menu for the References node and choose  Restore packages.





		Rename the Class1.cs file to Thing.cs. Accept the rename of the class. Remove the constructor and add a method: public int Get(int number) => Newtonsoft.Json.JsonConvert.DeserializeObject<int>($"{number}");





		On the Build menu, choose Build Solution.


The solution should build without error.











Writing the test project



		In Solution Explorer, open the context menu for the Solution node and choose Add, New Solution Folder. Name the folder “test”.
This is only a solution folder, not a physical folder.


		Open the context menu for the test folder and choose Add. New Project. In the New Project dialog, choose Console Application (.NET Core). Name it “TestLibrary” and explicitly put it under the Golden\test path.






[!IMPORTANT]
The project needs to be a console application, not a class library.




		In the TestLibrary project, open the context menu for the References node and choose Add Reference.





		In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK.





		In the TestLibrary project, open the project.json file, and replace "Library": "1.0.0-*" with "Library": {"target": "project", "version": "1.0.0-*"}.


This is to avoid the resolution of the Library project to a NuGet package with the same name. Explicitly setting the target to “project” ensures that the tooling will first search for a project with that name, and not a package.





		In the TestLibrary project, open the context menu for the References node and choose Restore Packages.





		Open the context menu for the References node and choose Manage NuGet Packages.





		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for xUnit version 2.2.0 or newer, and then click Install.





		Browse for dotnet-test-xunit version 2.2.0 or newer, and then click Install.





		Edit project.json and replace "imports": "dnxcore50" with "imports": [ "dnxcore50", "portable-net45+win8" ].








This enables the xunit libraries to be correctly restored and used by the project: those libraries have been compiled to be used with portable profiles that include “portable-net45+win8”, but not .NET Core, which didn’t exist when they were built. The import relaxes the tooling version checks at build time. You may now restore packages without error.



		Edit project.json to add "testRunner": "xunit", after the "frameworks" section.





		Add a LibraryTests.cs class file to the TestLibrary project, add the using directives using Xunit; and using Library; to the top of the file, and add the following code to the class:


[Fact]
public void ThingGetsObjectValFromNumber() {
    Assert.Equal(42, new Thing().Get(42));
}







		Optionally, delete the Program.cs file from the TestLibrary project, and remove "buildOptions": {"emitEntryPoint": true}, from project.json.











You should now be able to build the solution.



		On the Test menu, choose Windows, Test Explorer, and in Test Explorer choose Run All.





The test should pass.





Writing the console app



		In Solution Explorer, open the context menu for the src folder, and add a new Console Application (.NET Core) project. Name it “App”, and set the location to Golden\src.





		In the App project, open the context menu for the References node and choose Add,  Reference.





		In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK





		In the App project, open the project.json file, and replace "Library": "1.0.0-*" with "Library": {"target": "project"}.





		Open the context menu for the References node and choose Restore Packages.





		Open the context menu for the App node and choose Set as StartUp Project.





		Open the Program.cs file, add a using Library; directive to the top of the file, and then add Console.WriteLine($"The answer is {new Thing().Get(42)}"); to the Main method.





		Set a breakpoint after the line that you just added.





		Press F5 to run the application..


The application should build without error, and should hit the breakpoint. You should also be able to check that the application output “The answer is 42.”.













A mixed .NET Core library and .NET Framework application


Starting from the solution obtained with the previous script, execute the following steps:



		In Solution Explorer, open the project.json file for the Library project and replace "frameworks": { "netstandard1.6" } with "frameworks": { "netstandard1.4" }.





		In the Library project, open the context menu for the References node and choose Restore Packages.


The solution should still build and function exactly like it did before: the test should pass, and the console application should run and be debuggable.





		In the Library project, open the context menu and choose Build.





		In Solution Explorer, open the context menu for the src folder, and choose Add. , New Project.





		In the New Project dialog, choose the Visual C# node, and then choose Console Application.









[!IMPORTANT]
Make sure you choose a standard console application, not the .NET Core version. In this section, you’ll be consuming the library from a .NET Framework application.




		Name the project “FxApp”, and set the location to Golden\src.





		In the FxApp project, open the context menu for the References node and choose Add Reference.





		In the Reference Manager dialog, choose Browse and browse to the location of the built Library.dll (under the ..Golden\src\Library\bin\Debug\netstandard1.4 path), and then click Add.


You could also package the library and reference the package, as another way to reference .NET Core code from the .NET Framework.





		Open the context menu for the References node and choose Manage NuGet Packages.





		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for Newtonsoft.Json. Click Install.





		In the FxApp project, open the Program.cs file and add a using Library; directive to the top of the file, and add Console.WriteLine($"The answer is {new Thing().Get(42)}."); to the Main method of the program.





		Set a breakpoint after the line that you just added.





		Make FxApp the startup application for the solution.





		Press F5 to run the app.








The application should build and hit the breakpoint. The application output should be “The answer is 42.”.



[!TIP]
On Windows platform you can use MSTest. Find out more in the Using MSTest on Windows document.






Moving a library from netstandard 1.4 to 1.3



		In Solution Explorer, open the project.json file in the Library project.





		Replace frameworks": { "netstandard1.4" } with frameworks": { "netstandard1.3" }.





		In the Library project, open the context menu for the References node and choose Restore Packages.





		On the Build menu, choose Build Library.





		Remove the Library reference from the FxApp then add it back using the ..Golden\src\Library\bin\Debug\netstandard1.3 path. This will now reference the 1.3 version.





		Press F5 to run the application.


Everything should still work as it did before. Check that the application output is “The answer is 42.”, that the breakpoint was hit, and that variables can be inspected.











A mixed PCL library and .NET Framework application


Close the previous solution if it was open: you will be starting a new script from this section on.



Writing the library



		In Visual Studio, choose File, New, Project. In the New Project dialog, expand the Visual C# node, and choose Class Library (Portable for iOS, Android and Windows).


		Name the project “PCLLibrary” and the solution “GoldenPCL”. Leave Create directory for solution checked. Click OK.


		In Solution Explorer, open the context menu for the References node and choose Manage NuGet Packages.


		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for Newtonsoft.Json. Click Install.


		Rename the class “Thing” and add a method: public int Get(int number) => Newtonsoft.Json.JsonConvert.DeserializeObject<int>($"{number}");


		On the Build menu, choose Build Solution, and verify that the solution builds.








Writing the console app



		In Solution Explorer, open the context menu for the Solution ‘GoldenPCL’ node and choose Add. New Project. In the New Project dialog, expand the Visual C# node, choose Console Application, and name the project “App”.





		In the App project, open the context menu for the References node and choose Add,  Reference.





		In the Reference Manager dialog, choose Browse and browse to the location of the built PCLLibrary.dll (under the ..\GoldenPCL\PCLLibrary\bin\Debug path), and then click Add.





		In the App project, open the Program.cs file and add a using PCLLibrary; directive to the top of the file, and add Console.WriteLine($"The answer is {new Thing().Get(42)}."); to the Main method of the program.





		Set a breakpoint after the line that you just added..





		In Solution Explorer, open the context menu for the App node and choose Set as StartUp Project.





		Press F5 to run the app.


The application should build, run, and hit the breakpoint after it outputs “The answer is 42.”.













Moving a PCL to a NetStandard library


The Portable Class Library tooling can automatically modify your PCL to target .NET Standard.



		Double click on the “Properties” node to open the Project Property page*


		Under the “Targeting header” click the hyperlink “Target .NET Platform Standard”


		Click “Yes” when asked for confirmation





The tooling will automatically select the version of .NET Standard that includes all of the targets originally targeted by your PCL. You can target a different version of .NET Standard using the .NET Standard dropdown in the project property page.



		If you previously had a packages.config, you may be prompted to uninstall any installed packages before the conversion.






Manually edit project.json to target .NET Standard from an existing Portable Class Library



		If your project.json contains “dnxcore50” in the “supports” element, remove it.


		Remove the dependency on “Microsoft.NETCore”


		Modify the dependency on “Microsoft.NETCore.Portable.Compatibility” version “1.0.0” to version “1.0.1”


		Add a dependency on “NETStandard.Library” version “1.6.0”


		From the “frameworks” element, remove the “dotnet” framework (and the “imports” element within it)


		Add "netstandard1.x” : { } to the frameworks element, where x is replaced with the version of .NET Standard you want to target








Example project.json


This project.json includes supports clauses for UWP and .NET 4.6 and targets netstandard1.3:


{
  "supports": {
    "net46.app": {},
    "uwp.10.0.app": {},
  },
  "dependencies": {
    "NETStandard.Library": "1.6.0",
    "Microsoft.NETCore.Portable.Compatibility": "1.0.1"
  },
  "frameworks": {
    "netstandard1.3" : {}
  }
}














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/getting-started/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting Started with F#
description: Getting Started with F#
keywords: visual f#, f#, functional programming, .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 09/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 615db1ec-6ef3-4de2-bae6-4586affa9771





Getting Started with F


There are three primary ways to get started with F#:


If you’re on Windows, check out Getting Started with F# in Visual Studio.


If you’re interested in writing code in a lightweight IDE on Windows, Linux, or macOS, check out Getting Started with F# in Visual Studio Code with Ionide.


If you prefer using the command line on any OS, check out Getting Started with F# with Command-line Tools.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/using-on-macos.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with .NET Core on macOS
description: Getting started with .NET Core on macOS, using Visual Studio Code
keywords: .NET, .NET Core
author: bleroy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8ad82148-dac8-4b31-9128-b0e9610f4d9b





Getting started with .NET Core on macOS, using Visual Studio Code


by Bertrand Le Roy [https://github.com/bleroy],  Phillip Carter [https://github.com/cartermp],
Bill Wagner [https://github.com/billwagner]


Contributions by Toni Solarin-Sodara [https://github.com/tsolarin]


This document provides a tour of the steps and workflow to create a .NET
Core Solution using Visual Studio Code [http://code.visualstudio.com].
You’ll learn how to create projects, create unit tests, use the debugging
tools, and incorporate third-party libraries via NuGet [http://nuget.org].


This article uses Visual Studio Code on Mac OS. Where there are differences,
it points out the differences for the Windows platform.



Prerequisites


Before starting, you’ll need to install the .NET Core SDK [https://www.microsoft.com/net/core],
currently in a preview release. The .NET Core SDK includes the latest release
of the .NET Core framework and runtime.


You’ll also need to install Visual Studio Code [http://code.visualstudio.com].
During the course of this article, you’ll also install extensions
that will improve the .NET Core development experience.


You can find the links to all of these at the .NET home page [http://dot.net].





Getting Started


The source for this tutorial is available on
GitHub [https://github.com/dotnet/core-docs/tree/master/samples/core/getting-started/golden].


Start Visual Studio Code. Press Ctrl + ‘`‘ (the back-quote character) to open
an embedded terminal in VS Code. (Alternatively, you can use a separate
terminal window, if you prefer).


By the time we’re done, you’ll create three projects: a library project,
tests for that library project, and a console application that makes
use of the library. You’ll follow a standard folder structure for
the three projects. Following this standard folder structure
means that the .NET Core SDK tools understand the relationship between
your production code projects and your test code projects. That makes
your development experience more productive.


Let’s start by creating those folders. In the terminal, create a ‘golden’
directory. Under that directory create src and test
directories. Under src create app and library directories. In test
create a test-library directory. You can do this either using the terminal
in VS code, or by clicking on the parent folder in VS Code and selecting the
“New Folder” icon.


In VS Code, open the ‘golden’ directory. This directory is the root of your solution.


Next, create a global.json file in the root directory for your solution.
The contents of global.json are:


{
    "projects": [
        "src",
        "test"
    ]
}






At this point, your directory tree should look like this:


/golden
|__global.json
|__/src
   |__/app
   |__/library
|__/test
   |__/test-library







Writing the library


Your next task is to create the library. In the terminal window
(either the embedded terminal in VS code, or another terminal),
cd to golden/src/library and type the command dotnet new -t lib.
This creates a library project, with two files: project.json and
Library.cs.


project.json contains the following information:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "debugType": "portable"
  },
  "dependencies": {},
  "frameworks": {
    "netstandard1.6": {
      "dependencies": {
        "NETStandard.Library": "1.6.0"
      }
    }
  }
}






This library project will make use of JSON representation of objects, so you’ll want to
add a reference to the Newtonsoft.Json NuGet package. Inproject.json
add the latest pre-release version of the package as a dependency:


"dependencies": {
    "Newtonsoft.Json": "9.0.1-beta1"
},






After you’ve finished adding those dependencies, you need to install those
packages into workspace. Run the dotnet restore command to updates all dependencies,
and write a project.lock.json file in the project directory. This
file contains the full dependency tree of all the dependencies in your
project. You don’t need to read this file, it’s used by tools in the .NET
Core SDK.


Now, let’s update the C# code. Let’s create a Thing class that contains
one public method. This method will return the sum of two numbers,
but will do so by converting that number to a JSON string, and then
deserializing it. Rename the file Library.cs to Thing.cs. Then, replace
the existing code (for the template-generated Class1) with the following:


using static Newtonsoft.Json.JsonConvert;

namespace Library
{
    public class Thing
    {
        public int Get(int left, int right) =>
            DeserializeObject<int>($"{left + right}");
    }
}






This makes use of a number of modern C# features, such as
static usings, expression bodied members, and interpolated strings,
that you can learn
about in the Learn C# section.


Now that you’ve updated the code, you can build the library using
dotnet build.


You now have a built library.dll file under golden/src/library/bin/Debug/netstandard1.6.





Writing the test project


Let’s build a test project for this library that you’ve build. Cd into the test/test-library
directory. Run dotnet new -t xunittest to create a new test project.


You’ll need to add a dependency node for the library you wrote in the steps
above. Open project.json and update the dependencies section to the following
(including the library node, which is the last node below):


"dependencies": {
  "System.Runtime.Serialization.Primitives": "4.1.1",
  "xunit": "2.1.0",
  "dotnet-test-xunit": "1.0.0-rc2-192208-24",
  "library": {
    "target": "project"
  }
}






The library node specifies that this dependency should resolve to a project
in the current workspace. Without explicitly specifying this, it’s possible
that the test project would build against a NuGet package of the same name.


Now that the dependencies have been properly configured, let’s create
the tests for your library. Open Tests.cs and
replace its contents with the following code:


using Library;
using Xunit;

namespace TestApp
{
    public class LibraryTests
    {
        [Fact]
        public void TestThing() {
            Assert.Equal(42, new Thing().Get(19, 23));
        }
    }
}






Now, run dotnet restore, dotnet build and dotnet test.
The xUnit console test runner will run the one test, and report
that it is passing.





Writing the console app


In your terminal, cd to the golden/src/app directory. Run dotnet new
to create a new console application.


Your console application depends on the library you built and tested
in the previous steps. You need to indicate that by editing project.json
to add this dependency.  In the dependencies node, add the Library
node as follows:


"dependencies": {
  "library": {
    "target": "project"
  }
}






The project node is important here, as it was in the test library. It
indicates that this is a project in the current solution, and not a
NuGet package.


Run dotnet restore to restore all dependencies. Open program.cs
and replace the contents of the Main method with this line:


WriteLine($"The answer is {new Thing().Get(19, 23)}");






You’ll need to add a couple using directives to the top of the file:


using static System.Console;
using Library;






Then, run dotnet build. That creates the assemblies, and you
can type dotnet run to run the executable.





Debugging your application


You can debug your code in VS Code using the C# extension.
You install this extension by pressing F1 to open the VS Code
palette. Type ext install to see the list of extensions. Select the C#
extension. (More details are available on the Visual Studio
Code C# Extension documentation [https://github.com/OmniSharp/omnisharp-vscode/blob/master/debugger.md]
page.)


After you install the extension, VS Code will ask that you restart the application
to load the new extension. Once the extension is installed, you can open the
debugger tab (see figure).


[image: VS Code Debugger]


When you start the debugger, VS Code will instruct you to configure
the debugger. When you do, it creates a .vscode directory
with two files: tasks.json and launch.json. These two files control the debugger
configuration. In most projects, this directory is not included in source control.
It is included in the sample associated with this walk through so you can see
the edits you need to make.


Your solution contains multiple projects, so you’ll want to modify each of these files
to perform the correct commands. First, open tasks.json. The default build task
runs dotnet build in the workspace source directory. Instead, you want to run it in
the src/app directory. You need to add a options node to set the current
working directory to that:


"options": {
    "cwd": "${workspaceRoot}/src/app"
}






Next, you’ll need to open launch.json and update the program path. You’ll see a
node under “configurations” that describes the program. You’ll see:


"program": "${workspaceRoot}/bin/Debug/<target-framework>/<project-name.dll>",






You’ll change this to:


"program": "${workspaceRoot}/src/app/bin/Debug/netcoreapp1.0/app.dll",






If you are running on Windows, you’ll need to update the Application’s project.json
(in the src/app directory) to
generate portable PDB files (this happens by default on Mac OSX and Linux).
Add the debugType node inside buildOptions. You’ll need to add the debugType node
in project.json for both the src/app and src/library folders.


  "buildOptions": {
    "debugType": "portable"
  },






Set a breakpoint at the WriteLine statement in Main. You do this
by pressing the F9 key, or by clicking the mouse in the left margin
on the line you want the breakpoint.
Open the debugger by pressing the debug
icon on the left of the VS Code screen (see figure). Then,
press the Play button to start the application under the debugger.


You should hit the breakpoint. Step into the Get method and make sure that you
have passed in the correct arguments. Make sure that the answer is actually 42.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/type-providers/generating-fsharp-types-from-edmx.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Walkthrough: Generating F# Types from an EDMX Schema File (F#)”
description: “Walkthrough: Generating F# Types from an EDMX Schema File (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 81adb2eb-625f-4ad8-aeaa-8f672a6d79a2





Walkthrough: Generating F# Types from an EDMX Schema File



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This walkthrough for F# 3.0 shows you how to create types for data that is represented by the Entity Data Model (EDM), the schema for which is specified in an .edmx file. This walkthrough also shows how to use the EdmxFile type provider. Before you begin, consider whether a SqlEntityConnection type provider is a more appropriate type provider option. The SqlEntityConnection type provider works best for scenarios where you have a live database that you can connect to during the development phase of your project, and you do not mind specifying the connection string at compile time. However, this type provider is also limited in that it doesn’t expose as much database functionality as the EdmxFile type provider. Also, if you don’t have a live database connection for a database project that uses the Entity Data Model, you can use the .edmx file to code against the database. When you use the EdmxFile type provider, the F# compiler runs EdmGen.exe to generate the types that it provides.


This walkthrough illustrates the following tasks, which you must perform in this order for the walkthrough to succeed:



		Creating an EDMX file




		Creating the project




		Finding or creating the entity data model connection string




		Configuring the type provider




		Querying the data




		Calling a stored procedure








Prerequisites





Creating an EDMX file


If you already have an EDMX file, you can skip this step.



To create an EDMX file



		If you don’t already have an EDMX file, you can follow the instructions at the end of this walkthrough in the step To configure the Entity Data Model.












Creating the project


In this step, you create a project and add appropriate references to it to use the EDMX type provider.



To create and set up an F# project



		Close the previous project, create another project, and name it SchoolEDM.




		In Solution Explorer, open the shortcut menu for References, and then choose Add Reference.




		In the Assemblies area, choose the Framework node.




		In the list of available assemblies, choose the System.Data.Entity and System.Data.Linq assemblies, and then choose the Add button to add references to these assemblies to your project.




		In the Assemblies area, select the Extensions node.




		In the  list of available extensions, add a reference to the FSharp.Data.TypeProviders assembly.




		Add the following code to open the appropriate namespaces.







open System.Data.Linq
open System.Data.Entity
open Microsoft.FSharp.Data.TypeProviders











Finding or creating the connection string for the Entity Data Model


The connection string for the Entity Data Model (EDMX connection string) includes not only the connection string for the database provider but also additional information. For example, EDMX connection string for a simple SQL Server database resembles the following code.


let edmConnectionString = "metadata=res://*/;provider=System.Data.SqlClient;Provider Connection String='Server=SERVER\Instance;Initial Catalog=DatabaseName;Integrated Security=SSPI;'"






For more information about EDMX connection strings, see Connection Strings [https://msdn.microsoft.com/library/ms254494.aspx].



To find or create the connection string for the Entity Data Model



		EDMX connection strings can be difficult to generate by hand, so you can save time by generating it programmatically. If you know your EDMX connection string, you can bypass this step and simply use that string in the next step. If not, use the following code to generate the EDMX connection string from a database connection string that you provide.







open System
open System.Data
open System.Data.SqlClient
open System.Data.EntityClient
open System.Data.Metadata.Edm

let getEDMConnectionString(dbConnectionString) =
let dbConnection = new SqlConnection(connectionString)
let resourceArray = [| "res://*/" |]
let assemblyList = [| System.Reflection.Assembly.GetCallingAssembly() |]
let metaData = MetadataWorkspace(resourceArray, assemblyList)
new EntityConnection(metaData, dbConnection)











Configuring the type provider


In this step, you create and configure the type provider with the EDMX connection string, and you generate types for the schema that’s defined in the .edmx file.



To configure the type provider and generate types



		Copy the .edmx file that you generated in the first step of this walkthrough to your project folder.




		Open the shortcut menu for the project node in your F# project, choose Add Existing Item, and then choose the .edmx file to add it to your project.




		Enter the following code to activate the type provider for your .edmx file. Replace Server*Instance* with the name of your server that’s running SQL Server and the name of your instance, and use the name of your .edmx file from the first step in this walkthrough.







type edmx = EdmxFile<"Model1.edmx", ResolutionFolder = @"<path-tofolder-that-containsyour.edmx-file>>

let edmConnectionString =
getEDMConnectionString("Data Source=SERVER\instance;Initial Catalog=School;Integrated Security=true;")
let context = new edmx.SchoolModel.SchoolEntities(edmConnectionString)











Querying the data


In this step, you use F# query expressions to query the database.



To query the data



		Enter the following code to query the data in the entity data model.







query { 
  for course in context.Courses do
  select course 
} |> Seq.iter (fun course -> printfn "%s" course.Title)

query { 
  for person in context.Person do
  select person 
} |> Seq.iter (fun person -> printfn "%s %s" person.FirstName person.LastName)

// Add a where clause to filter results
query { 
  for course in context.Courses do
  where (course.DepartmentID = 1)
  select course)
} |> Seq.iter (fun course -> printfn "%s" course.Title)

// Join two tables
query { 
  for course in context.Courses do
  join (for dept in context.Departments -> course.DepartmentID = dept.DepartmentID)
  select (course, dept.Name) 
} |> Seq.iter (fun (course, deptName) -> printfn "%s %s" course.Title deptName)











Calling a stored procedure


You can call stored procedures by using the EDMX type provider. In the following procedure, the School database contains a stored procedure, UpdatePerson, which updates a record, given new values for the columns. You can use this stored procedure because it’s exposed as a method on the DataContext type.



To call a stored procedure



		Add the following code to update records.







// Call a stored procedure.
let nullable value = new System.Nullable<_>(value)

// Assume now that you must correct someone's hire date.
// Throw an exception if more than one matching person is found.
let changeHireDate(lastName, firstName, hireDate) =

query { 
  for person in context.People do
  where (person.LastName = lastName &&
  person.FirstName = firstName)
  exactlyOne 
} |> (fun person ->
          context.UpdatePerson(nullable person.PersonID, person.LastName, person.FirstName, nullable hireDate, person.EnrollmentDate))

changeHireDate("Abercrombie", "Kim", DateTime.Parse("1/12/1998"))
|> printfn "Result: %d"






The result is 1 if you succeed. Notice that exactlyOne is used in the query expression to ensure that only one result is returned; otherwise, an exception is thrown. Also, to work with nullable values more easily, you can use the simple nullable function that’s defined in this code to create a nullable value out of an ordinary value.











Configuring the Entity Data Model


You should complete this procedure only if you want to know how to generate a full Entity Data Model from a database and you don’t have a database with which to test.



To configure the Entity Data Model



		On the menu bar, choose SQL, Transact-SQL Editor, New Query to create a database. If prompted, specify your database server and instance.




		Copy and paste the contents of the database script that creates the Student database, as described in the Entity Framework documentation [http://msdn.microsoft.com/data/JJ614587.aspx] in the Data Developer Center.




		Run the SQL script by choosing the toolbar button with the triangle symbol or choosing the Ctrl+Q keys.




		In Server Explorer, open the shortcut menu for Data Connections, choose Add Connection, and then enter the name of the database server, the name of the instance name, and the School database.




		Create a C# or Visual Basic Console Application project, open its shortcut menu, choose Add New Item, and then choose ADO.NET Entity Data Model.

  The Entity Data Model Wizard opens. By using this wizard, you can choose how you want to create the Entity Data Model.




		Under Choose Model Contents, select the Generate from database check box.




		On the next page, choose your newly created School database as the data connection.

  This connection should resemble &lt;


servername&gt;


.&lt;


instancename&gt;


.School.dbo.




		Copy your entity connection string to the Clipboard because that string might be important later.




		Make sure the check box to save the entity connection string to the App.Config file is selected, and make note of the string value in the text box, which should help you locate the connection string later, if needed.




		On the next page, choose Tables and Stored Procedures and Functions.

  By choosing these top-level nodes, you choose all tables, stored procedures, and functions. You can also choose these individually, if you want.




		Make sure that the check boxes for the other settings are selected.

  The first Pluralize or singularize generated object names check box indicates whether to change singular forms to plural to match conventions in naming objects that represent database tables. The Include foreign key columns in the model check box determines whether to include fields for which the purpose is to join to other fields in the object types that are generated for the database schema. The third check box indicates whether to include stored procedures and functions in the model.




		Select the Finish button to generate an .edmx file that contains an Entity Data Model that’s based on the School database.

  A file, Model1.edmx, is added to your project, and a database diagram appears.




		On the menu bar, choose View, Other Windows, Entity Data Model Browser to view all the details of the model or Entity Data Model Mapping Details to open a window that shows how the generated object model maps onto database tables and columns.












Next Steps


Explore other queries by looking at the available query operators as listed in Query Expressions.





See Also


Type Providers


EdmxFile Type Provider [https://msdn.microsoft.com/visualfsharpdocs/conceptual/edmxfile-type-provider-%5bfsharp%5d]


Walkthrough: Accessing a SQL Database by Using Type Providers and Entities


Entity Framework [http://msdn.microsoft.com/data/ef]


.edmx File Overview [https://msdn.microsoft.com/library/f4c8e7ce-1db6-417e-9759-15f8b55155d4]


EDM Generator 

(


EdmGen.exe)


 [https://msdn.microsoft.com/library/bb387165]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/cli-console-app-tutorial-advanced.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide”
description: “Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide”
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: dab9e2f9-9088-4089-b990-fbc3d8dcd611





🔧 Writing .NET Core console apps using the CLI tools: An advanced step-by-step guide



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can
track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/180] at GitHub.


If you would like to review early drafts and outlines of this
topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/getting-started/getting-started-command-line.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with F# with command-line tools
description: Getting started with F# on .NET Core
keywords: visual f#, f#, functional programming, .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 07/01/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 615db1ec-6ef3-4de2-bae6-4586affa9771





Getting started with F# with command-line tools


This article covers how you can get started with using F# on .NET Core with the ..NET Core SDK 1.0 Preview 2.  It will go through building a multi-project solution with a Class Library, a Console App, and an xUnit test project.



Prerequisites


To begin, you must install the .NET Core SDK 1.0 Preview 2 [https://www.microsoft.com/net/core].


This article assumes that you know how to use a command line and have a preferred text editor.  Visual Studio Code [https://code.visualstudio.com] is a great option.  To get awesome features like Intellisense, better syntax highlighting, and more, you can also download the Ionide Extension [https://marketplace.visualstudio.com/items?itemName=Ionide.Ionide-fsharp] and get a lightweight IDE experience for F# in Visual Studio Code.





Building a Simple Multi-project Solution



		Open up a Command Line/Terminal.


		Create a new directory named FSNetCore.  Open Visual Studio code or your preferred editor inside this directory.


		Under FSNetCore, create src and test directories.


		Under FSNetCore, create a new file called global.json.  It should have this as its contents:





{
    "projects":[ "src", "test" ]
}






Your solutions structure should now look like this:


FSNetCore/
|---src/
|---test/
|---global.json







Writing a Class library



		Create a Library folder under FSNetCore/src.





		In the command line, execute dotnet new -l F# in FSNetCore/src/Library.





		Remove the NuGet.Config file.





		Rename Program.fs to Lib.fs.





		Open the project.json file and remove the emitEntryPoint entry from buildOptions.





		Under buildOptions/compile/includeFiles, replace Program.fs with Lib.fs.





		Remove the global dependencies section.





		Under tools/dotnet-compile-fsc, remove the imports section.





		Under frameworks, change netcoreapp1.0 to netstandard1.6.





		Under frameworks/netstandard1.6, remove the imports section.





		Under frameworks/netstandard1.6/dependencies, replace the Microsoft.NETCore.App package with "NETStandard.Library":"1.6.0".  Add "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629" and "Newtonsoft.Json": "9.0.1".





		Open Lib.fs and change the contents to the following code:


module Library

open Newtonsoft.Json

let getJsonNetJson value = 
    sprintf "I used to be %s but now I'm %s!" value  (JsonConvert.SerializeObject(value))









		Run dotnet restore and dotnet build.  These should succeed.








Your project.json file should look like this:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "compilerName": "fsc",
    "compile": {
      "includeFiles": [
        "Lib.fs"
      ]
    }
  },
  "tools": {
    "dotnet-compile-fsc":"1.0.0-preview2-*"
  },
  "frameworks": {
    "netstandard1.6": {
      "dependencies": {
        "NETStandard.Library":"1.6.0",
        "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
        "Newtonsoft.Json": "9.0.1"    
      }
    }
  }
}






And your Lib.fs file should look like this:


module Library

open Newtonsoft.Json

let getJsonNetJson value = 
    sprintf "I used to be %s but now I'm %s!" value  (JsonConvert.SerializeObject(value))









Writing a Console Application which Consumes the Class Library



		Create an App folder under FSNetCore/src.





		In the command line, execute dotnet new -l F# in FSNetCore/src/App.





		Remove the NuGet.Config file.





		Open the project.json file.





		Remove the global dependencies section.





		Under tools/dotnet-compile-fsc, remove the imports section.





		Under frameworks/netcoreapp1.0/, remove the imports section.





		Under frameworks/netcoreapp1.0/dependencies, add the following after Microsoft.NETCore.App:


"Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
"Library":{
  "version":"1.0.0",
  "target": "project"
}









		Change Program.fs to:


open System
open Library

[<EntryPoint>]
let main argv = 
    printfn "Nice command line arguments!.  Here's what JSON.NET has to say about them:"

    argv
    |> Array.map getJsonNetJson
    |> Array.iter (printfn "%s")

    0 // return an integer exit code









		Enter dotnet restore and dotnet build into the command line.  These should succeed.





		Enter dotnet run Hello World into the command line.  You should see results like this:








Nice command line arguments!  Here's what JSON.NET has to say about them:

I used to be Hello but now I'm ""Hello""!
I used to be World but now I'm ""World""!






Your project.json file should look like this:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "emitEntryPoint": true,
    "compilerName": "fsc",
    "compile": {
      "includeFiles": [
        "Program.fs"
      ]
    }
  },
  "tools": {
    "dotnet-compile-fsc":"1.0.0-preview2-*"
  },
  "frameworks": {
    "netcoreapp1.0": {
      "dependencies": {
        "Microsoft.NETCore.App": {
          "type": "platform",
          "version": "1.0.0"
        },
        "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
        "Library":{
          "version":"1.0.0",
          "target": "project"
        }
      }
    }
  }
}






And your Program.fs file should look like this:


open System
open Library

[<EntryPoint>]
let main argv = 
    printfn "Nice command line arguments!.  Here's what JSON.NET has to say about them:"

    argv
    |> Array.map getJsonNetJson
    |> Array.iter (printfn "%s")

    0 // return an integer exit code









Testing the Class Library with xUnit.net



		Create a TestLibrary folder under NETCoreFS/test.





		In the command line, execute dotnet new -l F# in FSNetCore/src/Tests.





		Remove the NuGet.Config.





		Rename Program.fs to Tests.fs.





		Open the project.json file.





		Remove the emitEntryPoint entry under buildOptions.





		Under buildOptions/compile/includeFiles, replace Program.fs with Tests.fs.





		Remove the global dependencies section.





		Under tools/dotnet-compile-fsc, remove the imports section.





		Under frameworks/netcoreapp1.0/, remove the imports section.





		Under frameworks/netcoreapp1.0/dependencies, add the following after Microsoft.NETCore.App:


"Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
"xunit":"2.2.0-beta2-build3300",
"dotnet-test-xunit":"2.2.0-preview2-build1029",
"Library":{
  "version": "1.0.0",
  "target": "project"
},









		After the frameworks section, add "testRunner":"xunit".  Note that you can add this section anywhere in the project.json file.





		In test.fs, paste the following code:


module Test

open Xunit
open Library

[<Fact>]    
let ``Library converts "Banana" correctly``() =
    let expected = """I used to be Banana but now I'm "Banana"!"""
    let actual =  getJsonNetJson "Banana"
    Assert.Equal(expected, actual)









		Run dotnet restore and dotnet build.








You should now be able to run the test and verify it passes by doing dotnet test.



[!NOTE]
This will temporarily fail on macOS. There is an issue here to track this [https://github.com/xunit/xunit/issues/859].



Your project.json file should look like this:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "compilerName": "fsc",
    "compile": {
      "includeFiles": [
        "Tests.fs"
      ]
    }
  },
  "tools": {
    "dotnet-compile-fsc":"1.0.0-preview2-*"
  },
  "frameworks": {
    "netcoreapp1.0": {
      "dependencies": {
        "Microsoft.NETCore.App": {
          "type": "platform",
          "version": "1.0.0"
        },
        "Microsoft.FSharp.Core.netcore": "1.0.0-alpha-160629",
        "xunit":"2.2.0-beta2-build3300",
        "dotnet-test-xunit":"2.2.0-preview2-build1029",
        "Library":{
          "version": "1.0.0",
          "target": "project"
        },
      }
    }
  },
  "testRunner": "xunit"
}






And your Tests.fs file should look like this:


module Test

open Xunit
open Library

[<Fact>]    
let ``Library converts "Banana" correctly``() =
    let expected = """I used to be Banana but now I'm "Banana"!"""
    let actual =  getJsonNetJson "Banana"
    Assert.Equal(expected, actual)














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/target-dotnetcore-with-msbuild.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using MSBuild to build .NET Core projects
description: Using MSBuild to build .NET Core projects
keywords: .NET, .NET Core
author: dsplaisted
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 13c66464-4f14-4db6-aa8b-06f25e7ba894





Using MSBuild to build .NET Core projects


The .NET Core tooling is going to move from project.json to MSBuild based projects [https://blogs.msdn.microsoft.com/dotnet/2016/05/23/changes-to-project-json/].
We expect the first version of the .NET Core tools that use MSBuild to ship along with the next version of Visual Studio.  However, it is possible to use MSBuild for .NET Core
projects today, and this page shows how.


We recommend that most people targeting .NET Core with new projects today use the default tooling experience with project.json because of the following
reasons:



		MSBuild doesn’t yet support a lot of the benefits of project.json


		A lot of the ASP.NET based tooling doesn’t currently work with MSBuild projects


		When we do release the .NET Core tooling that uses MSBuild, it will be able to automatically convert from project.json to MSBuild projects





You may want to use MSBuild to target .NET Core for existing projects that already use MSBuild that you want to port to .NET Core, or if you are using
MSBuild’s extensibility in your build for scenarios that are not well supported for project.json projects.



Prerequisites



		Visual Studio 2015 Update 3 [https://www.visualstudio.com/en-us/news/releasenotes/vs2015-update3-vs] or higher


		.NET Core tools for Visual Studio [https://www.visualstudio.com/downloads/download-visual-studio-vs]


		NuGet Visual Studio extension v3.5.0-beta [https://dist.nuget.org/visualstudio-2015-vsix/v3.5.0-beta/NuGet.Tools.vsix] or later








Creating a library targeting .NET Core



		In the Visual Studio menu bar, choose File | New | Project and select Class Library (Portable)





[image: New Project]



		Choose a name and location for your project and click OK


		The “Add Portable Class Library” dialog will appear.  Select .NET Framework 4.6 and ASP.NET Core 1.0 as targets and click OK





[image: Portable targets dialog]



		In Solution Explorer, right click on your project and choose Properties





		In the Library tab of the project properties, click on the Target .NET Platform Standard link, and click Yes in the dialog that is shown





		Open the project.json file in your project, and make the following changes:



		Change the version number of the NETStandard.Library package to 1.6.0 (this is the .NET Core 1.0 version of the package)





		Add the below imports definition inside the netstandard1.6 framework definition.  This will allow your project to reference .NET Core compatible
NuGet packages that haven’t been updated to target .NET Standard


"netstandard1.6": {
    "imports": [ "dnxcore50", "portable-net452" ]
}





















Creating a .NET Core console application


Building a console application for .NET Core requires some customization of the MSBuild build process.  You can find a sample project for a .NET Core console
application called CoreApp [https://github.com/dotnet/corefxlab/tree/master/samples/NetCoreSample/CoreApp] in the
corefxlab [https://github.com/dotnet/corefxlab] repo.  Another good option is to start with coretemplate [https://github.com/mellinoe/coretemplate],
which uses separate MSBuild targets files to target .NET Core instead of putting the changes directly in the project file.


It is also possible to start by creating a project in Visual Studio and modifying it to target .NET Core.  The instructions below show the minimal steps
to get this working.  In contrast to CoreApp [https://github.com/dotnet/corefxlab/tree/master/samples/NetCoreSample/CoreApp] or
coretemplate [https://github.com/mellinoe/coretemplate], a project created this way won’t include configurations for targeting Linux and macOS.



		In the Visual Studio menu bar, choose File | New | Project and select Console Application





		Choose a name and location for your project and click OK





		In Solution Explorer, right click on your project, choose Properties, and then go to the Build tab





		In the Configuration dropdown (at the top of the properties page), select All Configurations, and then change the Platform Target to x64





		Delete the app.config file from the project





		Add a project.json file to the project with the following contents:


{
    "dependencies": {
        "Microsoft.NETCore.App": "1.0.0-rc2-3002702"
    },
    "runtimes": {
        "win7-x64": { },
        "ubuntu.14.04-x64": { },
        "osx.10.10-x64": { }
    },
    "frameworks": {
        "netcoreapp1.0": {
            "imports": [ "dnxcore50", "portable-net452" ]
        }
    }
}









		In Solution Explorer, right click on the project, choose Unload Project, then right click again and choose
Edit MyProj.csproj, and make the following changes



		Remove all the default Reference items (to System, System.Core, etc.)





		Add the following properties to the first PropertyGroup in the project:


<TargetFrameworkIdentifier>.NETCoreApp</TargetFrameworkIdentifier>
<TargetFrameworkVersion>v1.0</TargetFrameworkVersion>
<BaseNuGetRuntimeIdentifier>win7</BaseNuGetRuntimeIdentifier>
<NoStdLib>true</NoStdLib>
<NoWarn>$(NoWarn);1701</NoWarn>









		Add the following at the end of the file (after the import of Microsoft.CSharp.Targets):


<PropertyGroup>
    <!-- We don't use any of MSBuild's resolution logic for resolving the framework, so just set these two
            properties to any folder that exists to skip the GetReferenceAssemblyPaths task (not target) and
            to prevent it from outputting a warning (MSB3644).
        -->
    <_TargetFrameworkDirectories>$(MSBuildThisFileDirectory)</_TargetFrameworkDirectories>
    <_FullFrameworkReferenceAssemblyPaths>$(MSBuildThisFileDirectory)</_FullFrameworkReferenceAssemblyPaths>

    <!-- MSBuild thinks all EXEs need binding redirects, not so for CoreCLR! -->
    <AutoUnifyAssemblyReferences>true</AutoUnifyAssemblyReferences>
    <AutoGenerateBindingRedirects>false</AutoGenerateBindingRedirects>

    <!-- Set up debug options to run with host, and to use the CoreCLR debug engine -->
    <StartAction>Program</StartAction>
    <StartProgram>$(TargetDir)dotnet.exe</StartProgram>
    <StartArguments>$(TargetPath)</StartArguments>
    <DebugEngines>{2E36F1D4-B23C-435D-AB41-18E608940038}</DebugEngines>
</PropertyGroup>









		Close the .csproj file, and reload the project in Visual Studio











		You should be able to run your program with F5 in Visual Studio, or from the command line in the output folder with dotnet MyApp.exe














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-in-visual-studio/visual-fsharp-development-environment-features.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Development Environment Features
description: F# Development Environment Features
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 809e9a34-b271-4c87-8356-2426b44f4721





Visual F# Development Environment Features



[!NOTE]
This article is not up to date with the latest Visual Studio.  It will be updated.



This topic includes information about which features of Visual Studio 2012 are supported in F#.



Project Features


The following table summarizes the templates that are available for use in F# projects. For information about project and item templates, see NIB Creating Projects from Templates [https://msdn.microsoft.com/library/7c36d86a-6b79-4480-8228-0f925f1204b2].


Template type	Description	Supported templates
————-	———–	——————-
Project templates	Types of projects available in the New Project dialog box.	

		F# Application


		F# Library


		F# Tutorial


		F# Portable Library




|
|Item templates|File types available in the Add New Item dialog box.|		F# source file (.fs)


		F# script (.fsx)


		F# signature file (.fsi)


		Configuration file (.config)


		SQL Database Connection (LINQ-to-SQL type provider)


		SQL Database Connection (LINQ to Entities type provider)


		OData Service Connection (LINQ type provider)


		WSDL Service Connection (type provider)


		XML file (.xml)


		Text file




|
To create an application that can run as a standalone executable, choose the F# Application project type. To create a library (that is, a managed assembly or .DLL file) for use on the Windows desktop platform, choose F# Library. To create a portable library that can be used on any supported platform, choose F# Portable Library. F# Portable Library projects reference a version of FSharp.Core.dll that is appropriate to create an F# library that can be used with applications that run on platforms such as Windows Store apps, the .NET Framework 4.5, Xamarin.iOS and Xamarin.Android.


For more information about the item templates for data access, see Type Providers.


The following table summarizes project-properties features supported and not supported in F#. For more information, see Configuring Projects and Introduction to the Project Designer [https://msdn.microsoft.com/library/898dd854-c98d-430c-ba1b-a913ce3c73d7].


Project setting	Supported in F#?	Notes
—————	—————-	—–
Resource files	Yes	
Build, debug, and reference settings	Yes	
Multitargeting	Yes	
Icon and manifest	No	Available through compiler command-line options.
ASP.NET Client Services	No	
ClickOnce	No	Use a client project in another .NET Framework language, if applicable.
Strong naming	No	Available through compiler command-line options.
Assembly publishing and versioning	No	
Code analysis	No	Code analysis tools can be run manually or as part of a post-build command.
Security (change trust levels)	No	









Code and Text Editor Features


The following features of the Visual Studiocode and text editors are supported in F#. For general information about editing code in Visual Studio, and features of the text editor, see Writing Code in the Code and Text Editor [https://msdn.microsoft.com/library/efc4xwkb.aspx].


Feature	Description	Supported in F#?
——-	———–	—————-
Automatically comment	Enables you to comment or uncomment sections of code.	Yes
Automatically format	Reformats code with standard indentation and style.	No
Bookmarks	Enables you to save places in the editor.	Yes
Change indentation	Indents or unindents selected lines.	Yes
Finding and Replacing Text [https://msdn.microsoft.com/library/139eef4h.aspx]	Enables you to search in a file, project, or solution, and potentially change text.	Yes
Go to definition for .NET Framework API	When the cursor is positioned on a .NET Framework API, shows code generated from .NET Framework metadata.	No
Go to definition for user-defined API	When the cursor is on a program entity that you defined, moves the cursor to the location in your code where the entity is defined.	Yes
Go To Line	Enables you to go to a specific line in a file, by line number.	Yes
Navigation bars at top of file	Enables you to jump to locations in code, by, For example, function name.	No
Outlining. See Outlining [https://msdn.microsoft.com/library/td6a5x4s.aspx].	Enables you to collapse sections of your code to create a more compact view.	No
Tabify	Converts spaces to tabs.	Yes
Type colorization	Shows defined type names in a special color.	No
Quick Find. See Quick Find, Find and Replace Window.	Enables you to search in a file or project.	Yes, but only to find F# files, not to search within files





IntelliSense Features


The following table summarizes IntelliSense features supported and not supported in F#. For general information about IntelliSense, see Using IntelliSense [https://msdn.microsoft.com/library/hcw1s69b.aspx].


Feature	Description	Supported in F#?
——-	———–	—————-
Automatically implement interfaces	Generates code stubs for interface methods.	No
Code snippets	Injects code from a library of common coding constructs into topics.	No
Complete Word	Saves typing by completing words and names as you type.	Yes
Consume-first completion mode	When enabled, causes the word completion to select the first match as you type, instead of waiting for you to select one or press CTRL+SPACE.	No
Generate code elements	Enables you to generate stub code for a variety of constructs.	No
List Members	When you type the member access operator (.), shows members for a type.	Yes
Organize Usings/Open	Organizes namespaces referenced by using statements in C# or open directives in F#.	No
Parameter Info	Shows helpful information about parameters as you type a function call.	Yes.
Quick Info	Displays the complete declaration for any identifier in your code.	Yes
Refactoring of F# code isn’t supported in Visual Studio 2012.





Debugging Features


The following table summarizes features that are available when you debug F# code. For general information about the Visual Studio debugger, see Debugging in Visual Studio [https://msdn.microsoft.com/library/sc65sadd.aspx].


Feature	Description	Supported in F#?
——-	———–	—————-
Autos window	Shows automatic or temporary variables.	No
Breakpoints	Enables you to pause code execution at specific points during debugging.	Yes
Conditional breakpoints	Enables breakpoints that test a condition that determines whether execution should pause.	Yes
Edit and Continue	Enables code to be modified and compiled as you debug a running program without stopping and restarting the debugger.	No
Expression evaluator	Evaluates and executes code at run time.	No, but the C# expression evaluator can be used, although you must use C# syntax.
Historical debugging	Enables you to step into previously executed code.	Yes
Locals window	Shows locally defined values and variables.	Yes
Run To Cursor	Enables you to execute code until the line that contains the cursor is reached.	Yes
Step Into	Enables you to advance execution and move into any function call.	Yes
Step Over	Enables you to advance execution in the current stack frame and move past any function call.	Yes





Additional Tools


The following table summarizes the support for F# in Visual Studio tools.


Tool	Description	Supported in F#?
—-	———–	—————-
Call Hierarchy	Displays the nested structure of function calls in your code.	No
Code Metrics	Gathers information about your code, such as line counts.	No
Class View	Provides a type-based view of the code in a project.	No
Error List Window [https://msdn.microsoft.com/library/33df3b7a.aspx]	Shows a list of errors in code.	Yes
F# Interactive	Enables you to type (or copy and paste) F# code and run it immediately, independently of the building of your project. The F# Interactive window is a Read, Evaluate, Print Loop (REPL).	Yes
Object Browser	Enables you to view the types in an assembly.	F# types as they appear in compiled assemblies do not appear exactly as you author them. You can browse through the compiled representation of F# types, but you cannot view the types as they appear from F#.
Output Window [https://msdn.microsoft.com/library/3hk6fby3.aspx]	Displays build output.	Yes
Performance analysis	Provides tools for measuring the performance of your code.	Yes
Properties Window	Displays and enables editing of properties of the object in the development environment that has focus.	Yes
Server Explorer [https://msdn.microsoft.com/library/x603htbk.aspx]	Provides ways to interact with a variety of server resources.	Yes
Solution Explorer	Enables you to view and manage projects and files.	Yes
Task List	Enables you to manage work items pertaining to your code.	Yes
Test Projects	Provides features that help you test your code.	No
Toolbox	Displays tabs that contain draggable objects such as controls and sections of text or code.	Yes





See Also


Getting Started with F# in Visual Studio


Configuring Projects








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/libraries.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Developing Libraries with Cross Platform Tools
description: Developing Libraries with Cross Platform Tools
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9f6e8679-bd7e-4317-b3f9-7255a260d9cf





Developing Libraries with Cross Platform Tools


Some details are subject to change as the toolchain evolves.


This article covers how to write libraries for .NET using cross-platform CLI tools.  The CLI provides an efficient and low-level experience that works across any supported OS.  You can still build libraries with Visual Studio, and if that is your preferred experience refer to the Visual Studio guide.



Prerequisites


You need the .NET Core SDK and CLI [https://www.microsoft.com/net/core] installed on your machine.


For the sections of this document dealing with .NET Framework versions or Portable Class Libraries (PCL), you need the .NET Framework [http://getdotnet.azurewebsites.net/] installed on a Windows machine.


Additionally, if you wish to support older .NET Framework targets, you need to install targeting/developer packs for older framework versions from the .NET target platforms page [http://getdotnet.azurewebsites.net/target-dotnet-platforms.html].  Refer to this table:


.NET Framework Version	What to download
———————-	—————–
4.6.1	.NET Framework 4.6.1 Targeting Pack
4.6	.NET Framework 4.6 Targeting Pack
4.5.2	.NET Framework 4.5.2 Developer Pack
4.5.1	.NET Framework 4.5.1 Developer Pack
4.5	Windows Software Development Kit for Windows 8
4.0	Windows SDK for Windows 7 and .NET Framework 4
2.0, 3.0, and 3.5	.NET Framework 3.5 SP1 Runtime (or Windows 8+ version)





How to target the .NET Standard


If you’re not quite familiar with the .NET Standard, refer to the .NET Standard Library to learn more.


In that article, there is a table which maps .NET Standard versions to various implementations:


Platform Name	Alias							
:———-	:———	:———	:———	:———	:———	:———	:———	:———
.NET Standard	netstandard	1.0	1.1	1.2	1.3	1.4	1.5	1.6
.NET Core	netcoreapp							

→


|→


|→


|→


|→


|→


|1.0|
|.NET Framework|net|→


|4.5|4.5.1|4.6|4.6.1|4.6.2|4.6.3|
|Mono/Xamarin Platforms||→


|→


|→


|→


|→


|→


|*|
|Universal Windows Platform|uap|→


|→


|→


|→


|10.0|||
|Windows|win|→


|8.0|8.1|||||
|Windows Phone|wpa|→


|→


|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||


Here’s what this table means for the purposes of creating a library:


The version of the .NET Platform Standard you pick will be a tradeoff between access to the newest APIs and ability to target more .NET platforms and Framework versions.  You control the range of targetable platforms and versions by picking a version of netstandardX.X (Where X.X is a version number) and adding it to your project.json file.


Additionally, the corresponding NuGet package to depend on [https://www.nuget.org/packages/NETStandard.Library/] is NETStandard.Library version 1.6.0.  Although there’s nothing preventing you from depending on Microsoft.NETCore.App like with console apps, it’s generally not recommended.  If you need APIs from a package not specified in NETStandard.Library, you can always specify that package in addition to NETStandard.Library in the dependencies section of your project.json file.


You have three primary options when targeting the .NET Standard, depending on your needs.



		You can use the latest version of the .NET Standard - netstandard1.6 - which is for when you want access to the most APIs and don’t mind if you have less reach across implementations.





		You can use a lower version of the .NET Standard to target earlier .NET implementations. The cost here is not having access to some of the latest APIs.


For example, if you wanted to have guaranteed compatibility with .NET Framework 4.6 and higher, you would pick netstandard1.3:


{
    "dependencies":{
        "NETStandard.Library":"1.6.0"
    },
    "frameworks":{
        "netstandard1.3":{}
    }
}






.NET Standard versions are backward compatible. That means that netstandard1.0 libraries run on netstandard1.1 platforms and higher.  However, there is no forward compatibility - lower .NET Standard platforms cannot reference higher ones.  This means that netstandard1.0 libraries cannot reference libraries targeting netstandard1.1 or higher.  Select the Standard version that has the right mix of APIs and platform support for your needs.





		If you want to target the .NET Framework versions 4.0 or below, or you wish to use an API available in the .NET Framework but not in the .NET Standard (for example, System.Drawing), read the following sections and learn how to multitarget.











How to target the .NET Framework



[!NOTE]
These instructions assume you have the .NET Framework installed on your machine.  Refer to the Prerequisites to get dependencies installed.



Keep in mind that some of the .NET Framework versions used here are no longer in support.  Refer to the .NET Framework Support Lifecycle Policy FAQ [https://support.microsoft.com/gp/framework_faq/en-us] about unsupported versions.


If you want to reach the maximum number of developers and projects, use the .NET Framework 4 as your baseline target. To target the .NET Framework, you will need to begin by using the correct Target Framework Moniker (TFM) that corresponds to the .NET Framework version you wish to support.


.NET Framework 2.0   --> net20
.NET Framework 3.0   --> net30
.NET Framework 3.5   --> net35
.NET Framework 4.0   --> net40
.NET Framework 4.5   --> net45
.NET Framework 4.5.1 --> net451
.NET Framework 4.5.2 --> net452
.NET Framework 4.6   --> net46
.NET Framework 4.6.1 --> net461
.NET Framework 4.6.2 --> net462
.NET Framework 4.6.3 --> net463






For example, here’s how you would write a library which targets the .NET Framework 4:


{
    "frameworks":{
        "net40":{}
    }
}






And that’s it!  Although this compiled only for the .NET Framework 4, you can use the library on newer versions of the .NET Framework.





How to target a Portable Class Library (PCL)



[!NOTE]
These instructions assume you have the .NET Framework installed on your machine.  Refer to the Prerequisites to get dependencies installed.



Targeting a PCL profile is a bit trickier than targeting .NET Standard or the .NET Framework.  For starters, reference this list of PCL profiles [http://embed.plnkr.co/03ck2dCtnJogBKHJ9EjY/preview] to find the NuGet target which corresponds to the PCL profile you are targeting.


Then, you need to do the following:



		Create a new entry under frameworks in your project.json, named .NETPortable,Version=v{version},Profile=Profile{profile}, where {version} and {profile} correspond to a PCL version number and Profile number, respectively.


		In this new entry, list every single assembly used for that target under a frameworkAssemblies entry.  This includes mscorlib, System, and System.Core.


		If you are multitargeting (see the next section), you must explicitly list dependencies for each target under their target entries.  You won’t be able to use a global dependencies entry anymore.





The following is an example targeting PCL Profile 328. Profile 328 supports: .NET Standard 1.4, .NET Framework 4, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8.1, and Silverlight 5.


{
    "frameworks":{
        ".NETPortable,Version=v4.0,Profile=Profile328":{
            "frameworkAssemblies":{
                "mscorlib":"",
                "System":"",
                "System.Core":""
            }
        }
    }
}






When you build a project that includes PCL Profile 328 as a framework in the project.json file, it will have this subfolder in the /bin/debug folder:


portable-net40+sl50+netcore45+wpa81+wp8/






This folder contains the .dll files necessary to run your library.





How to Multitarget



[!NOTE]
The following instructions assume you have the .NET Framework installed on your machine.  Refer to the Prerequisites section to learn which dependencies you need to install and where to download them from.



You may need to target older versions of the .NET Framework when your project supports both the .NET Framework and .NET Core. In this scenario, if you want to use newer APIs and language constructs for the newer targets, use #if directives in your code. You also might need to add different packages and dependencies in your project.json file for each platform you’re targeting to include the different APIs needed for each case.


For example, let’s say you have a library that performs networking operations over HTTP. For .NET Standard and the .NET Framework versions 4.5 or higher, you can use the HttpClient class from the System.Net.Http namespace. However, earlier versions of the .NET Framework don’t have the HttpClient class, so you could use the WebClient class from the System.Net namespace for those instead.


So, the project.json file could look like this:


{
    "frameworks":{
        "net40":{
            "frameworkAssemblies": {
                "System.Net":"",
                "System.Text.RegularExpressions":""
            }
        },
        "net452":{
            "frameworkAssemblies":{
                "System.Net":"",
                "System.Net.Http":"",
                "System.Text.RegularExpressions":"",
                "System.Threading.Tasks":""
            }
        },
        "netstandard1.6":{
            "dependencies": {
                "NETStandard.Library":"1.6.0",
            }
        }
    }
}






Note that the .NET Framework assemblies need to be referenced explicitly in the net40 and net452 target, and NuGet references are also explicitly listed in the netstandard1.6 target.  This is required in multitargeting scenarios.


Next, the using statements in your source file can be adjusted like this:


#if NET40
// This only compiles for the .NET Framework 4 targets
using System.Net;
#else
// This compiles for all other targets
using System.Net.Http;
using System.Threading.Tasks;
#endif






The build system is aware of the following preprocessor symbols used in #if directives:


.NET Framework 2.0   --> NET20
.NET Framework 3.5   --> NET35
.NET Framework 4.0   --> NET40
.NET Framework 4.5   --> NET45
.NET Framework 4.5.1 --> NET451
.NET Framework 4.5.2 --> NET452
.NET Framework 4.6   --> NET46
.NET Framework 4.6.1 --> NET461
.NET Framework 4.6.2 --> NET462
.NET Standard 1.0    --> NETSTANDARD1_0
.NET Standard 1.1    --> NETSTANDARD1_1
.NET Standard 1.2    --> NETSTANDARD1_2
.NET Standard 1.3    --> NETSTANDARD1_3
.NET Standard 1.4    --> NETSTANDARD1_4
.NET Standard 1.5    --> NETSTANDARD1_5
.NET Standard 1.6    --> NETSTANDARD1_6






And in the middle of the source, you can use #if directives to use those libraries conditionally. For example:


    public class Library
    {
#if NET40
        private readonly WebClient _client = new WebClient();
        private readonly object _locker = new object();
#else
        private readonly HttpClient _client = new HttpClient();
#endif

#if NET40
        // .NET Framework 4.0 does not have async/await
        public string GetDotNetCount()
        {
            string url = "http://www.dotnetfoundation.org/";
          
            var uri = new Uri(url);
            
            string result = "";
            
            // Lock here to provide thread-safety.
            lock(_locker)
            {
                result = _client.DownloadString(uri);
            }
            
            int dotNetCount = Regex.Matches(result, ".NET").Count;
            
            return $"Dotnet Foundation mentions .NET {dotNetCount} times!";
        }
#else
        // .NET 4.5+ can use async/await!
        public async Task<string> GetDotNetCountAsync()
        {
            string url = "http://www.dotnetfoundation.org/";
            
            // HttpClient is thread-safe, so no need to explicitly lock here
            var result = await _client.GetStringAsync(url);
            
            int dotNetCount = Regex.Matches(result, ".NET").Count;
            
            return $"dotnetfoundation.orgmentions .NET {dotNetCount} times in its HTML!";
        }
#endif
    }






When you build a project that includes net40, net45, and netstandard1.6 as frameworks in the project.json file, it will have these subfolders in the /bin/debug folder:


net40/
net45/
netstandard1.6/







But What about Multitargeting with Portable Class Libraries?


If you want to cross-compile with a PCL target, you must add a build definition in your project.json file under buildOptions in your PCL target.  You can then use #if directives in the source which use the build definition as a preprocessor symbol.


For example, if you want to target PCL profile 328 [http://embed.plnkr.co/03ck2dCtnJogBKHJ9EjY/preview] (The .NET Framework 4, Windows 8, Windows Phone Silverlight 8, Windows Phone 8.1, Silverlight 5), you could to refer to it to as “PORTABLE328” when cross-compiling.  Simply add it to the project.json file as a buildOptions attribute:


{
    "frameworks":{
        "netstandard1.6":{
           "dependencies":{
                "NETStandard.Library":"1.6.0",
            }
        },
        ".NETPortable,Version=v4.0,Profile=Profile328":{
            "buildOptions": {
                "define": [ "PORTABLE328" ]
            },
            "frameworkAssemblies":{
                "mscorlib":"",
                "System":"",
                "System.Core":"",
                "System.Net"
            }
        }
    }
}






Now you can conditionally compile against that target:


#if !PORTABLE328
using System.Net.Http;
using System.Threading.Tasks;
// Potentially other namespaces which aren't compatible with Profile 328
#endif






Because PORTABLE328 is now recognized by the compiler, the PCL Profile 328 library generated by a compiler will not include System.Net.Http or System.Threading.Tasks.


When you build a project that includes PCL Profile 328 and netstandard1.6 as frameworks in the project.json file, it will have these subfolders in the /bin/debug folder:


portable-net40+sl50+netcore45+wpa81+wp8/
netstandard1.6/











How to use native dependencies


You may wish to write a library which depends on a native .dll file.  If you’re writing such a library, you have have two options:



		Reference the native .dll directly in your project.json.


		Package that .dll into its own NuGet package and depend on that package.





For the first option, you’ll need to include the following in your project.json file:



		Setting allowUnsafe to true in a buildOptions section.


		Specifying the path to the native .dll(s) with a Runtime Identifier (RID) under files in the packOptions section.





If you’re distributing your library as a package, it’s recommended that you place the .dll file at the root level of your project.  Here’s an example project.json for a native .dll file that runs on Windows x64:


{
    "buildOptions":{
        "allowUnsafe":true
    },
    "packOptions":{
        "files":{
            "runtimes/win7-x64/native/":"native-lib.dll"
        }
    }
}






For the second option, you’ll need to build a NuGet package out of your .dll file(s), host on a NuGet or MyGet feed, and depend on it directly.  You’ll still need to set allowUnsafe to true in the buildOptions section of your project.json.  Here’s an example (assuming MyNativeLib is a Nuget package at version 1.2.0):


{
    "buildOptions":{
        "allowUnsafe":true
    },
    "dependencies":{
        "MyNativeLib":"1.2.0"
    }
}






To see an example of packaging up cross-platform native binaries, check out the ASP.NET Libuv Package [https://github.com/aspnet/libuv-package] and the corresponding reference in KestrelHttpServer [https://github.com/aspnet/KestrelHttpServer/blob/1.0.0/src/Microsoft.AspNetCore.Server.Kestrel/project.json#L19].





How to test libraries on .NET Core


It’s important to be able to test across platforms.  It’s easiest to use xUnit [http://xunit.github.io/], which is also the testing tool used by .NET Core projects.  How you set up your solution with test projects will depend on the structure of your solution.  The following example assumes that all source projects are under a top-level /src folder and all test projects are under a top-level /test folder.



		Ensure you have a global.json file at the solution level which understands where the test projects are:


{
    "projects":[ "src", "test"]
}






Your solution folder structure should then look like this:


/SolutionWithSrcAndTest
|__global.json
|__/src
|__/test









		Create a new test project by creating a project folder under your /test folder, and a project.json file in the new project folder.  To create the project.json file you can run the dotnet new command and modify the project.json file afterwards.  The file should have the following:



		netcoreapp1.0 listed as the only entry under frameworks.


		A reference to Microsoft.NETCore.App version 1.0.0.


		A reference to xUnit version 2.2.0-beta2-build3300.


		A reference to dotnet-test-xunit version 2.2.0-preview2-build1029


		A project reference to the library being tested.


		The entry "testRunner":"xunit".





Here’s an example (LibraryUnderTest version 1.0.0 is the library being tested):


{
     "testRunner":"xunit",
     "dependencies":{
         "LibraryUnderTest":{
             "version":"1.0.0",
             "target":"project"
         },
         "Microsoft.NETCore.App":{
             "version":"1.0.0",
             "type":"platform"
         },
         "xunit":"2.2.0-beta2-build3300",
         "dotnet-test-xunit":"2.2.0-preview2-build1029",
     },
     "frameworks":{
         "netcoreapp1.0":{}
     }
}









		Restore packages by running dotnet restore.  You should do this at the solution level if you haven’t restored packages yet.





		Navigate to your test project and run tests with dotnet test:


$ cd path-to-your-test-project
$ dotnet test












And that’s it!  You can now test your library across all platforms using command line tools.  To continue testing now that you have everything set up, testing your library is very simple:



		Make changes to your library.


		Run tests from the command line, in your test directory, with dotnet test command.





Your code will be automatically rebuilt when you invoke dotnet test command.


Just remember to run dotnet restore from the command line any time you add a new dependency and you’ll be good to go!





How to use multiple projects


A common need for larger libraries is to place functionality in different projects.


Imagine you wished to build a library which could be consumed in idiomatic C# and F#.  That would mean that consumers of your library consume them in ways which are natural to C# or F#.  For example, in C# you might consume the library like this:


var convertResult = await AwesomeLibrary.ConvertAsync(data);
var result = AwesomeLibrary.Process(convertResult);






In F#, it might look like this:


let result =
    data
    |> AwesomeLibrary.convertAsync 
    |> Async.RunSynchronously 
    |> AwesomeLibrary.process






Consumption scenarios like this mean that the APIs being accessed have to have a different structure for C# and F#.  A common approach to accomplishing this is to factor all of the logic of a library into a core project, with C# and F# projects defining the API layers that call into that core project.  The rest of the section will use the following names:



		AwesomeLibrary.Core - A core project which contains all logic for the library


		AwesomeLibrary.CSharp - A project with public APIs intended for consumption in C#


		AwesomeLibrary.FSharp - A project with public APIs intended for consumption in F#






Project-to-project referencing


The best way to reference a project is to do the following:



		Make sure the project you wish to reference has a good name for its containing folder on disk.  This will be the name used to reference your project.


		Reference the name from (1) in the project.json file of the consuming project specifying "target":"project".





The project.json files for both AwesomeLibrary.CSharp and AwesomeLibrary.FSharp now need to reference AwesomeLibrary.Core as a project target.  If you aren’t multitargeting, you can use the global dependencies entry:


{
    "dependencies":{
        "AwesomeLibrary.Core":{
            "target":"project"
        }
    }
}






If you are multitargeting, you may not be able to use a global dependencies entry and may have to reference AwesomeLibrary.Core in a target-level dependencies entry.  For example, if you were targeting netstandard1.6, you could do so like this:


{
    "frameworks":{
        "netstandard1.6":{
            "dependencies":{
                "AwesomeLibrary.Core":{
                    "target":"project"
                }
            }
        }
    }
}









Structuring a Solution


Another important aspect of multi-project solutions is establishing a good overall project structure. To structure a multi-project library, you must use top-level /src and /test folders:


/AwesomeLibrary
|__global.json
|__/src
   |__/AwesomeLibrary.Core
      |__Source Files
      |__project.json
   |__/AwesomeLibrary.CSharp
      |__Source Files
      |__project.json
   |__/AwesomeLibrary.FSharp
      |__Source Files
      |__project.json
|__/test
   |__/AwesomeLibrary.Core.Tests
      |__Test Files
      |__project.json
   |__/AwesomeLibrary.CSharp.Tests
      |__Test Files
      |__project.json
   |__/AwesomeLibrary.FSharp.Tests
      |__Test Files
      |__project.json






The global.json file for this solution would look like this:


{
    "projects":["src", "test"]
}






This approach follows the same pattern established by project templates in the dotnet new command establish, where all projects are placed under a /src directory and all tests are placed under a /test directory.


Here’s how you could restore packages, build, and test your entire project:


$ dotnet restore
$ cd src/AwesomeLibrary.FSharp
$ dotnet build
$ cd ../AwesomeLibrary.CSharp
$ dotnet build
$ cd ../../test/AwesomeLibrary.Core.Tests
$ dotnet test
$ cd ../AwesomeLibrary.CSharp.Tests
$ dotnet test
$ cd ../AwesomeLibrary.FSharp.Tests
$ dotnet test






And that’s it!










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/working-with-linq.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Working with LINQ
description: Working with LINQ
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0db12548-82cb-4903-ac88-13103d70aa77





Working with LINQ



Introduction


This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:



		How to generate sequences with LINQ


		How to write methods that can be easily used in LINQ queries.


		How to distinguish between eager and lazy evaluation.





You’ll learn these techniques by building an application that demonstrates
one of the basic skills of any magician: the
faro shuffle [https://en.wikipedia.org/wiki/Faro_shuffle]. Briefly,
a faro shuffle is a technique where you split a card deck exactly in half,
then the shuffle interleaves each one card from each half to rebuild the
original deck.


Magicians use this technique because every card is in a known location
after each shuffle, and the order is a repeating pattern.


For our purposes, it is a light hearted look at manipulating sequences
of data. The application you’ll build will construct a card deck, and
then perform a sequence of shuffles, writing the sequence out each time.
You’ll also compare the updated order to the original order.


This tutorial has multiple steps. After each step, you can run the
application and see the progress. You can also see the completed
sample in our GitHub repository. [https://github.com/dotnet/core-docs/blob/master/samples/csharp/getting-started/console-linq]





Prerequisites


You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Ubuntu Linux, OS X or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.





Create the Application


The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.


If you’ve never used C# before, this tutorial
explains the structure of a C# program. You can read that and then
return here to learn more about LINQ.





Creating the Data Set


Let’s start by creating a deck of cards. You’ll do this using a LINQ
query that has two sources (one for the four suits, one for the
thirteen values). You’ll combine those source into a 52 card deck.


Here’s the query:


var startingDeck = from s in Suits()
                   from r in Ranks()
                   select new { Suit = s, Rank = r };






The multiple from clauses produce a SelectMany, which creates
a single sequence from combining each element in the first sequence
with each element in the second sequence. The order is important
for our purposes. The first element in the first source sequence
(Suits) is combined with every element in the second sequence (Values).
This produces all thirteen cards of first suit. That process is repeated
with each element in the first sequence (Suits). The end result is a deck of cards
ordered by suits, followed by values.


Next, you’ll need to build the Suits() and Ranks() methods. Let’s start
with a really simple set of iterator methods that generate the sequence
as an enumerable of strings:


static IEnumerable<string> Suits()
{
    yield return "clubs";
    yield return "diamonds";
    yield return "hearts";
    yield return "spades";
}

static IEnumerable<string> Ranks()
{
    yield return "two";
    yield return "three";
    yield return "four";
    yield return "five";
    yield return "six";
    yield return "seven";
    yield return "eight";
    yield return "nine";
    yield return "ten";
    yield return "jack";
    yield return "queen";
    yield return "king";
    yield return "ace";
}






These two methods both utilize the yield return syntax to produce a sequence
as they run. The compiler builds an object that implements IEnumerable<T>
and generates the sequence of strings as they are requested.


Go ahead and run the sample you’ve built at this point. It will display
all 52 cards in the deck. You may find it very helpful to run this sample
under a debugger to observe how the Suits() and Values() methods
execute. You can clearly see that each string in each sequence is generated
only as it is needed.





Manipulating the Order


Next, let’s build a utility method that can perform the shuffle. The first step
is to split the deck in two. The Take() and Skip() methods that are
part of the LINQ APIs provide that feature for us:


var top = startingDeck.Take(26);
var bottom = startingDeck.Skip(26);






The shuffle method doesn’t exist in the standard library, so you’ll have
to write your own. This new method illustrates several techniques that you’ll
use with LINQ-based programs, so let’s explain each part of the method in
steps.


The signature for the method creates an extension method:


public static IEnumerable<T> InterleaveSequenceWith<T>
    (this IEnumerable<T> first, IEnumerable<T> second)






An extension method is a special purpose static method.
You can see the addition of the this modifier on the first
argument to the method. That means you call the method as though
it were a member method of the type of the first argument.


Extension methods can be declared only inside static classes, so
let’s create a new static class called extensions for this functionality.
You’ll add more extension methods as you continue this tutorial, and those
will be placed in the same class.


This method declaration also follows a standard idiom where the input and
output types are IEnumerable<T>. That practice enables LINQ methods to
be chained together to perform more complex queries.


using System.Collections.Generic;

namespace LinqFaroShuffle
{
    public static class Extensions
    {
        public static IEnumerable<T> InterleaveSequenceWith<T>
            (this IEnumerable<T> first, IEnumerable<T> second)
        {
            // implementation coming.
        }
    }
}






You will be enumerating both sequences at once, interleaving the elements,
and creating one object.  Writing a LINQ method that works with two
sequences requires that you understand how IEnumerable works.


The IEnumerable interface has one method: GetEnumerator(). The object
returned by GetEnumerator() has a method to move to the next element,
and a property that retrieves the current element in the sequence. You
will use those two members to enumerate the collection and return the
elements. This Interleave method will be an iterator method, so instead
of building a collection and returning the collection, you’ll use the
yield return syntax shown above.


Here’s the implementation of that method:


public static IEnumerable<T> InterleaveSequenceWith<T>
    (this IEnumerable<T> first, IEnumerable<T> second)
{
    var firstIter = first.GetEnumerator();
    var secondIter = second.GetEnumerator();
    while (firstIter.MoveNext() && secondIter.MoveNext())
    {
        yield return firstIter.Current;
        yield return secondIter.Current;
    }
}






Now that you’ve written this method, go back to the Main method
and shuffle the deck once:


public static void Main(string[] args)
{
    var startingDeck = from s in Suits()
                       from r in Ranks()
                       select new { Suit = s, Rank = r };
    foreach (var c in startingDeck)
        Console.WriteLine(c);
        
    var top = startingDeck.Take(26);
    var bottom = startingDeck.Skip(26);
    
    var shuffle = top.InterleaveSequenceWith(bottom);
    foreach (var c in shuffle)
        Console.WriteLine(c);
}









Comparisons


Let’s see how many shuffles it takes to set the deck back to its
original order. You’ll need to write a method that determines if
two sequences are equal. After you have that method, you’ll need to
place the code that shuffles the deck in a loop, and check to see when
the deck is back in order.


Writing a method to determine if the two sequences are equal should
be straightforward. It’s a similar structure to the method you wrote
to shuffle the deck. Only this time, instead of yield returning each
element, you’ll compare the matching elements of each sequence. When
the entire sequence has been enumerated, if every element matches,
the sequences are the same:


public static bool SequenceEquals<T>(this IEnumerable<T> first, IEnumerable<T> second)
{
    var firstIter = first.GetEnumerator();
    var secondIter = second.GetEnumerator();
    while (firstIter.MoveNext() && secondIter.MoveNext())
    {
        if (!firstIter.Current.Equals(secondIter.Current))
            return false;
    }
    return true;
}






This shows a second Linq idiom: terminal methods. They take a sequence as input
(or in this case, two sequences), and return a single scalar value. These methods,
when they are used, are always the final method of a query. (Hence the name).


You can see this in action when you use it to determine when the deck
is back in its original order. Put the shuffle code inside a loop, and stop when
the sequence is back in its original order by applying the SequenceEquals()
method. You can see it would always be the final method in any query, because it
returns a single value instead of a sequence:


var times = 0;
var shuffle = startingDeck;
do
{
    shuffle = shuffle.Take(26).InterleaveSequenceWith(shuffle.Skip(26));

    foreach (var c in shuffle)
        Console.WriteLine(c);

    Console.WriteLine();
    times++;
} while (!startingDeck.SequenceEquals(shuffle));
Console.WriteLine(times);






Run the sample, and see how the deck rearranges on each shuffle, until
it returns to its original configuration after 8 iterations.





Optimizations


The sample you’ve built so far executes an in shuffle, where the
top and bottom cards stay the same on each run. Let’s make one change,
and run an out shuffle, where all 52 cards change position. For an out shuffle,
you interleave the deck so that the first card in the bottom half becomes the
first card in the deck. That means the last card in the top half becomes the bottom
card. That’s just a one line change. Update the call to shuffle to change the order
of the top and bottom halves of the deck:


shuffle = shuffle.Skip(26).InterleaveSequenceWith(shuffle.Take(26));






Run the program again, and you’ll see that it takes 52 iterations for the
deck to reorder itself. You’ll also start to notice some serious performance degradations
as the program continues to run.


There are a number of reasons for this. Let’s tackle one of the major causes: inefficient
use of lazy evaluation.


LINQ queries are evaluated lazily. The sequences are generated only as the elements are requested.
Usually, that’s a major benefit of LINQ. However, in a use such as this program, this causes
exponential growth in execution time.


The original deck was generated using a LINQ query. Each shuffle is generated by performing three
LINQ queries on the previous deck. All these are performed lazily. That also means they are performed
again each time the sequence is requested. By the time you get to the 52nd iteration, you’re regenerating
the original deck many, many times. Let’s write a log to demonstrate this behavior. Then, you’ll fix it.


Here’s a log method that can be appended to any query to mark that the query executed.


public static IEnumerable<T> LogQuery<T>(this IEnumerable<T> sequence, string tag)
{
    using (var writer = File.AppendText("debug.log"))
    {
        writer.WriteLine($"Executing Query {tag}");
    }
    return sequence;
}






Next, instrument the definition of each query with a log message:


public static void Main(string[] args)
{
var startingDeck = (from s in Suits().LogQuery("Suit Generation")
                    from r in Ranks().LogQuery("Rank Generation")
                    select new { Suit = s, Rank = r }).LogQuery("Starting Deck");
    foreach (var c in startingDeck)
        Console.WriteLine(c);
        
    Console.WriteLine();
    var times = 0;
    var shuffle = startingDeck;
    do
    {
        //shuffle = shuffle.Take(26).LogQuery("Top Half")
        //    .InterleaveSequenceWith(shuffle.Skip(26).LogQuery("Bottom Half")).LogQuery("Shuffle");

        shuffle = shuffle.Skip(26).LogQuery("Bottom Half")
            .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top Half")).LogQuery("Shuffle");

        foreach (var c in shuffle)
            Console.WriteLine(c);
        times++;
        Console.WriteLine(times);
    } while (!startingDeck.SequenceEquals(shuffle));
    Console.WriteLine(times);
}






Notice that you don’t log every time you access a query. You log only when you create
the original query. The program still takes a long time to run, but now you can see why.
If you run out of patience running the outer shuffle with logging turned on, switch back
to the inner shuffle. You’ll still see the lazy evaluation effects. In one run, it executes
2592 queries, including all the value and suit generation.


There is an easy way to update this program to avoid all those executions. There are
LINQ methods ToArray() and ToList() that cause the query to run, and store the results
in an array or a list, respectively. You use these methods to cache the data results of a query
rather than execute the source query again.  Append the queries that generate the card decks
with a call to ToArray() and run the query again:


public static void Main(string[] args)
{
var startingDeck = (from s in Suits().LogQuery("Suit Generation")
                    from v in Ranks().LogQuery("Rank Generation")
                    select new { Suit = s, Rank = r })
                    .LogQuery("Starting Deck")
                    .ToArray();
    foreach (var c in startingDeck)
        Console.WriteLine(c);
        
    Console.WriteLine();
    var times = 0;
    var shuffle = startingDeck;
    do
    {
        shuffle = shuffle.Take(26).LogQuery("Top Half")
            .InterleaveSequenceWith(shuffle.Skip(26).LogQuery("Bottom Half")).LogQuery("Shuffle").ToArray();

        //shuffle = shuffle.Skip(26).LogQuery("Bottom Half")
        //    .InterleaveSequenceWith(shuffle.Take(26).LogQuery("Top Half")).LogQuery("Shuffle");

        foreach (var c in shuffle)
            Console.WriteLine(c);
        times++;
        Console.WriteLine(times);
    } while (!startingDeck.SequenceEquals(shuffle));
    Console.WriteLine(times);
}






Run again, and the inner shuffle is down to 30 queries. Run again with the outer shuffle
and you’ll see similar improvements. (It now executes 162 queries).


Don’t misinterpret this example by thinking that all queries should run
eagerly. This example is designed to highlight the use cases where lazy
evaluation can cause performance difficulties. That’s because each new
arrangement of the deck of cards is built from the previous arrangement.
Using lazy evaluation means each new deck configuration is built from
the original deck, even executing the code that built the startingDeck.
That causes a large amount of extra work.


In practice, some algorithms run much better using eager evaluation, and others run much
better using lazy evaluation. (In general, lazy evaluation is a much better choice
when the data source is a separate process, like a database engine. In those cases,
lazy evaluation enables more complex queries to execute only one round trip to the
database process.) LINQ enables both lazy and eager evaluation. Measure, and pick
the best choice.





Preparing for New Features


The code you’ve written for this sample is an example of creating a simple prototype that does the
job. This is a great way to explore a problem space, and for many features, it may be
the best permanent solution. You’ve leveraged anonymous types for the cards, and each
card is represented by strings.


Anonymous Types have many productivity advantages. You don’t need to define a class yourself
to represent the storage. The compiler generates the type for you. The compiler generated type
utilizes many of the best practices for simple data objects. It’s immutable, meaning that
none of its properties can be changed after it has been constructed. Anonymous types are
internal to an assembly, so they aren’t seen as part of the public API for that assembly.
Anonymous types also contain an override of the ToString() method that returns a formatted
string with each of the values.


Anonymous types also have disadvantages. They don’t have accessible names, so you can’t use
them as return values or arguments. You’ll notice that any methods above that used these anonymous
types are generic methods. The override of ToString() may not be what you want as the application
grows more features.


The sample also uses strings for the suit and the rank of each card. That’s quite open ended.
The C# type system can help us make better code, by leveraging enum types for those
values.


Start with the suits. This is a perfect time to use an enum:


public enum Suit
{
    Clubs,
    Diamonds,
    Hearts,
    Spades
}






The Suits() method also changes type and implementation:


static IEnumerable<Suit> Suits()
{
    yield return Suit.Clubs;
    yield return Suit.Diamonds;
    yield return Suit.Hearts;
    yield return Suit.Spades;
}






Next, do the same change with the Rank of the cards:


public enum Rank
{
    Two,
    Three,
    Four,
    Five,
    Six,
    Seven,
    Eight,
    Nine,
    Ten,
    Jack,
    Queen,
    King,
    Ace
}






And the method that generates them:


static IEnumerable<Rank> Values()
{
    yield return Rank.Two;
    yield return Rank.Three;
    yield return Rank.Four;
    yield return Rank.Five;
    yield return Rank.Six;
    yield return Rank.Seven;
    yield return Rank.Eight;
    yield return Rank.Nine;
    yield return Rank.Ten;
    yield return Rank.Jack;
    yield return Rank.Queen;
    yield return Rank.King;
    yield return Rank.Ace;
}






As one final cleanup, let’s make a type to represent the card, instead of
relying on an anonymous type. Anonymous types are great for lightweight,
local types, but in this example, the playing card is one of the main
concepts. It should be a concrete type.


public class PlayingCard
{
    public Suit CardSuit { get; }
    public Rank CardRank { get; }
    
    public PlayingCard(Suit s, Rank r)
    {
        CardSuit = s;
        CardRank = r;
    }
    
    public override string ToString()
    {
        return $"{CardRank} of {CardSuit}";
    }
}






This type uses auto-implemented read-only properties which are set
in the constructor, and then cannot be modified. It also makes use of
the new string interpolation feature that makes it easier to format
string output.


Update the query that generates the starting deck to use the new type:


var startingDeck = (from s in Suits().LogQuery("Suit Generation")
                    from r in Ranks().LogQuery("Value Generation")
                    select new PlayingCard(s, r))
                    .LogQuery("Starting Deck")
                    .ToArray();






Compile and run again. The output is a little cleaner, and the code is a bit
more clear and can be extended more easily.





Conclusion


This sample should you some of the methods used in LINQ, how to create your
own methods that will be easily used with LINQ enabled code. It also showed
you the differences between lazy and eager evaluation, and the affect that
decision can have on performance.


And, you learned a bit about one magician’s technique. Magician’s use the
faro shuffle because they can control where every card moves in the deck.
In some tricks, the magician has an audience member place a card on top
of the deck, and shuffles a few times, knowing where that card goes. Other
illusions require the deck set a certain way. A magician will set the deck
prior to performing the trick. Then she will shuffle the deck 5 times
using an inner shuffle. On stage, she can show what looks like a random
deck, shuffle it 3 more times, and have the deck set exactly how she wants.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/introduction-to-functional-programming/functions-as-first-class-values.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Functions as First-Class Values (F#)
description: Functions as First-Class Values (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 6b76b93b-a141-40f4-976c-7f0c558d6d09





Functions as First-Class Values


A defining characteristic of functional programming languages is the elevation of functions to first-class status. You should be able to do with a function whatever you can do with values of the other built-in types, and be able to do so with a comparable degree of effort.


Typical measures of first-class status include the following:



		Can you bind an identifier to the value? That is, can you give it a name?


		Can you store the value in a data structure, such as a list?


		Can you pass the value as an argument in a function call?


		Can you return the value as the value of a function call?





The last two measures define what are known as higher-order operations or higher-order functions. Higher-order functions accept functions as arguments and return functions as the value of function calls. These operations support such mainstays of functional programming as mapping functions and composition of functions.



Give the Value a Name


If a function is a first-class value, you must be able to name it, just as you can name integers, strings, and other built-in types. This is referred to in functional programming literature as binding an identifier to a value. F# uses let bindings to bind names to values: let <identifier> = <value>. The following code shows two examples.


[!code-fsharpMain]


You can name a function just as easily. The following example defines a function named squareIt by binding the identifier squareIt to the lambda expression fun n -> n * n. Function squareIt has one parameter, n, and it returns the square of that parameter.


[!code-fsharpMain]


F# provides the following more concise syntax to achieve the same result with less typing.


[!code-fsharpMain]


The examples that follow mostly use the first style, let <function-name> = <lambda-expression>, to emphasize the similarities between the declaration of functions and the declaration of other types of values. However, all the named functions can also be written with the concise syntax. Some of the examples are written in both ways.





Store the Value in a Data Structure


A first-class value can be stored in a data structure. The following code shows examples that store values in lists and in tuples.


[!code-fsharpMain]


To verify that a function name stored in a tuple does in fact evaluate to a function, the following example uses the fst and snd operators to extract the first and second elements from tuple funAndArgTuple. The first element in the tuple is squareIt and the second element is num. Identifier num is bound in a previous example to integer 10, a valid argument for the squareIt function. The second expression applies the first element in the tuple to the second element in the tuple: squareIt num.


[!code-fsharpMain]


Similarly, just as identifier num and integer 10 can be used interchangeably, so can identifier squareIt and lambda expression fun n -> n * n.


[!code-fsharpMain]





Pass the Value as an Argument


If a value has first-class status in a language, you can pass it as an argument to a function. For example, it is common to pass integers and strings as arguments. The following code shows integers and strings passed as arguments in F#.


[!code-fsharpMain]


If functions have first-class status, you must be able to pass them as arguments in the same way. Remember that this is the first characteristic of higher-order functions.


In the following example, function applyIt has two parameters, op and arg. If you send in a function that has one parameter for op and an appropriate argument for the function to arg, the function returns the result of applying op to arg. In the following example, both the function argument and the integer argument are sent in the same way, by using their names.


[!code-fsharpMain]


The ability to send a function as an argument to another function underlies common abstractions in functional programming languages, such as map or filter operations. A map operation, for example, is a higher-order function that captures the computation shared by functions that step through a list, do something to each element, and then return a list of the results. You might want to increment each element in a list of integers, or to square each element, or to change each element in a list of strings to uppercase. The error-prone part of the computation is the recursive process that steps through the list and builds a list of the results to return. That part is captured in the mapping function. All you have to write for a particular application is the function that you want to apply to each list element individually (adding, squaring, changing case). That function is sent as an argument to the mapping function, just as squareIt is sent to applyIt in the previous example.


F# provides map methods for most collection types, including lists, arrays, and sequences. The following examples use lists. The syntax is List.map <the function> <the list>.


[!code-fsharpMain]


For more information, see Lists.





Return the Value from a Function Call


Finally, if a function has first-class status in a language, you must be able to return it as the value of a function call, just as you return other types, such as integers and strings.


The following function calls return integers and display them.


[!code-fsharpMain]


The following function call returns a string.


[!code-fsharpMain]


The following function call, declared inline, returns a Boolean value. The value displayed is True.


[!code-fsharpMain]


The ability to return a function as the value of a function call is the second characteristic of higher-order functions. In the following example, checkFor is defined to be a function that takes one argument, item, and returns a new function as its value. The returned function takes a list as its argument, lst, and searches for item in lst. If item is present, the function returns true. If item is not present, the function returns false. As in the previous section, the following code uses a provided list function, List.exists [https://msdn.microsoft.com/library/15a3ebd5-98f0-44c0-8220-7dedec3e68a8], to search the list.


[!code-fsharpMain]


The following code uses checkFor to create a new function that takes one argument, a list, and searches for 7 in the list.


[!code-fsharpMain]


The following example uses the first-class status of functions in F# to declare a function, compose, that returns a composition of two function arguments.


[!code-fsharpMain]



[!NOTE]
For an even shorter version, see the following section, “Curried Functions.”



The following code sends two functions as arguments to compose, both of which take a single argument of the same type. The return value is a new function that is a composition of the two function arguments.


[!code-fsharpMain]



[!NOTE]
F# provides two operators, << and >>, that compose functions. For example, let squareAndDouble2 = doubleIt << squareIt is equivalent to let squareAndDouble = compose doubleIt squareIt in the previous example.



The following example of returning a function as the value of a function call creates a simple guessing game. To create a game, call makeGame with the value that you want someone to guess sent in for target. The return value from function makeGame is a function that takes one argument (the guess) and reports whether the guess is correct.


[!code-fsharpMain]


The following code calls makeGame, sending the value 7 for target. Identifier playGame is bound to the returned lambda expression. Therefore, playGame is a function that takes as its one argument a value for guess.


[!code-fsharpMain]





Curried Functions


Many of the examples in the previous section can be written more concisely by taking advantage of the implicit currying in F# function declarations. Currying is a process that transforms a function that has more than one parameter into a series of embedded functions, each of which has a single parameter. In F#, functions that have more than one parameter are inherently curried. For example, compose from the previous section can be written as shown in the following concise style, with three parameters.


[!code-fsharpMain]


However, the result is a function of one parameter that returns a function of one parameter that in turn returns another function of one parameter, as shown in compose4curried.


[!code-fsharpMain]


You can access this function in several ways. Each of the following examples returns and displays 18. You can replace compose4 with compose4curried in any of the examples.


[!code-fsharpMain]


To verify that the function still works as it did before, try the original test cases again.


[!code-fsharpMain]



[!NOTE]
You can restrict currying by enclosing parameters in tuples. For more information, see “Parameter Patterns” in Parameters and Arguments.



The following example uses implicit currying to write a shorter version of makeGame. The details of how makeGame constructs and returns the game function are less explicit in this format, but you can verify by using the original test cases that the result is the same.


[!code-fsharpMain]


For more information about currying, see “Partial Application of Arguments” in Functions.





Identifier and Function Definition Are Interchangeable


The variable name num in the previous examples evaluates to the integer 10, and it is no surprise that where num is valid, 10 is also valid. The same is true of function identifiers and their values: anywhere the name of the function can be used, the lambda expression to which it is bound can be used.


The following example defines a Boolean function called isNegative, and then uses the name of the function and the definition of the function interchangeably. The next three examples all return and display False.


[!code-fsharpMain]


To take it one step further, substitute the value that applyIt is bound to for applyIt.


[!code-fsharpMain]





Functions Are First-Class Values in F#


The examples in the previous sections demonstrate that functions in F# satisfy the criteria for being first-class values in F#:



		You can bind an identifier to a function definition.





[!code-fsharpMain]



		You can store a function in a data structure.
[!code-fsharpMain]


		You can pass a function as an argument.
[!code-fsharpMain]


		You can return a function as the value of a function call.
[!code-fsharpMain]





For more information about F#, see the F# Language Reference.





Example



Description


The following code contains all the examples in this topic.





Code


[!code-fsharpMain]







See Also


Lists


Tuples


Functions


let Bindings


Lambda Expressions: The fun Keyword








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-publish.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-publish
description: dotnet-publish
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8a7e1c52-5c57-4bf5-abad-727450ebeefd





dotnet-publish



NAME


dotnet-publish - Packs the application and all of its dependencies into a folder getting it ready for publishing





SYNOPSIS


dotnet publish [--framework] [--runtime] [--build-base-path] [--output] [--version-suffix] [--configuration] [<project>]





DESCRIPTION


dotnet publish compiles the application, reads through its dependencies specified in the project.json file and publishes the resulting set of files to a directory.


Depending on the type of portable app, the resulting directory will contain the following:



		Portable application - application’s intermediate language (IL) code and all of application’s managed dependencies.
		Portable application with native dependencies - same as above with a sub-directory for the supported platform of each native
dependency.








		Self-contained application - same as above plus the entire runtime for the targeted platform.





The above types are covered in more details in the types of portable applications topic.





OPTIONS


[project]


dotnet publish needs access to the project.json file to work. If it is not specified on invocation via [project], project.json in the current directory will be the default.If no project.json can be found, dotnet publish will throw an error.


-f, --framework [FID]


Publishes the application for a given framework identifier (FID). If not specified, FID is read from project.json. If no valid framework is found, the command will throw an error. If multiple valid frameworks are found, the command will publish for all valid frameworks.


-r, --runtime [RID]


Publishes the application for a given runtime.


-b, --build-base-path [DIR]


Directory in which to place temporary outputs.


-o, --output


Specify the path where to place the directory. If not specified, it will default to ./bin/[configuration]/[framework]/
for portable applications or ./bin/[configuration]/[framework]/[runtime] for self-contained applications.


–version-suffix [VERSION_SUFFIX]


Defines what * should be replaced with in the version field in the project.json file.


-c, --configuration [Debug|Release]


Configuration to use when publishing. The default value is Debug.





EXAMPLES


dotnet publish


Publishes an application using the framework found in project.json. If project.json contains runtimes node, publish for the RID of the current platform.


dotnet publish ~/projects/app1/project.json


Publishes the application using the specified project.json.


dotnet publish --framework netcoreapp1.0


Publishes the current application using the netcoreapp1.0 framework.


dotnet publish --framework netcoreapp1.0 --runtime osx.10.11-x64


Publishes the current application using the netcoreapp1.0 framework and runtime for OS X 10.10. This RID has to
exist in the project.json runtimes node.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/microservices.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Microservices hosted in Docker | C#
description: Learn to create asp.net core services that run in Docker containers
keywords: .NET, .NET Core, Docker, C#, ASP.NET, Microservice
author: BillWagner
manager: wpickett
ms.date: 08/12/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: 87e93838-a363-4813-b859-7356023d98ed





Microservices hosted in Docker


##Introduction


This tutorial details the tasks necessary to build and deploy
an ASP.NET Core microservice in a Docker container. During the course
of this tutorial, you’ll learn:



		How to generate an ASP.NET Core application using Yeoman


		How to create a development Docker environment


		How to build a Docker image based on an existing image.


		How to deploy your service into a Docker container.





Along the way, you’ll also see some C# language features:



		How to convert C# objects into JSON payloads.


		How to build immutable Data Transfer Objects


		How to process incoming HTTP Requests and generate the HTTP Response


		How to work with nullable value types





You can retrieve the code from our GitHub repository. [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/WeatherMicroservice]



Why Docker?


Docker makes it easy to create standard machine images to
host your services in a data center, or the public cloud. Docker
enables you to configure the image, and replicate it as needed to
scale the installation of your application.


All the code in this tutorial will work in any .NET Core environment.
The additional tasks for a Docker installation will work for an ASP.NET
Core application.





Prerequisites


You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page.
You can run this application on Windows, Ubuntu Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.


You’ll also need to install the Docker engine. See the
Docker Installation page [http://www.docker.com/products/docker]
for instructions for your platform.
Docker can be installed in many Linux distributions, macOS, or Windows. The page
referenced above contains sections to each of the available installations.


You’ll also need to install a number of command line tools that support
ASP.NET core development. The command line templates use Yeoman, Bower,
Grunt, and Gulp. You may already have many of these tools, but if not,
run the following command in your favorite shell:


npm install -g yo bower grunt-cli gulp


This instructs the node package manager (npm) to install the needed tools.
The ‘-g’ option indicates that it is a global install, and those tools are
available system wide. (A local install scopes the package to a single
project). Once you’ve installed those core tools, you need to install
the yeoman asp.net template generators:


npm install -g generator-aspnet





Create the Application


Now that you’ve installed all the tools, create a new asp.net core
application. To use the command line generator, execute the following
yeoman command in your favorite shell:


yo aspnet


This command prompts you to select what Type of application you want to
create. For this microservice, you want the simplest, most lightweight
web application possible, so select ‘Empty Web Application’. The template
will prompt you for a name. Select ‘WeatherMicroservice’.


The template creates eight files for you:



		A .gitignore, customized for asp.net core applications.


		A Startup.cs file. This contains the basis of the application.


		A Program.cs file. This contains the entry point of the application.


		A project.json file. This is the build file for the application.


		A Dockerfile. This script creates a Docker image for the application.


		A README.md. This contains links to other asp.net core resources.


		A web.config file. This contains basic configuration information.


		A Properties/launchSettings.json file. This contains debugging settings used by IDEs.





Now you can run the template generated application. That’s done using a series
of tools from the command line. The dotnet command runs the tools necessary
for .NET development. Each verb executes a different command


The first step is to restore all the dependencies:


dotnet restore


Dotnet restore uses the NuGet package manager to install all the necessary packages
into the application directory. It also generates a project.json.lock file. This
file contains information about each package that is referenced. After restoring
all the dependencies, you build the application:


dotnet build


And once you build the application, you run it from the command line:


dotnet run


The default configuration listens to http://localhost:5000. You can open a
browser and navigate to that page and see a “Hello World!” message.



Anatomy of an ASP.NET Core application


Now that you’ve built the application, let’s look at how this functionality
is implemented. There are two of the generated files that are particularly
interesting at this point: project.json and Startup.cs.


Project.json contains information about the project. The two nodes you’ll
often work with are ‘dependencies’ and ‘frameworks’. The
dependencies node lists all the packages that are needed for this application.
At the moment, this is a small node, needing only the packages that run the
web server.


The ‘frameworks’ node specifies the versions and configurations of the .NET
framework that will run this application.


The application is implemented in Startup.cs. This file contains the startup
class.


The two methods are called by the asp.net core infrastructure to configure
and run the application. The ConfigureServices method describes the services that are
necessary for this application. You’re building a lean microservice, so it doesn’t
need to configure any dependencies. The Configure method configures the handlers
for incoming HTTP Requests. The template generates a simple handler that responds
to any request with the text ‘Hello World!‘.







Build a microservice


The service you’re going to build will deliver weather reports from anywhere
around the globe. In a production application, you’d call some service
to retrieve weather data. For our sample, we’ll generate a random weather
forecast.


There are a number of tasks you’ll need to perform in order to implement
our random weather service:



		Parse the incoming request to read the latitude and longitude.


		Generate some random forecast data.


		Convert that random forecast data from C# objects into JSON packets.


		Set the response header to indicate that your service sends back JSON.


		Write the response.





The next sections walk you through each of these steps.



Parsing the Query String.


You’ll begin by parsing the query string. The service will accept
‘lat’ and ‘long’ arguments on the query string in this form:


http://localhost:5000/?lat=-35.55&long=-12.35


All the changes you need to make are in the lambda expression
defined as the argument to app.Run in your startup class.


The argument on the lambda expression is the HttpContext for the
request. One of its properties is the Request object. The Request
object has a Query property that contains a dictionary of all the
values on the query string for the request. The first addition is to
find the latitude and longitude values:


var latString = context.Request.Query["lat"].FirstOrDefault();
var longString = context.Request.Query["long"].FirstOrDefault();






The Query dictionary values are StringValue type. That type can
contain a collection of strings. For your weather service, each
value is a single string. That’s why there’s the call to FirstOrDefault()
in the code above.


Next, you need to convert the strings to doubles. The method you’ll use
to convert the string to a double is double.TryParse():


bool TryParse(string s, out double result);






This method leverages C# out parameters to indicate if the input string
can be converted to a double. If the string does represent a valid
representation for a double, the method returns true, and the result
argument contains the value. If the string does not represent a valid
double, the method returns false.


You can adapt that API with the use of an extension method that returns
a nullable double. A nullable value type is a type that represents
some value type, and can also hold a missing, or null value. A nullable
type is represented by appending the ? character to the type declaration.


Extension methods are methods that are defined as static methods, but
by adding the this modifier on the first parameter, can be called as
though they are members of that class. Extension methods may only be
defined in static classes. Here’s the definition of the class containing
the extension method for parse:


public static class Extensions
{
    public static double? TryParse(this string input)
    {
        double result;
        if (double.TryParse(input, out result))
            return result;
        else
            return default(double?);
    }
}






The default(double?) expression returns the default value for the
double? type. That default value is the null (or missing) value.


You can use this extension method to convert the query string arguments
into the double type:


var latitude = latString.TryParse();
var longitude = longString.TryParse();






To easily test the parsing code, update the response to include the values
of the arguments:


await context.Response.WriteAsync($"Retrieving Weather for lat: {latitude}, long: {longitude}");






At this point, you can run the web application and see if your parsing
code is working. Add values to the web request in a browser, and you should see
the updated results.





Build a random weather forecast


Your next task is to build a random weather forecast. Let’s start with a data
container that holds the values you’d want for a weather forecast:


public class WeatherReport
{
    private static readonly string[] PossibleConditions = new string[]
    {
        "Sunny",
        "Mostly Sunny",
        "Partly Sunny",
        "Partly Cloudy",
        "Mostly Cloudy",
        "Rain"
    };

    public int HiTemperature { get; }
    public int LoTemperature { get; }
    public int AverageWindSpeed { get; }
    public string Conditions { get; }
}






Next, build a constructor that randomly sets those values. This constructor uses
the values for the latitude and longitude to seed the Random number generator. That
means the forecast for the same location is the same. If you change the arguments for
the latitude and longitude, you’ll get a different forecast (because you start with a
different seed.)


public WeatherReport(double latitude, double longitude, int daysInFuture)
{
    var generator = new Random((int)(latitude + longitude) + daysInFuture);

    HiTemperature = generator.Next(40, 100);
    LoTemperature = generator.Next(0, HiTemperature);
    AverageWindSpeed = generator.Next(0, 45);
    Conditions = PossibleConditions[generator.Next(0, PossibleConditions.Length - 1)];
}






You can now generate the 5-day forecast in your response method:


if (latitude.HasValue && longitude.HasValue)
{
    var forecast = new List<WeatherReport>();
    for (var days = 1; days < 6; days++)
    {
        forecast.Add(new WeatherReport(latitude.Value, longitude.Value, days));
    }
}









Build the JSON response.


The final code task on the server is to convert the WeatherReport array
into a JSON packet, and send that back to the client. Let’s start by creating
the JSON packet. You’ll add the NewtonSoft JSON Serializer to the
list of dependencies:


  "dependencies": {
    "Microsoft.NETCore.App": {
      "version": "1.0.0",
      "type": "platform"
    },
    "Microsoft.AspNetCore.Server.IISIntegration": "1.0.0",
    "Microsoft.AspNetCore.Server.Kestrel": "1.0.0",
    "Newtonsoft.Json": "8.0.4-beta1",
    "Microsoft.NETCore.Portable.Compatibility": "1.0.0"
  },






Then, you can use the JsonConvert class to write the object to a string:


var json = JsonConvert.SerializeObject(forecast, Formatting.Indented);
context.Response.ContentType = "application/json; charset=utf-8";
await context.Response.WriteAsync(json);






The code above converts the forecast object (a list of WeatherForecast
objects) into a JSON packet. After you’ve constructed the response packet,
you set the content type to ‘application/json’, and write the string.


The application now runs and returns random forecasts.







Build a Docker image


Our final task is to run the application in Docker. We’ll create a
Docker container that runs a Docker image that represents our application.


A Docker Image is a file that defines the environment for running the application.


A Docker Container represents a running instance of a Docker image.


By analogy, you can think of the Docker Image as a class, and the
Docker Container as an object, or an instance of that class.


The Dockerfile created by the asp.net template will serve
for our purposes. Let’s go over its contents.


The first line specifies the source image:


FROM microsoft/dotnet:latest






Docker allows you to configure a machine image based on a
source template. That means you don’t have to supply all
the machine parameters when you start, you only need to
supply any changes. The changes here will be to include
our application.


In this first sample, we’ll use the latest version of
the dotnet image. This is the easiest way to create a working Docker
environment. This image include the dotnet core runtime, and the dotnet SDK.
That makes it easier to get started and build, but does create a larger image.


The next four lines setup and build your application:


COPY . /app
WORKDIR /app
RUN ["dotnet", "restore"]
RUN ["dotnet", "build"]






This will copy the contents of the current directory to the docker VM, and restore
all the packages. Using the dotnet CLI means that the Docker image must include the
.NET Core SDK.


The final lines of the file set the tcp port (5000) this container
listens on and runs the application:


EXPOSE 5000/tcp
ENTRYPOINT ["dotnet", "run", "--server.urls", "http://0.0.0.0:5000"]






The EXPOSE command informs Docker to listen on port 5000. The Dockerfile created
by the asp.net core generator uses this port because it is the default port
for asp.net core applications. This same port is referenced in the --server.urls
argument to dotnet run on the next line of the Dockerfile. The ENTRYPOINT command
informs Docker  what command and command line options start the service.



[!Note]
You could also specify the TCP port in code with the WebHostBuilder.UseUrls("http://0.0.0.0:5000") method.






Building and running the image in a container.


Let’s build an image and run the service inside a Docker container. You build the image
using the docker build command. Run the following command from the directory containing your code.


docker build -t weather-microservice .






This command builds the container image based on all the information in your Dockerfile. The -t
argument provides a tag, or name, for this container image. In the command line above, the
tag used for the Docker container is weather-microservice. When this command completes,
you have a container ready to run your new service. Run the following command to start
the container and launch your service:


docker run -d -p 80:5000 --name hello-docker weather-microservice






The -d option means to run the container detached from the current terminal. That means you
won’t see the command output in your terminal. The -p option indicates the port mapping between
the service and the host. Here it says that any incoming request on port 80 should be forwarded
to port 5000 on the container. Using 5000 matches the port your service is listening on from
the command line arguments specified in the Dockerfile above. The --name argument
names your running container. It’s a convenient name you can use to work with that
container.


You can see if the image is running by checking the command:


docker ps






If your container is running, you’ll see a line that lists
it in the running processes. (It may be the only one).


You can test your service by opening a browser and navigating to localhost, and
specifying a latitude and longitude:


http://localhost/?lat=35.5&long=40.75









Attaching to a running container


When you ran your sevice in a command window, you could see diagnostic information printed
for each request. You don’t see that information when your container is running in detached
mode. The Docker attach command enables you to attach to a running container so that you
can see the log information.  Run this command from a command window:


docker attach --sig-proxy=false hello-docker






The --sig-proxy=false argument means that Ctrl-C commands do not get sent to the
container process, but rather stop the docker attach command. The final argument
is the name given to the container in the docker run command.



[!NOTE]
You can also use the docker assigned container ID to refer to any container. If you
didn’t specify a name for your container in docker run you must use the container id.



Open a browser and navigate to your service. You’ll see the diagnostic messages in
the command windows from the attached running container.


Press Ctrl-C to stop the attach process.


When you are done working with your container, you can stop it:


docker stop hello-docker






The container and image is still available for you to restart.  If you want to remove
the container from your machine, you use this command:


docker rm hello-docker






If you want to remove unused images from your machine, you use this command:


docker rmi hello-docker









Conclusion


In this tutorial, you built an asp.net core microservice, and added a few
simple features.


You built a docker container image for that service, and ran that container on
your machine. You attached a terminal window to the service, and saw the
diagnostic messages from your service.


Along the way, you saw several features of the C# language in action.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-in-visual-studio/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Using F# in Visual Studio



[!NOTE]
This is still in progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/libraries-with-vs.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Developing .NET Core libraries using Visual Studio
description: Developing .NET Core libraries using Visual Studio
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 01b988ed-583f-48c8-a016-caeee282e0a6





🔧 Developing .NET Core libraries using Visual Studio



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach.


Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-in-visual-studio/targeting-older-versions-of-net.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Targeting .NET Framework 2.0 on Windows 8
description: Targeting .NET Framework 2.0 on Windows 8
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 63989543-95c3-4ab7-81f3-3834a8b15010





Targeting Older Versions of .NET



[!NOTE]
This article is not up to date with the latest Visual Studio.  It will be updated.



The following error might appear if you try to target the .NET Framework 2.0, 3.0, or 3.5 in an F# project when Visual Studio is installed on Windows 8.1:


This project requires the 2.0 F# runtime, but that runtime is not installed.






This error is known to occur under the following combination of conditions:



		You installed Visual Studio on Windows 8.1.




		You didn’t enable the .NET Framework 3.5 before you installed Visual Studio.




		Your project targets the .NET Framework 2.0, 3.0, or 3.5.







When you install Visual Studio, it detects the installed versions of the .NET Framework and installs the F# 2.0 Runtime only if the .NET Framework 3.5 is installed and enabled.



Resolving the Error


To resolve this error, you can either target a newer version of the .NET Framework, or you can enable the .NET Framework 3.5 on Windows 8.1 and then install the F# 2.0 runtime by running the setup program for Visual Studio with the Repair option.



To enable the .NET Framework 3.5 on Windows 8.1



		On the Start screen, start to enter Control Panel.

  As you enter that name, the Control Panel icon appears under the Apps heading.




		Choose the Control Panel icon, choose the Programs icon, and then choose the Turn Windows features on or off link.




		Make sure that the .NET Framework 3.5 (includes .NET 2.0 and 3.0) check box is selected, and then choose the OK button.

  You don’t need to select the check boxes for any child nodes for optional components of the .NET Framework.

  The .NET Framework 3.5 is enabled if it wasn’t already.










To install the F# 2.0 runtime



		In the Control Panel, choose the Programs link, and then choose the Programs and Features link.




		In the list of installed programs, choose the edition of Visual Studio that you installed, and then choose the Change button.




		After setup starts, choose the Repair button.

  For more information, see Installing Visual Studio [https://msdn.microsoft.com/library/e2h7fzkw.aspx].












See Also


Visual F#








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/using-with-xplat-cli.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with .NET Core on Windows/Linux/macOS using the command line
description: Getting started with .NET Core on Windows, Linux, or macOS using the .NET Core command line interface (CLI)
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: be988f09-7349-43b0-97fb-3a703d4587ce





Getting started with .NET Core on Windows/Linux/macOS using the command line


This guide will show you how to use the .NET Core CLI tooling to build cross-platform console apps.  It will start with the most basic console app and eventually span multiple projects, including testing. You’ll add these features step-by-step, building on what you’ve already seen and built.


If you’re unfamiliar with the .NET Core CLI toolset, read the .NET Core SDK overview.



Prerequisites


Before you begin, ensure you have the latest .NET Core CLI tooling [https://www.microsoft.com/net/core].  You’ll also need a text editor.





Hello, Console App!


First, navigate to or create a new folder with a name you like.  “Hello” is the name chosen for the sample code, which can be found here [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/Hello].


Open up a command prompt and type the following:


$ dotnet new
$ dotnet restore
$ dotnet run






Let’s do a quick walkthrough:



		$ dotnet new


dotnet new creates an up-to-date project.json file with NuGet dependencies necessary to build a console app.  It also creates a Program.cs, a basic file containing the entry point for the application.


project.json:


{
     "version": "1.0.0-*",
     "buildOptions": {
         "emitEntryPoint": true
     },
     "dependencies": {
         "Microsoft.NETCore.App": {
             "type": "platform",
             "version": "1.0.0"
         }
     },   
    "frameworks": {
         "netcoreapp1.0": {
             "imports": "dnxcore50"
         }
     }
}






Program.cs:


using System;

namespace ConsoleApplication
{
    public class Program
    {
        public static void Main(string[] args)
        {
            Console.WriteLine("Hello World!");
        }
    }
}









		$ dotnet restore


dotnet restore calls into NuGet to restore the tree of dependencies. NuGet analyzes the project.json file, downloads the dependencies stated in the file (or grabs them from a cache on your machine), and writes the project.lock.json file.  The project.lock.json file is necessary to be able to compile and run.


The project.lock.json file is a persisted and complete set of the graph of NuGet dependencies and other information describing an app.  This file is read by other tools, such as dotnet build and dotnet run, enabling them to process the source code with a correct set of NuGet dependencies and binding resolutions.





		$ dotnet run


dotnet run calls dotnet build to ensure that the build targets have been built, and then calls dotnet <assembly.dll> to run the target application.








$ dotnet run
Hello, World!






You can also execute dotnet build to compile and the code without running the build console applications.



Building a self-contained application


Let’s try compiling a self-contained application instead of a portable application. You can read more about the types of portability in .NET Core to learn about the different application types, and how they are deployed.


You need to make some changes to your project.json
file to direct the tools to build a self-contained application. You can see these in the
HelloNative [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/HelloNative]
project in the samples directory.


The first change is to remove the "type": "platform" element from all dependencies.
This project’s only dependency so far is "Microsoft.NETCore.App". The dependencies section should look like this:


"dependencies": {
    "Microsoft.NETCore.App": {
        "version": "1.0.0"
    }
},






Next, you need to add a runtimes node to specify all the target execution environments. For example, the following
runtimes node instructs the build system to create executables for the 64 bit version of Windows 10 and the 64 bit version of Mac OS X version 10.11.
The build system will generate native executables for the current environment. If you are following these steps on a Windows machine,
you’ll build a Windows executable. If you are following these steps on a Mac, you’ll build the OS X executable.


"runtimes": {
  "win10-x64": {},
  "osx.10.11-x64": {}
}






See the full list of supported runtimes in the RID catalog.


After making those two changes you execute dotnet restore, followed by dotnet build to create the native executable. Then, you can run the generated
native executable.


The following example shows the commands for Windows. The example shows where the native executable gets generated and assumes that the project directory is named HelloNative.


$ dotnet restore 
$ dotnet build 
$ .\bin\Debug\netcoreapp1.0\win10-x64\HelloNative.exe
Hello World!






You may notice that the native application takes slightly longer to build, but executes slightly faster. This behavior
becomes more noticeable as the application grows.


The build process generates several more files when your project.json creates a native build. These files
are created in bin\Debug\netcoreapp1.0\<platform> where <platform> is the RID chosen. In addition to the
project’s HelloNative.dll there is a HelloNative.exe that loads the runtime and starts the application.
Note that the name of the generated application changed because the project directory’s name has changed.


You may want to package this application to execute it on a machine that does not include the .NET runtime.
You do that using the dotnet publish command. The dotnet publish command creates a new subdirectory
under the ./bin/Debug/netcoreapp1.0/<platform> directory called publish. It copies the executable,
all dependent DLLs and the framework to this sub directory. You can package that directory to another machine
(or a container) and execute the application there.


Let’s contrast that with the behavior of dotnet publish in the first Hello World sample. That application
is a portable application, which is the default type of application for .NET Core. A portable application
requires that .NET Core is installed on the target machine. Portable applications can be built on one machine
and executed anywhere. Native applications must be built separately for each target machine. dotnet publish
creates a directory that has the application’s DLL, and any dependent dlls that are not part of the platform
installation.





Augmenting the program


Let’s change the file just a little bit.  Fibonacci numbers are fun, so let’s try that out (using
the native version):


Program.cs:


using static System.Console;

namespace ConsoleApplication
{
    public class Program
    {
        public static int FibonacciNumber(int n)
        {
            int a = 0;
            int b = 1;
            int tmp;
            
            for (int i = 0; i < n; i++)
            {
                tmp = a;
                a = b;
                b += tmp;
            }
            
            return a;   
        }
        
        public static void Main(string[] args)
        {
            WriteLine("Hello World!");
            WriteLine("Fibonacci Numbers 1-15:");
            
            for (int i = 0; i < 15; i++)
            {
                WriteLine($"{i+1}: {FibonacciNumber(i)}");
            }
        }
    }
}






And running the program (assuming you’re on Windows, and have changed the project directory name to Fibonacci):


$ dotnet build
$ .\bin\Debug\netcoreapp1.0\win10-x64\Fibonacci.exe
1: 0
2: 1
3: 1
4: 2
5: 3
6: 5
7: 8
8: 13
9: 21
10: 34
11: 55
12: 89
13: 144
14: 233
15: 377






And that’s it!  You can augment Program.cs any way you like.







Adding some new files


Single files are fine for simple one-off programs, but chances are you’re going to want to break things out into multiple files if you’re building anything which has multiple components.  Multiple files are a way to do that.


Create a new file and give it a unique namespace:


using System;

namespace NumberFun
{
    // code can go here
} 






Next, include it in your Program.cs file:


using static System.Console;
using NumberFun;






And finally, you can build it:


$ dotnet build


Now the fun part: making the new file do something!



Example: A Fibonacci Sequence Generator


Let’s say you want to build off of the previous Fibonacci example [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/Fibonacci] by caching some Fibonacci values and add some recursive flair.  Your code for a better Fibonacci example [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/FibonacciBetter] might look something like this:


using System;
using System.Collections.Generic;

namespace NumberFun
{
    public class FibonacciGenerator
    {
        private Dictionary<int, int> _cache = new Dictionary<int, int>();
        
        private int Fib(int n) => n < 2 ? n : FibValue(n - 1) + FibValue(n - 2);
        
        private int FibValue(int n)
        {
            if (!_cache.ContainsKey(n))
            {
                _cache.Add(n, Fib(n));
            }
            
            return _cache[n];
        }
        
        public IEnumerable<int> Generate(int n)
        {
            for (int i = 0; i < n; i++)
            {
                yield return FibValue(i);
            }
        }
    }
}






Note that the use of Dictionary<int, int> and IEnumerable<int> means incorporating the System.Collections namespace.
The Microsoft.NetCore.App package is a metapackage that contains many of the core
assemblies from the .NET Framework. By including this metapackage, you’ve already included
the System.Collections.dll assembly as part of your project. You can verify this by
running dotnet publish and examining the files that are part of the installed
package. You’ll see System.Collections.dll in the list.


{ 
  "version": "1.0.0-*", 
  "buildOptions": { 
    "debugType": "portable", 
    "emitEntryPoint": true 
  }, 
  "dependencies": {}, 
  "frameworks": { 
    "netcoreapp1.0": { 
      "dependencies": { 
        "Microsoft.NETCore.App": { 
          "version": "1.0.0" 
        } 
      }, 
      "imports": "dnxcore50" 
    } 
  },
  "runtimes": {
    "win10-x64": {},
    "osx.10.11-x64": {}
  }
}






Now adjust the Main() method in your Program.cs file as shown below. The example assumes that Program.cs has a using System; statement. If you have a using static System.Console; statement, remove Console. from Console.WriteLine.


public static void Main(string[] args)
{
    var generator = new FibonacciGenerator();
    foreach (var digit in generator.Generate(15))
    {
        WriteLine(digit);
    }
}






Finally, run it!


$ dotnet run
0
1
1
2
3
5
8
13
21
34
55
89
144
233
377






And that’s it!







Using folders to organize code


Say you wanted to introduce some new types to do work on.  You can do this by adding more files and making sure to give them namespaces you can include in your Program.cs file.


/MyProject
|__Program.cs
|__AccountInformation.cs
|__MonthlyReportRecords.cs
|__project.json






This works great when the size of your project is relatively small.  However, if you have a larger app with many different data types and potentially multiple layers, you may wish to organize things logically.  This is where folders come into play.  You can either follow along with the NewTypes sample project [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/NewTypes] that this guide covers, or create your own files and folders.


To begin, create a new folder under the root of your project.  /Model is chosen here.


/NewTypes
|__/Model
|__Program.cs
|__project.json






Now add some new types to the folder:


/NewTypes
|__/Model
   |__AccountInformation.cs
   |__MonthlyReportRecords.cs
|__Program.cs
|__project.json






Now, just as if they were files in the same directory, give them all the same namespace so you can include them in your Program.cs.



Example: Pet Types


This example creates two new types, Dog and Cat, and has them implement an interface, IPet.


Folder Structure:


/NewTypes
|__/Pets
   |__Dog.cs
   |__Cat.cs
   |__IPet.cs
|__Program.cs
|__project.json






IPet.cs:


using System;

namespace Pets
{
    public interface IPet
    {
        string TalkToOwner();
    }
}






Dog.cs:


using System;

namespace Pets
{
    public class Dog : IPet
    {
        public string TalkToOwner() => "Woof!";
    }
}






Cat.cs:


using System;

namespace Pets
{
    public class Cat : IPet
    {
        public string TalkToOwner() => "Meow!";
    }
}






Program.cs:


using System;
using Pets;
using System.Collections.Generic;

namespace ConsoleApplication
{
    public class Program
    {
        public static void Main(string[] args)
        {
            List<IPet> pets = new List<IPet>
            {
                new Dog(),
                new Cat()  
            };
            
            foreach (var pet in pets)
            {
                Console.WriteLine(pet.TalkToOwner());
            }
        }
    }
}






project.json:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "emitEntryPoint": true
  },
  "dependencies": {
    "Microsoft.NETCore.App": {
      "type": "platform",
      "version": "1.0.0"
    }
  },
  "frameworks": {
    "netcoreapp1.0": {
      "imports": "dnxcore50"
    }
  }
}






And if you run this:


$ dotnet restore
$ dotnet run
Woof!
Meow!






New pet types can be added (such as a Bird), extending this project.







Testing your Console App


You’ll probably be wanting to test your projects at some point.  Here’s a good way to do it:



		Move any source of your existing project into a new src folder.


/Project
|__/src









		Create a /test directory.


/Project
|__/src
|__/test









		Create a new global.json file:


/Project
|__/src
|__/test
|__global.json






global.json:


{
   "projects": [
      "src", "test"
   ]
}






This file tells the build system that this is a multi-project system, which allows it to look for dependencies in more than just the current folder it happens to be executing in.  This is important because it allows you to place a dependency on the code under test in your test project.









Example: Extending the NewTypes project


Now that the project system is in place, you can create your test project and start writing tests!  From here on out, this guide will use and extend the sample Types project [https://github.com/dotnet/core-docs/tree/master/samples/core/console-apps/NewTypes].  Additionally, it will use the Xunit [https://xunit.github.io/] test framework.  Feel free to follow along or create your own multi-project system with tests.


The whole project structure should look like this:


/NewTypes
|__/src
   |__/NewTypes
      |__/Pets
         |__Dog.cs
         |__Cat.cs
         |__IPet.cs
      |__Program.cs
      |__project.json
|__/test
   |__NewTypesTests
      |__PetTests.cs
      |__project.json
|__global.json






There are two new things to make sure you have in your test project:



		A correct project.json with the following:
		A reference to xunit


		A reference to dotnet-test-xunit


		A reference to the namespace corresponding to the code under test








		An Xunit test class.





NewTypesTests/project.json:


{
  "version": "1.0.0-*",
  "testRunner": "xunit",

  "dependencies": {
    "Microsoft.NETCore.App": {
      "type":"platform",
      "version": "1.0.0"
    },
    "xunit":"2.2.0-beta2-build3300",
    "dotnet-test-xunit": "2.2.0-preview2-build1029",
    "NewTypes": "1.0.0"
  },
  "frameworks": {
    "netcoreapp1.0": {
      "imports": [
        "dnxcore50",
        "portable-net45+win8" 
      ]
    }
  }
}






PetTests.cs:


using System;
using Xunit;
using Pets;
public class PetTests
{
    [Fact]
    public void DogTalkToOwnerTest()
    {
        string expected = "Woof!";
        string actual = new Dog().TalkToOwner();
        
        Assert.Equal(expected, actual);
    }
    
    [Fact]
    public void CatTalkToOwnerTest()
    {
        string expected = "Meow!";
        string actual = new Cat().TalkToOwner();
        
        Assert.Equal(expected, actual);
    }
}






Now you can run tests!  The dotnet test command runs the test runner you have specified in your project. Make sure you start at the top-level directory.


$ dotnet restore
$ cd test/NewTypesTests
$ dotnet test






Output should look like this:


xUnit.net .NET CLI test runner (64-bit win10-x64)
  Discovering: NewTypesTests
  Discovered:  NewTypesTests
  Starting:    NewTypesTests
  Finished:    NewTypesTests
=== TEST EXECUTION SUMMARY ===
   NewTypesTests  Total: 2, Errors: 0, Failed: 0, Skipped: 0, Time: 0.144s
SUMMARY: Total: 1 targets, Passed: 1, Failed: 0.











Conclusion


Hopefully this guide has helped you learn how to create a .NET Core console app, from the basics all the way up to a multi-project system with unit tests.  The next step is to create awesome console apps of your own!


If a more advanced example of a console app interests you, check out the next tutorial: Using the CLI tools to write console apps: An advanced step-by-step guide.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tutorials/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
F# Tutorials



[!NOTE]
This is still in-progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-in-visual-studio/configuring-projects.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Configuring Projects (F#)
description: Configuring Projects (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 8b2ed206-34e4-4256-a6ce-0c2499561165





Configuring Projects in Visual Studio



[!NOTE]
This article is not up to date with the latest Visual Studio.  It will be updated.



This topic includes information about how to use the Project Designer when you work with F# projects. Working with F# projects is not significantly different from working with Visual Basic or C# projects. You can often use the general Visual Studio project documentation as your primary reference when you use F#. This topic provides links to relevant information in the Visual Studio documentation for settings that are shared with the other Visual Studio languages, and also describes the settings specific to F#.



Project Designer


The Project Designer and its general use are described fully in the topic Introduction to the Project Designer [https://msdn.microsoft.com/library/898dd854-c98d-430c-ba1b-a913ce3c73d7] in the Visual Studio documentation. The Project Designer consists of several pages grouped by related functionality. The pages available for F# projects are mostly a subset of those available for other languages. The pages supported in F# are described in the following table. The pages that are not available relate to features that are not available in F#, or that are available only by changing a command-line option. The pages that are available in F# resemble the C# pages most closely, so a link is provided to the relevant C# Project Designer page.


|Project Designer page|Related links|Description|
|———————|————-|———–|
|Application|Application Page, Project Designer 

(


C#


)


 [https://msdn.microsoft.com/library/ms247046.aspx]|Enables you to specify application-level settings and properties, such as whether you are creating a library or an executable file, what version of the .NET Framework the application is targeting, and information about where the resource files that the application uses are stored.|
|Build|Build Page, Project Designer (


C#


)


 [https://msdn.microsoft.com/library/kb4wyys2.aspx]|Enables you to control how the code is compiled.|
|Build Events|Build Events Page, Project Designer (


C#


)


 [https://msdn.microsoft.com/library/kb4wyys2.aspx]|Enables you to specify commands to run before or after a compilation.|
|Debug|Debug Page, Project Designer [https://msdn.microsoft.com/library/2wcdezs5.aspx]|Enables you to control how the application runs during debugging. This includes what command-line to use and what your application’s starting directory is, and any special debugging modes you want to enable, such as native code and SQL.|
|Reference Paths|Managing references in a project [https://msdn.microsoft.com/library/ez524kew.aspx]|Enables you to specify where to search for assemblies that the code depends on.|





F#-Specific Settings


The following table summarizes settings that are specific to F#.


Project Designer page	Setting	Description
———————	——-	———–
Build	Generate tail calls	If selected, enables the use of the tail Microsoft intermediate language (MSIL) instruction. This causes the stack frame to be reused for tail recursive functions. Equivalent to the --tailcalls compiler option.
Build	Other flags	Allows you to specify additional compiler command-line options.





See Also


Getting Started with F# in Visual Studio


Compiler Options


Introduction to the Project Designer [https://msdn.microsoft.com/library/898dd854-c98d-430c-ba1b-a913ce3c73d7]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tutorials/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Tutorials
description: .NET Core Tutorials
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/24/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f6f654b1-1d2c-4105-8376-7c1959e23803





.NET Core Tutorials


The following tutorials are available for learning about .NET Core.



		Getting started with .NET Core on Windows


		Getting started with .NET Core on macOS


		Getting started with .NET Core on Windows/Linux/macOS using the command line


		Developing Libraries with Cross Platform Tools


		How to Manage Package Dependency Versions for .NET Core 1.0


		Using MSBuild to build .NET Core projects





For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation [https://docs.asp.net].






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/lazy-computations.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Lazy Computations (F#)
description: Lazy Computations (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3499293e-1d53-4b02-b764-f687fbdaa7fe





Lazy Computations


Lazy computations are computations that are not evaluated immediately, but are instead evaluated when the result is needed. This can help to improve the performance of your code.



Syntax


let identifier = lazy ( expression )









Remarks


In the previous syntax, expression is code that is evaluated only when a result is required, and identifier is a value that stores the result. The value is of type Lazy<'T> [https://msdn.microsoft.com/library/b29d0af5-6efb-4a55-a278-2662a4ecc489], where the actual type that is used for 'T is determined from the result of the expression.


Lazy computations enable you to improve performance by restricting the execution of a computation to only those situations in which a result is needed.


To force the computation to be performed, you call the method Force. Force causes the execution to be performed only one time. Subsequent calls to Force return the same result, but do not execute any code.


The following code illustrates the use of lazy computation and the use of Force. In this code, the type of result is Lazy<int>, and the Force method returns an int.


[!code-fsharpMain]


Lazy evaluation, but not the Lazy type, is also used for sequences. For more information, see Sequences.





See Also


F# Language Reference


LazyExtensions module [https://msdn.microsoft.com/library/86671f40-84a0-402a-867d-ae596218d948]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/classes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Classes (F#)
description: Classes (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: d58679d5-7753-4b3b-a12f-6e9f00ed5ba3





Classes


Classes are types that represent objects that can have properties, methods, and events.



Syntax


// Class definition:
type [access-modifier] type-name [type-params] [access-modifier] ( parameter-list ) [ as identifier ] =
[ class ]
[ inherit base-type-name(base-constructor-args) ]
[ let-bindings ]
[ do-bindings ]
member-list
...
[ end ]
// Mutually recursive class definitions:
type [access-modifier] type-name1 ...
and [access-modifier] type-name2 ...
...









Remarks


Classes represent the fundamental description of .NET object types; the class is the primary type concept that supports object-oriented programming in F#.


In the preceding syntax, the type-name is any valid identifier. The type-params describes optional generic type parameters. It consists of type parameter names and constraints enclosed in angle brackets (< and >). For more information, see Generics and Constraints. The parameter-list describes constructor parameters. The first access modifier pertains to the type; the second pertains to the primary constructor. In both cases, the default is public.


You specify the base class for a class by using the inherit keyword. You must supply arguments, in parentheses, for the base class constructor.


You declare fields or function values that are local to the class by using let bindings, and you must follow the general rules for let bindings. The do-bindings section includes code to be executed upon object construction.


The member-list consists of additional constructors, instance and static method declarations, interface declarations, abstract bindings, and property and event declarations. These are described in Members.


The identifier that is used with the optional as keyword gives a name to the instance variable, or self identifier, which can be used in the type definition to refer to the instance of the type. For more information, see the section Self Identifiers later in this topic.


The keywords class and end that mark the start and end of the definition are optional.


Mutually recursive types, which are types that reference each other, are joined together with the and keyword just as mutually recursive functions are. For an example, see the section Mutually Recursive Types.





Constructors


The constructor is code that creates an instance of the class type. Constructors for classes work somewhat differently in F# than they do in other .NET languages. In an F# class, there is always a primary constructor whose arguments are described in the parameter-list that follows the type name, and whose body consists of the let (and let rec) bindings at the start of the class declaration and the do bindings that follow. The arguments of the primary constructor are in scope throughout the class declaration.


You can add additional constructors by using the new keyword to add a member, as follows:


new(argument-list) = constructor-body


The body of the new constructor must invoke the primary constructor that is specified at the top of the class declaration.


The following example illustrates this concept. In the following code, MyClass has two constructors, a primary constructor that takes two arguments and another constructor that takes no arguments.


[!code-fsharpMain]





let and do Bindings


The let and do bindings in a class definition form the body of the primary class constructor, and therefore they run whenever a class instance is created. If a let binding is a function, then it is compiled into a member. If the let binding is a value that is not used in any function or member, then it is compiled into a variable that is local to the constructor. Otherwise, it is compiled into a field of the class. The do expressions that follow are compiled into the primary constructor and execute initialization code for every instance. Because any additional constructors always call the primary constructor, the let bindings and do bindings always execute regardless of which constructor is called.


Fields that are created by let bindings can be accessed throughout the methods and properties of the class; however, they cannot be accessed from static methods, even if the static methods take an instance variable as a parameter. They cannot be accessed by using the self identifier, if one exists.





Self Identifiers


A self identifier is a name that represents the current instance. Self identifiers resemble the this keyword in C# or C++ or Me in Visual Basic. You can define a self identifier in two different ways, depending on whether you want the self identifier to be in scope for the whole class definition or just for an individual method.


To define a self identifier for the whole class, use the as keyword after the closing parentheses of the constructor parameter list, and specify the identifier name.


To define a self identifier for just one method, provide the self identifier in the member declaration, just before the method name and a period (.) as a separator.


The following code example illustrates the two ways to create a self identifier. In the first line, the as keyword is used to define the self identifier. In the fifth line, the identifier this is used to define a self identifier whose scope is restricted to the method PrintMessage.


type MyClass2(dataIn) as self =
    let data = dataIn
    do
        self.PrintMessage()
    member this.PrintMessage() =
        printf "Creating MyClass2 with Data %d" data






Unlike in other .NET languages, you can name the self identifier however you want; you are not restricted to names such as self, Me, or this.


The self identifier that is declared with the as keyword is not initialized until after the let bindings are executed. Therefore, it cannot be used in the let bindings. You can use the self identifier in the do bindings section.





Generic Type Parameters


Generic type parameters are specified in angle brackets (< and >), in the form of a single quotation mark followed by an identifier. Multiple generic type parameters are separated by commas. The generic type parameter is in scope throughout the declaration. The following code example shows how to specify generic type parameters.


[!code-fsharpMain]


Type arguments are inferred when the type is used. In the following code, the inferred type is a sequence of tuples.


[!code-fsharpMain]





Specifying Inheritance


The inherit clause identifies the direct base class, if there is one. In F#, only one direct base class is allowed. Interfaces that a class implements are not considered base classes. Interfaces are discussed in the Interfaces topic.


You can access the methods and properties of the base class from the derived class by using the language keyword base as an identifier, followed by a period (.) and the name of the member.


For more information, see Inheritance.





Members Section


You can define static or instance methods, properties, interface implementations, abstract members, event declarations, and additional constructors in this section. Let and do bindings cannot appear in this section. Because members can be added to a variety of F# types in addition to classes, they are discussed in a separate topic, Members.





Mutually Recursive Types


When you define types that reference each other in a circular way, you string together the type definitions by using the and keyword. The and keyword replaces the type keyword on all except the first definition, as follows.


[!code-fsharpMain]


The output is a list of all the files in the current directory.





When to Use Classes, Unions, Records, and Structures


Given the variety of types to choose from, you need to have a good understanding of what each type is designed for to select the appropriate type for a particular situation. Classes are designed for use in object-oriented programming contexts. Object-oriented programming is the dominant paradigm used in applications that are written for the .NET Framework. If your F# code has to work closely with the .NET Framework or another object-oriented library, and especially if you have to extend from an object-oriented type system such as a UI library, classes are probably appropriate.


If you are not interoperating closely with object-oriented code, or if you are writing code that is self-contained and therefore protected from frequent interaction with object-oriented code, you should consider using records and discriminated unions. A single, well thought–out discriminated union, together with appropriate pattern matching code, can often be used as a simpler alternative to an object hierarchy. For more information about discriminated unions, see Discriminated Unions.


Records have the advantage of being simpler than classes, but records are not appropriate when the demands of a type exceed what can be accomplished with their simplicity. Records are basically simple aggregates of values, without separate constructors that can perform custom actions, without hidden fields, and without inheritance or interface implementations. Although members such as properties and methods can be added to records to make their behavior more complex, the fields stored in a record are still a simple aggregate of values. For more information about records, see Records.


Structures are also useful for small aggregates of data, but they differ from classes and records in that they are .NET value types. Classes and records are .NET reference types. The semantics of value types and reference types are different in that value types are passed by value. This means that they are copied bit for bit when they are passed as a parameter or returned from a function. They are also stored on the stack or, if they are used as a field, embedded inside the parent object instead of stored in their own separate location on the heap. Therefore, structures are appropriate for frequently accessed data when the overhead of accessing the heap is a problem. For more information about structures, see Structures.





See Also


F# Language Reference


Members


Inheritance


Interfaces








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Guide
description: F# Guide
keywords: .NET, .NET Core
author: jackfoxy
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: ea27fb37-dad1-4bd4-a3cc-4f5c70767ae9





F# Guide


F# is a cross-platform, open source programming languge for .NET which provides first-class support for functional programming, along with support of object-oriented and imperative programming.  The Visual F# compiler and tooling are Microsoft’s implementation and tooling for the F# programming language, making F# a first-class member of .NET.



If You’re New to Programming


If you’re new to programming, start with the Tutorials section.  The tutorials have a beginner’s section which show you how to write and run your own F# programs.


Alternatively, if you prefer to get a thematic overview of F# and some of its distinguishing features, check out the Tour of F#.





If You’re New to F#


If you know how to program, but you’re new to F#, begin with the Tour of F# to get an overview of the language.


It’s also recommended that you go through the Introduction to Functional Progamming to learn Functional Programming concepts which are essential to working with F#.


The Tutorials also have step-by-step guides for various skill levels and features of the language.





If You’re Experienced with F#


If you know your way around F#, you’ll find a lot of use in the Language Reference, which documents each aspect of the language thoroughly, supplemented by numerous code samples.  You’ll also find a lot of use in the F# Core Library Reference [https://msdn.microsoft.com/visualfsharpdocs/conceptual/fsharp-core-library-reference].





The F# Software Foundation


Although Microsoft is the primary developer of the F# language and Visual F# Tooling, F# is also backed by an independent foundation, the F# Software Foundation (FSSF).


The mission of the F# Software Foundation is to promote, protect, and advance the F# programming language, and to support and facilitate the growth of a diverse and international community of F# programmers.


To learn more and get involved, check out fsharp.org [http://fsharp.org].





Documentation



		Tutorials


		Introduction to Functional Programming


		Language Reference


		F# Core Library Reference [https://msdn.microsoft.com/visualfsharpdocs/conceptual/fsharp-core-library-reference]








Online Reading Resources



		F# for Fun and Profit Gitbook [https://swlaschin.gitbooks.io/fsharpforfunandprofit/content/]


		F# Programming Wikibook [https://en.wikibooks.org/wiki/F_Sharp_Programming]








Video Learning Resources



		Introduction to Programming with F# series on YouTube [https://www.youtube.com/watch?v=Teak30_pXHk&list=PLEoMzSkcN8oNiJ67Hd7oRGgD1d4YBxYGC]


		Introduction to F# series on FSharpTV [https://fsharp.tv/courses/fsharp-programming-intro/]








Further Resources



		F# Learning Resources on fsharp.org [http://fsharp.org/learn.html]


		F# Snippets Website [http://www.fssnip.net]


		F# Software Foundation [http://fsharp.org]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/tour.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Tour of F#
description: Tour of F#
keywords: visual f#, f#, functional programming, .NET, tour
author: cartermp
manager: wpickett
ms.date: 08/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: devlang-fsharp
ms.assetid: 49775139-082e-442f-b5a2-dd402399b5d2





Tour of F#


The best way to learn about F# is to read and write F# code.  This article will act as a tour through some of the key features of the F# language and give you some code snippets that you can execute on your machine.  To learn about setting up a development environment, check out Getting Started.


There are two primary concepts in F#: functions and types.  This tour will emphasize features of the language which fall into these two concepts.



How to Run the Code Samples



[!NOTE]
Eventually, this documentation site will have the ability to run these code samples directly in your browser.  If your browser supports Silverlight, you can use TryFsharp [http://www.tryfsharp.org/Create] for the time being.



The quickest way to run these code samples is to use F# Interactive.  Just copy/paste the code samples and run them there.  Alternatively you can set up a project to compile and run the code as a Console Application in Visual Studio or Visual Studio Code and Ionide.





Functions and Modules


The most fundamental pieces of any F# program are functions organized into modules.  Functions perform work on inputs to produce outputs, and they are organized under Modules, which are the primary way you group things in F#.  They are defined using the let binding, which give the function a name and define its arguments.


[!code-fsharpBasicFunctions]


let bindings are also how you bind a value to a name, similar to a variable in other languages.  let bindings are immutable by default, which means that once a value or function is bound to a name, it cannot be changed in-place.  This is in contrast to variables in other languages, which are mutable, meaning their values can be changed at any point in time.  If you require a mutable binding, you can use let mutable ... syntax.





Integers, Booleans, and Strings


As a .NET language, F# supports the same underlying primitive types that exist in .NET.


Here’s some Integer values, generated in different ways:


[!code-fsharpIntegers]


Here’s what Boolean values and performing basic conditional logic looks like:


[!code-fsharpBools]


And here’s what basic string manipulation looks like:


[!code-fsharpStrings]





Tuples


Tuples are a big deal in F#.  They are a grouping of unnamed, but ordered values, that can be treated as values themselves.  Think of them as values which are aggregated from other values.  They have many uses, such as conveniently returning multiple values from a function, or grouping values for some ad-hoc convenience.


[!code-fsharpTuples]





Lists, Arrays, and Sequences


Lists, Arrays, and Sequences are three primary collection types in the F# core library.


Lists are ordered, immutable collections of elements of the same type.  They are singly-linked lists, which means they are meant for enumeration, but a poor choice for random access and concatenation if they’re large.  This in contrast to Lists in other popular languages, which typically do not use a singly-linked list to represent Lists.


[!code-fsharpLists]


Arrays are fixed-size, mutable collections of elements of the same type.  They support fast random access of elements, and are faster than F# lists because they are just contiguous blocks of memory.


[!code-fsharpArrays]


Sequences are a logical series of elements, all of the same type.  These are a more general type than Lists and Arrays, capable of being your “view” into any logical series of elements.  They also stand out because can be lazy, which means that elements can be computed only when they are needed.


[!code-fsharpSequences]





Recursive Functions


Processing collections or sequences of elements is typically done with recursion in F#.  Although F# has support for loops and imperative programming, recursion is preferred because it is easier to guarantee correctness.



[!NOTE]
The following example makes use of the pattern matching via the match expression.  This fundamental construct is covered later in this article.



[!code-fsharpRecursiveFunctions]


F# also has full support for Tail Call Optimization, which is a way to optimize recursive calls so that they are just as fast as a loop construct.





Record and Discriminated Union Types


Record and Union types are two fundamental data types used in F# code, and are generally the best way to represent data in an F# program.  Although this makes them similar to classes in other languages, one of their primary differences is that they have structural equality semantics.  This means that they are “natively” comparable and equality is straightforward - just check if one is equal to the other.


Records are an aggregate of named values, with optional members (such as methods).  If you’re familiar with C# or Java, then these should feel similar to POCOs or POJOs - just with structural equality and less ceremony.


[!code-fsharpRecords]


Discriminated Unions are values which could be a number of named forms or cases.  Data stored in the type can be one of several distinct values.


[!code-fsharpUnions]


You can also use Unions as single-case unions, to help with domain modeling over primitive types.  Often times, strings and other primitive types are used to represent types of information that shouldn’t be interchangeable.  However, using only the string representation can lead to that mistake quite easily!  Representing each type of information as a distinct single-case union can enforce correctness in this scenario.


[!code-fsharpUnions]


Additionally, Discriminated Unions also support recursive definitions, allowing you to easily represent trees and inherently recursive data.  For example, here’s how you can represent a Binary Search Tree with exists and insert functions.


[!code-fsharpUnions]


Because Discriminated Unions allow you to represent the recursive structure of the tree in the data type, operating on this recursive structure is straightforward and guarantees correctness.  It is also supported in pattern matching, as shown below.





Pattern Matching


Pattern Matching is the F# language feature which enables correctness for operating on F# types.  In the above samples, you probably noticed quite a bit of match x with ... syntax.  This construct allows the compiler, which can understand the “shape” of data types, to force you to account for all possible cases when using a data type through what is known as Exhaustive Pattern Matching.  This is incredibly powerful for correctness, and can be cleverly used to “lift” what would normally be a runtime concern into compile-time.


[!code-fsharpPatternMatching]


You can also use the shorthand function construct for pattern matching, which is useful when you’re writing functions which make use of Partial Application:


[!code-fsharpPatternMatching]


Something you may have noticed is the use of the _ pattern.  This is known as the Wildcard Pattern, which is a way of saying “I don’t care what something is”.  Although convenient, you can accidentally bypass Exhaustive Pattern Matching and no longer benefit from compile-time enforcements if you aren’t careful in using _.


Active Patterns are another powerful construct to use with pattern matching.  They allow you to partition input data into custom forms, decomposing them at the pattern match call site.  They can also be parameterized, thus allowing to define the partition as a function.  Expanding the previous example to support Active Patterns looks something like this:


[!code-fsharpActivePatterns]





Optional Types


One special case of Discriminated Union types is the Option Type, which is so useful that it’s a part of the F# core library.


The Option Type is a type which represents one of two cases: a value, or nothing at all.  It is used in any scenario where a value may or may not result from a particular operation.  This then forces you to account for both cases, making it a compile-time concern rather than a runtime concern.  These are often used in APIs where null is used to represent “nothing” instead, thus eliminating the need to worry about NulReferenceException in many circumstances.


[!code-fsharpOptions]





Units of Measure


One unique feature of F#’s type system is the ability to provide context for numeric literals through Units of Measure.


Units of Measure allow you to associate a numeric type to a unit, such as Meters, and have functions perform work on units rather than numeric literals.  This enables the compiler to verify that the types of numeric literals passed in make sense under a certain context, and eliminate runtime errors associated with that kind of work.


[!code-fsharpUnitsOfMeasure]


The F# Core library defines many SI unit types and unit conversions.  To learn more, check out the Microsoft.FSharp.Data.UnitSystems.SI Namespace [https://msdn.microsoft.com/visualfsharpdocs/conceptual/microsoft.fsharp.data.unitsystems.si-namespace-%5bfsharp%5d].





Classes and Interfaces


F# also has full support for .NET classes, Interfaces, Abstract Classes, Inheritance, and so on.


Classes are types that represent .NET objects, which can have properties, methods, and events as its Members.


[!code-fsharpClasses]


Defining generic classes is also very straightforward.


[!code-fsharpClasses]


To implement an Interface, you can use interface ... with syntax.


[!code-fsharpClasses]





Which Types to Use


The presence of Classes, Records, Discriminated Unions, and Tuples leads to an important question: which should you use?  Like most everything in life, the answer depends on your circumstances.


Tuples are great for returning multiple values from a function, and using an ad-hoc aggregate of values as a value itself.


Records are a “step up” from Tuples, having named labels and support for optional members.  They are great for a low-ceremony representation of data in-transit through your program.  Because they have structural equality, they can be used in Pattern Matching.


Discriminated Unions have many reasons, but the core benefit is to be able to utilize them in conjunction with Pattern Matching to account for all possible “shapes” that a data can have.


Classes are great for a huge number of reasons, such as when you need to represent information and also tie that information to functionality.  As a rule of thumb, when you have functionality which is conceptually tied to some data, using Classes and the principles of Object-Oriented Programming is a big benefit.  Classes are also the preferred data type when interoperating with C# and Visual Basic, as these languages use classes for nearly everything.





Next Steps


Now that you’ve seen some of the primary features of the language, you should be ready to write your first F# programs!  Check out Getting Started to learn how to set up your development environment and write some code.


The next steps for learning more can be whatever you like, but we recommend an Introduction to Functional Programming in F# to get comfortable with core Functional Programming concepts.  These will be essential in building robust programs in F#.


Also, check out the F# Language Reference to see a comprehensive collection of conceptual content on F#.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/verbose-syntax.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Verbose Syntax (F#)
description: Verbose Syntax (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 0a6792b3-b312-4453-a025-21d9760eee5d





Verbose Syntax


There are two forms of syntax available for many constructs in the F# language: verbose syntax and lightweight syntax. The verbose syntax is not as commonly used, but has the advantage of being less sensitive to indentation. The lightweight syntax is shorter and uses indentation to signal the beginning and end of constructs, rather than additional keywords like begin, end, in, and so on. The default syntax is the lightweight syntax. This topic describes the syntax for F# constructs when lightweight syntax is not enabled. Verbose syntax is always enabled, so even if you enable lightweight syntax, you can still use verbose syntax for some constructs. You can disable lightweight syntax by using the #light "off" directive.



Table of Constructs


The following table shows the lightweight and verbose syntax for F# language constructs in contexts where there is a difference between the two forms. In this table, angle brackets (

&lt;


&gt;


) enclose user-supplied syntax elements. Refer to the documentation for each language construct for more detailed information about the syntax used within these constructs.




		Language construct
		Lightweight syntax
		Verbose syntax




		
compound expressions

		<expression1>
<expression2>






		<expression1>; <expression2>










		nested let bindings


		
```
let f x =
    let a = 1
    let b = 2
    x + a + b
```		let f x =
    let a = 1 in
    let b = 2 in
    x + a + b










		
code block
		<expression1>
<expression2>
...






		begin
    <expression1>;
    <expression2>;
end










		
`for...do`
		for counter = start to finish do
    ...






		for counter = start to finish do
    ...
done










		
`while...do`
		while <condition> do
    ...






		while <condition> do
    ...
done










		
`for...in`
		for var in start .. finish do
    ...






		for var in start .. finish do
    ...
done










		
`do`
		do
    ...






		do
    ...
in










		record
		type <record-name> =
    {
        <field-declarations>
    }
    <value-or-member-definitions>






		type <record-name> =
    {
        <field-declarations>
    }
    with
        <value-or-member-definitions>
    end










		class
		
```
type () =
    ...
```		type <class-name>(<params>) =
    class
        ...
    end










		structure		[<StructAttribute>]
type <structure-name> =
    ...






		type <structure-name> =
    struct
        ...
    end










		discriminated union		type <union-name> =
    | ...
    | ...
    ...
    <value-or-member definitions>






		type <union-name> =
    | ...
    | ...
    ...
    with
        <value-or-member-definitions>
    end    










		interface		type <interface-name> =
    ...






		type <interface-name> =
    interface
        ...
    end










		object expression		{ new <type-name>
    with
        <value-or-member-definitions>
        <interface-implementations>
}






		{ new <type-name>
    with
        <value-or-member-definitions>
    end
    <interface-implementations>
}










		interface implementation		interface <interface-name>
    with
        <value-or-member-definitions>






		interface <interface-name>
    with
        <value-or-member-definitions>
    end










		type extension		type <type-name>
    with
        <value-or-member-definitions>






		type <type-name>
    with
        <value-or-member-definitions>
    end










		module		module <module-name> =
    ...






		module <module-name> =
    begin
        ...
    end















See Also


F# Language Reference


Compiler Directives


Code Formatting Guidelines








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/computation-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Computation Expressions (F#)
description: Computation Expressions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: acabbf5d-fbb8-479f-894c-7251bf16c8c3





Computation Expressions


Computation expressions in F# provide a convenient syntax for writing computations that can be sequenced and combined using control flow constructs and bindings. They can be used to provide a convenient syntax for monads, a functional programming feature that can be used to manage data, control, and side effects in functional programs.



Built-in Workflows


Sequence expressions are an example of a computation expression, as are asynchronous workflows and query expressions. For more information, see Sequences, Asynchronous Workflows, and Query Expressions.


Certain features are common to both sequence expressions and asynchronous workflows and illustrate the basic syntax for a computation expression:


builder-name { expression }






The previous syntax specifies that the given expression is a computation expression of a type specified by builder-name. The computation expression can be a built-in workflow, such as seq or async, or it can be something you define. The builder-name is the identifier for an instance of a special type known as the builder type. The builder type is a class type that defines special methods that govern the way the fragments of the computation expression are combined, that is, code that controls how the expression executes. Another way to describe a builder class is to say that it enables you to customize the operation of many F# constructs, such as loops and bindings.


In computation expressions, two forms are available for some common language constructs. You can invoke the variant constructs by using a ! (bang) suffix on certain keywords, such as let!, do!, and so on. These special forms cause certain functions defined in the builder class to replace the ordinary built-in behavior of these operations. These forms resemble the yield! form of the yield keyword that is used in sequence expressions. For more information, see Sequences.





Creating a New Type of Computation Expression


You can define the characteristics of your own computation expressions by creating a builder class and defining certain special methods on the class. The builder class can optionally define the methods as listed in the following table.


The following table describes methods that can be used in a workflow builder class.


|Method|Typical signature(s)|Description|
|—-|—-|—-|
|Bind|M<'T> * ('T -> M<'U>) -> M<'U>|Called for let! and do! in computation expressions.|
|Delay|(unit -> M<'T>) -> M<'T>|Wraps a computation expression as a function.|
|Return|'T -> M<'T>|Called for return in computation expressions.|
|ReturnFrom|M<'T> -> M<'T>|Called for return! in computation expressions.|
|Run|M<'T> -> M<'T> or

M<'T> -> 'T|Executes a computation expression.|
|Combine|M<'T> * M<'T> -> M<'T> or

M<unit> * M<'T> -> M<'T>|Called for sequencing in computation expressions.|
|For|seq<'T> * ('T -> M<'U>) -> M<'U> or

seq<'T> * ('T -> M<'U>) -> seq<M<'U>>|Called for for...do expressions in computation expressions.|
|TryFinally|M<'T> * (unit -> unit) -> M<'T>|Called for try...finally expressions in computation expressions.|
|TryWith|M<'T> * (exn -> M<'T>) -> M<'T>|Called for try...with expressions in computation expressions.|
|Using|'T * ('T -> M<'U>) -> M<'U> when 'U :> IDisposable|Called for use bindings in computation expressions.|
|While|(unit -> bool) * M<'T> -> M<'T>|Called for while...do expressions in computation expressions.|
|Yield|'T -> M<'T>|Called for yield expressions in computation expressions.|
|YieldFrom|M<'T> -> M<'T>|Called for yield! expressions in computation expressions.|
|Zero|unit -> M<'T>|Called for empty else branches of if...then expressions in computation expressions.|
Many of the methods in a builder class use and return an M<'T> construct, which is typically a separately defined type that characterizes the kind of computations being combined, for example, Async<'T> for asynchronous workflows and Seq<'T> for sequence workflows. The signatures of these methods enable them to be combined and nested with each other, so that the workflow object returned from one construct can be passed to the next. The compiler, when it parses a computation expression, converts the expression into a series of nested function calls by using the methods in the preceding table and the code in the computation expression.


The nested expression is of the following form:


builder.Run(builder.Delay(fun () -> {| cexpr |}))






In the above code, the calls to Run and Delay are omitted if they are not defined in the computation expression builder class. The body of the computation expression, here denoted as {| cexpr |}, is translated into calls involving the methods of the builder class by the translations described in the following table. The computation expression {| cexpr |} is defined recursively according to these translations where expr is an F# expression and cexpr is a computation expression.


|Expression|Translation|
|———-|———–|
|{

|


 let binding in cexpr |


}|let binding in {|


 cexpr |


}|
|{|


 let! pattern = expr in cexpr |


}|builder.Bind(expr, (fun pattern -> {|


 cexpr |


}))|
|{|


 do! expr in cexpr |


}|builder.Bind(expr1, (fun () -> {|


 cexpr |


}))|
|{|


 yield expr |


}|builder.Yield(expr)|
|{|


 yield! expr |


}|builder.YieldFrom(expr)|
|{|


 return expr |


}|builder.Return(expr)|
|{|


 return! expr |


}|builder.ReturnFrom(expr)|
|{|


 use pattern = expr in cexpr |


}|builder.Using(expr, (fun pattern -> {|


 cexpr |


}))|
|{|


 use! value = expr in cexpr |


}|builder.Bind(expr, (fun value -> builder.Using(value, (fun value -> {|


 cexpr |


}))))|
|{|


 if expr then cexpr0 |


}|if expr then {|


 cexpr0 |


} else binder.Zero()|
|{|


 if expr then cexpr0 else cexpr1 |


}|if expr then {|


 cexpr0 |


} else {|


 cexpr1 |


}|
|{|


 match expr with |


 pattern_i -> cexpr_i |


}|match expr with |


 pattern_i -> {|


 cexpr_i |


}|
|{|


 for pattern in expr do cexpr |


}|builder.For(enumeration, (fun pattern -> {|


 cexpr |


}))|
|{|


 for identifier = expr1 to expr2 do cexpr |


}|builder.For(enumeration, (fun identifier -> {|


 cexpr |


}))|
|{|


 while expr do cexpr |


}|builder.While(fun () -> expr), builder.Delay({|


cexpr |


})|
|{|


 try cexpr with |


 pattern_i -> expr_i |


}|builder.TryWith(builder.Delay({|


 cexpr |


}), (fun value -> match value with |


 pattern_i -> expr_i |


 exn -> reraise exn)))|
|{|


 try cexpr finally expr |


}|builder.TryFinally(builder.Delay( {|


 cexpr |


}), (fun () -> expr))|
|{|


 cexpr1; cexpr2 |


}|builder.Combine({|


cexpr1 |


}, {|


 cexpr2 |


})|
|{|


 other-expr; cexpr |


}|expr; {|


 cexpr |


}|
|{|


 other-expr |


}|expr; builder.Zero()|
In the previous table, other-expr describes an expression that is not otherwise listed in the table. A builder class does not need to implement all of the methods and support all of the translations listed in the previous table. Those constructs that are not implemented are not available in computation expressions of that type. For example, if you do not want to support the use keyword in your computation expressions, you can omit the definition of Use in your builder class.


The following code example shows a computation expression that encapsulates a computation as a series of steps that can be evaluated one step at a time. A discriminated union type, OkOrException, encodes the error state of the expression as evaluated so far. This code demonstrates several typical patterns that you can use in your computation expressions, such as boilerplate implementations of some of the builder methods.


// Computations that can be run step by step
type Eventually<'T> =
    | Done of 'T
    | NotYetDone of (unit -> Eventually<'T>)

module Eventually =
    // The bind for the computations. Append 'func' to the
    // computation.
    let rec bind func expr =
        match expr with
        | Done value -> NotYetDone (fun () -> func value)
        | NotYetDone work -> NotYetDone (fun () -> bind func (work()))

    // Return the final value wrapped in the Eventually type.
    let result value = Done value

    type OkOrException<'T> =
        | Ok of 'T
        | Exception of System.Exception

    // The catch for the computations. Stitch try/with throughout
    // the computation, and return the overall result as an OkOrException.
    let rec catch expr =
        match expr with
        | Done value -> result (Ok value)
        | NotYetDone work ->
            NotYetDone (fun () ->
                let res = try Ok(work()) with | exn -> Exception exn
                match res with
                | Ok cont -> catch cont // note, a tailcall
                | Exception exn -> result (Exception exn))

    // The delay operator.
    let delay func = NotYetDone (fun () -> func())

    // The stepping action for the computations.
    let step expr =
        match expr with
        | Done _ -> expr
        | NotYetDone func -> func ()

    // The rest of the operations are boilerplate.
    // The tryFinally operator.
    // This is boilerplate in terms of "result", "catch", and "bind".
    let tryFinally expr compensation =
        catch (expr)
        |> bind (fun res -> 
            compensation();
            match res with
            | Ok value -> result value
            | Exception exn -> raise exn)

    // The tryWith operator.
    // This is boilerplate in terms of "result", "catch", and "bind".
    let tryWith exn handler =
        catch exn
        |> bind (function Ok value -> result value | Exception exn -> handler exn)

    // The whileLoop operator.
    // This is boilerplate in terms of "result" and "bind".
    let rec whileLoop pred body =
        if pred() then body |> bind (fun _ -> whileLoop pred body)
        else result ()

    // The sequential composition operator.
    // This is boilerplate in terms of "result" and "bind".
    let combine expr1 expr2 =
        expr1 |> bind (fun () -> expr2)

    // The using operator.
    let using (resource: #System.IDisposable) func =
        tryFinally (func resource) (fun () -> resource.Dispose())

    // The forLoop operator.
    // This is boilerplate in terms of "catch", "result", and "bind".
    let forLoop (collection:seq<_>) func =
        let ie = collection.GetEnumerator()
        tryFinally 
            (whileLoop 
                (fun () -> ie.MoveNext()) 
                (delay (fun () -> let value = ie.Current in func value)))
            (fun () -> ie.Dispose())

// The builder class.
type EventuallyBuilder() =
    member x.Bind(comp, func) = Eventually.bind func comp
    member x.Return(value) = Eventually.result value
    member x.ReturnFrom(value) = value
    member x.Combine(expr1, expr2) = Eventually.combine expr1 expr2
    member x.Delay(func) = Eventually.delay func
    member x.Zero() = Eventually.result ()
    member x.TryWith(expr, handler) = Eventually.tryWith expr handler
    member x.TryFinally(expr, compensation) = Eventually.tryFinally expr compensation
    member x.For(coll:seq<_>, func) = Eventually.forLoop coll func
    member x.Using(resource, expr) = Eventually.using resource expr

let eventually = new EventuallyBuilder()

let comp = eventually {
    for x in 1..2 do
        printfn " x = %d" x
    return 3 + 4 }

// Try the remaining lines in F# interactive to see how this 
// computation expression works in practice.
let step x = Eventually.step x

// returns "NotYetDone <closure>"
comp |> step

// prints "x = 1"
// returns "NotYetDone <closure>"
comp |> step |> step

// prints "x = 1"
// prints "x = 2"
// returns "NotYetDone <closure>"
comp |> step |> step |> step |> step |> step |> step

// prints "x = 1"
// prints "x = 2"
// returns "Done 7"
comp |> step |> step |> step |> step |> step |> step |> step |> step






A computation expression has an underlying type, which the expression returns. The underlying type may represent a computed result or a delayed computation that can be performed, or it may provide a way to iterate through some type of collection. In the previous example, the underlying type was Eventually.For a sequence expression, the underlying type is System.Collections.Generic.IEnumerable [https://msdn.microsoft.com/library/9eekhta0.aspx]. For a query expression, the underlying type is System.Linq.IQueryable [https://msdn.microsoft.com/library/system.linq.iqueryable.aspx]. For an asychronous workflow, the underlying type is Async [https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7]. The Async object represents the work to be performed to compute the result. For example, you call Async.RunSynchronously [https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b] to execute a computation and return the result.





Custom Operations


You can define a custom operation on a computation expression and use a custom operation as an operator in a computation expression. For example, you can include a query operator in a query expression. When you define a custom operation, you must define the Yield and For methods in the computation expression. To define a custom operation, put it in a builder class for the computation expression, and then apply the CustomOperationAttribute [https://msdn.microsoft.com/library/199f3927-79df-484b-ba66-85f58cc49b19]. This attribute takes a string as an argument, which is the name to be used in a custom operation. This name comes into scope at the start of the opening curly brace of the computation expression. Therefore, you shouldn’t use identifiers that have the same name as a custom operation in this block. For example, avoid the use of identifiers such as all or last in query expressions.





See Also


F# Language Reference


Asynchronous Workflows


Sequences [https://msdn.microsoft.com/library/6b773b6b-9c9a-4af8-bd9e-d96585c166db]


Query Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

toc.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Welcome





About .NET



.NET Products







C# Guide



🔧 Getting Started



🔧 Getting started with Visual Studio





🔧 Getting started with Visual Studio Code and OmniSharp





🔧 Getting started with cross-platform tools





🔧 Getting started with C# Interactive







Tutorials



🔧 Using Visual Studio to create, debug, and deploy an application





🔧 Using C# Interactive to explore and experiment





🔧 Creating portable libraries





🔧 Asynchronous UI programming





🔧 Asynchronous server programming





🔧 Concurrent programming





Console Application





REST client





Working with LINQ





Microservices hosted in Docker







Tour of C#



Program Structure





Types and Variables





Expressions





Statements





Classes and objects





Structs





Arrays





Interfaces





Enums





Delegates





Attributes







🔧 Latest features



🔧 What’s new in C# 7





🔧 What’s new in C# 6







🔧 C# Interactive



🔧 Using C# Interactive in Visual Studio





🔧 Using C# Interactive from Powershell





🔧 Using C# Interactive from MacOS or Linux Terminal







C# Concepts



🔧 C# Type system





🔧 Namespaces and Assemblies





🔧 Basic Types





🔧 Classes





🔧 Structs





🔧 Interfaces





🔧 Methods and Lambda Expressions





Properties





Indexers





🔧 Generics





Iterators





Delegates & events



Introduction to Delegates





System.Delegate and the delegate keyword





Strongly Typed Delegates





Common Patterns for Delegates





Introduction to Events





The .NET Event Pattern





The Updated .NET Event Pattern





Distinguishing Delegates and Events







🔧 Language Integrated Query (LINQ)





Asynchronous programming





🔧 Parallel programming





Expression Trees



Expression Trees Explained





Framework Types Supporting Expression Trees





Executing Expressions





Interpreting Expressions





Building Expressions





Translating Expressions





Summary







🔧 Native interoperability





🔧 Reflection & code generation





Documenting your code







🔧 Using the .NET Compiler Platform





🔧 Syntax Reference



# [F# Guide](fsharp/index.md)


Tour of F#





Introduction to Functional Programming



Functions as First-Class Values







Tutorials



Getting Started



Getting Started with Visual Studio





Getting Started with Visual Studio Code and Ionide





Getting Started with Command-line Tools







F# Interactive



F# Interactive Options







Type Providers



Accessing a SQL Database by Using Type Providers





Accessing a SQL Database by Using Type Providers and Entities





Accessing an OData Service by Using Type Providers





Accessing a Web Service Using Type Providers





Generating F# Types from a DBML File





Generating F# Types from an EDMX File





Creating a Type Provider





Type provider Security





Troubleshooting Type Providers







Asynchronous and Concurrent Programming



Asynchronous Programming









Using F# in Visual Studio



Visual F# Development Environment Features





Configuring Projects





Targeting Older Versions of .NET







Using F# on Azure



Using F# on Azure Service Fabric







F# Language Reference



Keyword Reference





Symbol and Operator Reference



Arithmetic Operators





Boolean Operators





Bitwise Operators





Nullable Operators







Functions



let Bindings





do Bindings





Lambda Expressions: the fun keyword





Recursive Functions: the rec keyword





Entry Point





External Functions





Inline Functions







Values



Null Values







Literals





F# Types





Type Inference





Primitive Types





Unit Type





Strings





Tuples





F# Collection Types





Lists





Options





Sequences





Arrays





Generics



Automatic Generalization





Constraints





Statically Resolved Type Parameters







Records





Discriminated Unions





Enumerations





Reference Cells





Type Abbreviations





Classes





Structures





Inheritance





Interfaces





Abstract Classes





Members



let Bindings in Classes





do Bindings in Classes





Properties





Indexed Properties





Methods





Constructors





Events





Explicit Fields: The val Keyword







Type Extensions





Parameters and Arguments





Operator Overloading





Flexible Types





Delegates





Object Expressions





Copy and Update Record Expressions





Casting and Conversions





Access Control





Conditional Expressions: if...then...else





Match Expressions





Pattern Matching





Active Patterns





Loops: for...to Expression





Loops: for...in Expression





Loops: while...do Expression





Assertions





Exception Handling



Exception Types





The try...with Expression





The try...finally Expression





The raise Function





The failwith Function





The invalidArg Function







Attributes





Resource Management: the use Keyword





Namespaces





Modules





Import Declarations: The open Keyword





Signatures





Units of Measure





XML Documentation





Lazy Computations





Computation Expressions





Asynchronous Workflows





Query Expressions





Code Quotations





Compiler Directives





Compiler Options





Source Line, File, and Path Identifiers





Verbose Syntax





Code Formatting Guidelines









.NET Standard



.NET Standard Library





Frameworks





What is “managed code”?





Common Language Runtime (CLR)





Language Independence





Framework Libraries





.NET Class libraries





Portability Analyzer





Handling and throwing exceptions





.NET Assembly File Format





Garbage collection



Automatic memory management and garbage collection





Fundamentals of garbage collection





Induced collections





Latency modes





Weak references





Cleaning up unmanaged resources





Implementing a dispose method





Using objects that implement IDisposable







Generic types





Delegates and lambdas





LINQ





Common Type System & Common Language Specification





Asynchronous programming



Asynchronous programming in depth







Native interoperability





Collections and Data Structures



Selecting a Collection Class





Commonly Used Collection Types





When to Use Generic Collections





Comparisons and Sorts Within Collections





Sorted Collection Types





Hashtable and Dictionary Collection Types





Thread-Safe Collections



BlockingCollection Overview





When to Use a Thread-Safe Collection





How to: Add and Remove Items from a ConcurrentDictionary





How to: Add and Take Items Individually from a BlockingCollection





How to: Add Bounding and Blocking Functionality to a Collection





How to: Use ForEach to Remove Items in a BlockingCollection





How to: Use Arrays of Blocking Collections in a Pipeline





How to: Create an Object Pool by Using a ConcurrentBag









Numerics in .NET Core





Dates, times, and time zones



Time zone overview





Choosing between DateTime, DateTimeOffset, TimeSpan, and TimeZoneInfo





Finding the time zones defined on a local system





How to: enumerate time zones present on a computer





How to: access the predefined UTC and local time zone objects





How to: instantiate a TimeZoneInfo object





Instantiating a DateTimeOffset object





Performing arithmetic operations with dates and times





How to: use time zones in date and time arithmetic





Converting between DateTime and DateTimeOffset





Converting times between time zones





How to: resolve ambiguous times





How to: let users resolve ambiguous times









.NET Core Guide



Getting started





Windows Prerequisites





Tutorials



Getting started with .NET Core on Windows





Getting started with .NET Core on macOS





Getting started with .NET Core on Windows/Linux/macOS using the command line





Developing Libraries with Cross Platform Tools





Developing ASP.NET Core applications





How to Manage Package Dependency Versions for .NET Core 1.0





Using MSBuild to build .NET Core projects







Packages, Metapackages and Frameworks





Deploying



🔧 Deploying Applications





Creating a NuGet Package with Cross Platform Tools







Docker



Building Docker Images for .NET Core Applications







Unit Testing



Unit Testing with dotnet test





Unit testing with MSTest on Windows







Releases



Servicing







Runtime IDentifier catalog





.NET Core Tools



Telemetry





Extensibility Model





Test communication protocol





Continuous Integration





dotnet





dotnet-new





dotnet-restore





dotnet-run





dotnet-build





dotnet-test





dotnet-pack





dotnet-publish





dotnet-install-script





project.json





global.json







Porting from .NET Framework



Organizing projects for .NET Core





Analyzing third-party dependencies





Porting libraries





🔧 NuGet packages







Migrating from DNX







Samples and Tutorials






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/options.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Options (F#)
description: Options (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: a15b5cf1-9055-4481-918c-4c8a051b5829





Options


The option type in F# is used when an actual value might not exist for a named value or variable. An option has an underlying type and can hold a value of that type, or it might not have a value.



Remarks


The following code illustrates the use of the option type.


[!code-fsharpMain]


The value None is used when an option does not have an actual value. Otherwise, the expression Some( ... ) gives the option a value. The values Some and None are useful in pattern matching, as in the following function exists, which returns true if the option has a value and false if it does not.


[!code-fsharpMain]





Using Options


Options are commonly used when a search does not return a matching result, as shown in the following code.


[!code-fsharpMain]


In the previous code, a list is searched recursively. The function tryFindMatch takes a predicate function pred that returns a Boolean value, and a list to search. If an element that satisfies the predicate is found, the recursion ends and the function returns the value as an option in the expression Some(head). The recursion ends when the empty list is matched. At that point the value head has not been found, and None is returned.


Many F# library functions that search a collection for a value that may or may not exist return the option type. By convention, these functions begin with the try prefix, for example, Seq.tryFindIndex [https://msdn.microsoft.com/library/c357b221-edf6-4f68-bf40-82a3156d945a].


Options can also be useful when a value might not exist, for example if it is possible that an exception will be thrown when you try to construct a value. The following code example illustrates this.


[!code-fsharpMain]


The openFile function in the previous example has type string -> File option because it returns a File object if the file opens successfully and None if an exception occurs. Depending on the situation, it may not be an appropriate design choice to catch an exception rather than allowing it to propagate.





Option Properties and Methods


The option type supports the following properties and methods.


|Property or method|Type|Description|
|——————|—-|———–|
|None [https://msdn.microsoft.com/library/83ef260a-aa33-4e6f-aee6-b9bf0a461476]|'T option|A static property that enables you to create an option value that has the None value.|
|IsNone [https://msdn.microsoft.com/library/f08532ca-1716-4f60-ae59-8ef6256df234]|bool|Returns true if the option has the None value.|
|IsSome [https://msdn.microsoft.com/library/c5088d51-c5d7-425f-a77f-12c379bb356f]|bool|Returns true if the option has a value that is not None.|
|Some [https://msdn.microsoft.com/library/12f048d2-e293-4596-accb-de036ecd63fc]|'T option|A static member that creates an option that has a value that is not None.|
|Value [https://msdn.microsoft.com/library/c79f68e8-11fd-45b1-a053-e8fc38b56df7]|'T|Returns the underlying value, or throws a System.NullReferenceException if the value is None.|





Option Module


There is a module, Option [https://msdn.microsoft.com/library/e615e4d3-bbbb-49ba-addc-6061ea2e2f4c], that contains useful functions that perform operations on options. Some functions repeat the functionality of the properties but are useful in contexts where a function is needed. Option.isSome [https://msdn.microsoft.com/library/41ad0857-5672-4326-84b5-c33dc43dcf79] and Option.isNone [https://msdn.microsoft.com/library/73db6a53-15e7-40a6-94f9-a0049e5f4819] are both module functions that test whether an option holds a value. Option.get [https://msdn.microsoft.com/library/803e9fcb-6edd-4910-808c-25f08cbc55ea] obtains the value, if there is one. If there is no value, it throws System.ArgumentException.


The Option.bind [https://msdn.microsoft.com/library/c3406192-24ac-49b5-bc3b-8f805187f1c0] function executes a function on the value, if there is a value. The function must take exactly one argument, and its parameter type must be the option type. The return value of the function is another option type.


The option module also includes functions that correspond to the functions that are available for lists, arrays, sequences, and other collection types. These functions include Option.map [https://msdn.microsoft.com/library/91a20385-7e73-40c2-9adc-635e86d6a622], Option.iter [https://msdn.microsoft.com/library/83389eef-3dff-4074-b4cc-f69581c25191], Option.forall [https://msdn.microsoft.com/library/ba884586-5eae-49c5-9e36-05481c1c3428], Option.exists [https://msdn.microsoft.com/library/a606d2d4-fddc-4eab-ab37-c6138fb7ad99], Option.foldBack [https://msdn.microsoft.com/library/a882fbaf-c019-46f0-b4f5-b8c2b8b90ffb], Option.fold [https://msdn.microsoft.com/library/af896794-3d53-406c-9411-316cd5c33ad8], and Option.count [https://msdn.microsoft.com/library/2dac83a9-684e-4d0f-b50e-ff722a8bb876]. These functions enable options to be used like a collection of zero or one elements. For more information and examples, see the discussion of collection functions in Lists.





Converting to Other Types


Options can be converted to lists or arrays. When an option is converted into either of these data structures, the resulting data structure has zero or one element. To convert an option to an array, use Option.toArray [https://msdn.microsoft.com/library/c8044873-ba17-4b52-8231-eb1a28318c64]. To convert an option to a list, use Option.toList [https://msdn.microsoft.com/library/5f1af295-9fa9-40ad-b4a1-3578d94d44e1].





See Also


F# Language Reference


F# Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/fsharp-collection-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Collection Types
description: F# Collection Types
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: cdf6a7e6-6b3d-4c44-b7b6-773a2b700331





F# Collection Types


By reviewing this topic, you can determine which F# collection type best suits a particular need. These collection types differ from the collection types in the .NET Framework, such as those in the System.Collections.Generic namespace, in that the F# collection types are designed from a functional programming perspective rather than an object-oriented perspective. More specifically, only the array collection has mutable elements. Therefore, when you modify a collection, you create an instance of the modified collection instead of altering the original collection.


Collection types also differ in the type of data structure in which objects are stored. Data structures such as hash tables, linked lists, and arrays have different performance characteristics and a different set of available operations.



F# Collection Types


The following table shows F# collection types.


|Type|Description|Related Links|
|—-|———–|————-|
|List [https://msdn.microsoft.com/library/c627b668-477b-4409-91ed-06d7f1b3e4a7]|An ordered, immutable series of elements of the same type. Implemented as a linked list.|Lists

List Module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788]|
|Array [https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1]|A fixed-size, zero-based, mutable collection of consecutive data elements that are all of the same type.|Arrays

Array Module [https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1]

Array2D Module [https://msdn.microsoft.com/library/ae1a9746-7817-4430-bcdb-a79c2411bbd3]

Array3D Module [https://msdn.microsoft.com/library/c8355e2d-add8-48a4-8aa6-1c57ae74c560]|
|seq [https://msdn.microsoft.com/library/2f0c87c6-8a0d-4d33-92a6-10d1d037ce75]|A logical series of elements that are all of one type. Sequences are particularly useful when you have a large, ordered collection of data but don’t necessarily expect to use all the elements. Individual sequence elements are computed only as required, so a sequence can perform better than a list if not all the elements are used. Sequences are represented by the seq<'T> type, which is an alias for IEnumerable<T>. Therefore, any .NET Framework type that implements System.Collections.Generic.IEnumerable<'T> can be used as a sequence.|Sequences

Seq Module [https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684]|
|Map [https://msdn.microsoft.com/library/975316ea-55e3-4987-9994-90897ad45664]|An immutable dictionary of elements. Elements are accessed by key.|Map Module [https://msdn.microsoft.com/library/bfe61ead-f16c-416f-af98-56dbcbe23e4f]|
|Set [https://msdn.microsoft.com/library/50cebdce-0cd7-4c5c-8ebc-f3a9e90b38d8]|An immutable set that’s based on binary trees, where comparison is the F# structural comparison function, which potentially uses implementations of the System.IComparable interface on key values.|Set Module [https://msdn.microsoft.com/library/61efa732-d55d-4c32-993f-628e2f98e6a0]|



Table of Functions


This section compares the functions that are available on F# collection types. The computational complexity of the function is given, where N is the size of the first collection, and M is the size of the second collection, if any. A dash (-) indicates that this function isn’t available on the collection. Because sequences are lazily evaluated, a function such as Seq.distinct may be O(1) because it returns immediately, although it still affects the performance of the sequence when enumerated.


|Function|Array|List|Sequence|Map|Set|Description|
|——–|—–|—-|——–|—|—|———–|
|append|O(M)|O(N)|O(N)|-|-|Returns a new collection that contains the elements of the first collection followed by elements of the second collection.|
|add|-|-|-|O(log N)|O(log N)|Returns a new collection with the element added.|
|average|O(N)|O(N)|O(N)|-|-|Returns the average of the elements in the collection.|
|averageBy|O(N)|O(N)|O(N)|-|-|Returns the average of the results of the provided function applied to each element.|
|blit|O(N)|-|-|-|-|Copies a section of an array.|
|cache|-|-|O(N)|-|-|Computes and stores elements of a sequence.|
|cast|-|-|O(N)|-|-|Converts the elements to the specified type.|
|choose|O(N)|O(N)|O(N)|-|-|Applies the given function f to each element x of the list. Returns the list that contains the results for each element where the function returns Some(f(x)).|
|collect|O(N)|O(N)|O(N)|-|-|Applies the given function to each element of the collection, concatenates all the results, and returns the combined list.|
|compareWith|-|-|O(N)|-|-|Compares two sequences by using the given comparison function, element by element.|
|concat|O(N)|O(N)|O(N)|-|-|Combines the given enumeration-of-enumerations as a single concatenated enumeration.|
|contains|-|-|-|-|O(log N)|Returns true if the set contains the specified element.|
|containsKey|-|-|-|O(log N)|-|Tests whether an element is in the domain of a map.|
|count|-|-|-|-|O(N)|Returns the number of elements in the set.|
|countBy|-|-|O(N)|-|-|Applies a key-generating function to each element of a sequence, and returns a sequence that yields unique keys and their number of occurrences in the original sequence.|
|copy|O(N)|-|O(N)|-|-|Copies the collection.|
|create|O(N)|-|-|-|-|Creates an array of whole elements that are all initially the given value.|
|delay|-|-|O(1)|-|-|Returns a sequence that’s built from the given delayed specification of a sequence.|
|difference|-|-|-|-|O(M 

*


 log N)|Returns a new set with the elements of the second set removed from the first set.|
|distinct|||O(1)*


|||Returns a sequence that contains no duplicate entries according to generic hash and equality comparisons on the entries. If an element occurs multiple times in the sequence, later occurrences are discarded.|
|distinctBy|||O(1)*


|||Returns a sequence that contains no duplicate entries according to the generic hash and equality comparisons on the keys that the given key-generating function returns. If an element occurs multiple times in the sequence, later occurrences are discarded.| | | | |
|empty|O(1)|O(1)|O(1)|O(1)|O(1)|Creates an empty collection.|
|exists|O(N)|O(N)|O(N)|O(log N)|O(log N)|Tests whether any element of the sequence satisfies the given predicate.|
|exists2|O(min(N,M))|-|O(min(N,M))|||Tests whether any pair of corresponding elements of the input sequences satisfies the given predicate.|
|fill|O(N)|||||Sets a range of elements of the array to the given value.|
|filter|O(N)|O(N)|O(N)|O(N)|O(N)|Returns a new collection that contains only the elements of the collection for which the given predicate returns true.|
|find|O(N)|O(N)|O(N)|O(log N)|-|Returns the first element for which the given function returns true. Returns System.Collections.Generic.KeyNotFoundException if no such element exists.|
|findIndex|O(N)|O(N)|O(N)|-|-|Returns the index of the first element in the array that satisfies the given predicate. Raises System.Collections.Generic.KeyNotFoundException if no element satisfies the predicate.|
|findKey|-|-|-|O(log N)|-|Evaluates the function on each mapping in the collection, and returns the key for the first mapping where the function returns true. If no such element exists, this function raises System.Collections.Generic.KeyNotFoundException.|
|fold|O(N)|O(N)|O(N)|O(N)|O(N)|Applies a function to each element of the collection, threading an accumulator argument through the computation. If the input function is f and the elements are i0...iN, this function computes f (... (f s i0)...) iN.|
|fold2|O(N)|O(N)|-|-|-|Applies a function to corresponding elements of two collections, threading an accumulator argument through the computation. The collections must have identical sizes. If the input function is f and the elements are i0...iN and j0...jN, this function computes f (... (f s i0 j0)...) iN jN.|
|foldBack|O(N)|O(N)|-|O(N)|O(N)|Applies a function to each element of the collection, threading an accumulator argument through the computation. If the input function is f and the elements are i0...iN, this function computes f i0 (...(f iN s)).|
|foldBack2|O(N)|O(N)|-|-|-|Applies a function to corresponding elements of two collections, threading an accumulator argument through the computation. The collections must have identical sizes. If the input function is f and the elements are i0...iN and j0...jN, this function computes f i0 j0 (...(f iN jN s)).|
|forall|O(N)|O(N)|O(N)|O(N)|O(N)|Tests whether all elements of the collection satisfy the given predicate.|
|forall2|O(N)|O(N)|O(N)|-|-|Tests whether all corresponding elements of the collection satisfy the given predicate pairwise.|
|get / nth|O(1)|O(N)|O(N)|-|-|Returns an element from the collection given its index.|
|head|-|O(1)|O(1)|-|-|Returns the first element of the collection.|
|init|O(N)|O(N)|O(1)|-|-|Creates a collection given the dimension and a generator function to compute the elements.|
|initInfinite|-|-|O(1)|-|-|Generates a sequence that, when iterated, returns successive elements by calling the given function.|
|intersect|-|-|-|-|O(log N *


 log M)|Computes the intersection of two sets.|
|intersectMany|-|-|-|-|O(N1 *


 N2 ...)|Computes the intersection of a sequence of sets. The sequence must not be empty.|
|isEmpty|O(1)|O(1)|O(1)|O(1)|-|Returns true if the collection is empty.|
|isProperSubset|-|-|-|-|O(M *


 log N)|Returns true if all elements of the first set are in the second set, and at least one element of the second set isn’t in the first set.|
|isProperSuperset|-|-|-|-|O(M *


 log N)|Returns true if all elements of the second set are in the first set, and at least one element of the first set isn’t in the second set.|
|isSubset|-|-|-|-|O(M *


 log N)|Returns true if all elements of the first set are in the second set.|
|isSuperset|-|-|-|-|O(M *


 log N)|Returns true if all elements of the second set are in the first set.|
|iter|O(N)|O(N)|O(N)|O(N)|O(N)|Applies the given function to each element of the collection.|
|iteri|O(N)|O(N)|O(N)|-|-|Applies the given function to each element of the collection. The integer that’s passed to the function indicates the index of the element.|
|iteri2|O(N)|O(N)|-|-|-|Applies the given function to a pair of elements that are drawn from matching indices in two arrays. The integer that’s passed to the function indicates the index of the elements. The two arrays must have the same length.|
|iter2|O(N)|O(N)|O(N)|-|-|Applies the given function to a pair of elements that are drawn from matching indices in two arrays. The two arrays must have the same length.|
|length|O(1)|O(N)|O(N)|-|-|Returns the number of elements in the collection.|
|map|O(N)|O(N)|O(1)|-|-|Builds a collection whose elements are the results of applying the given function to each element of the array.|
|map2|O(N)|O(N)|O(1)|-|-|Builds a collection whose elements are the results of applying the given function to the corresponding elements of the two collections pairwise. The two input arrays must have the same length.|
|map3|-|O(N)|-|-|-|Builds a collection whose elements are the results of applying the given function to the corresponding elements of the three collections simultaneously.|
|mapi|O(N)|O(N)|O(N)|-|-|Builds an array whose elements are the results of applying the given function to each element of the array. The integer index that’s passed to the function indicates the index of the element that’s being transformed.|
|mapi2|O(N)|O(N)|-|-|-|Builds a collection whose elements are the results of applying the given function to the corresponding elements of the two collections pairwise, also passing the index of the elements. The two input arrays must have the same length.|
|max|O(N)|O(N)|O(N)|-|-|Returns the greatest element in the collection, compared by using the max [https://msdn.microsoft.com/library/9a988328-00e9-467b-8dfa-e7a6990f6cce] operator.|
|maxBy|O(N)|O(N)|O(N)|-|-|Returns the greatest element in the collection, compared by using max [https://msdn.microsoft.com/library/9a988328-00e9-467b-8dfa-e7a6990f6cce] on the function result.|
|maxElement|-|-|-|-|O(log N)|Returns the greatest element in the set according to the ordering that’s used for the set.|
|min|O(N)|O(N)|O(N)|-|-|Returns the least element in the collection, compared by using the min [https://msdn.microsoft.com/library/adea4fd7-bfad-4834-989c-7878aca81fed] operator.|
|minBy|O(N)|O(N)|O(N)|-|-|Returns the least element in the collection, compared by using the min [https://msdn.microsoft.com/library/adea4fd7-bfad-4834-989c-7878aca81fed] operator on the function result.|
|minElement|-|-|-|-|O(log N)|Returns the lowest element in the set according to the ordering that’s used for the set.|
|ofArray|-|O(N)|O(1)|O(N)|O(N)|Creates a collection that contains the same elements as the given array.|
|ofList|O(N)|-|O(1)|O(N)|O(N)|Creates a collection that contains the same elements as the given list.|
|ofSeq|O(N)|O(N)|-|O(N)|O(N)|Creates a collection that contains the same elements as the given sequence.|
|pairwise|-|-|O(N)|-|-|Returns a sequence of each element in the input sequence and its predecessor except for the first element, which is returned only as the predecessor of the second element.|
|partition|O(N)|O(N)|-|O(N)|O(N)|Splits the collection into two collections. The first collection contains the elements for which the given predicate returns true, and the second collection contains the elements for which the given predicate returns false.|
|permute|O(N)|O(N)|-|-|-|Returns an array with all elements permuted according to the specified permutation.|
|pick|O(N)|O(N)|O(N)|O(log N)|-|Applies the given function to successive elements, returning the first result where the function returns Some. If the function never returns Some, System.Collections.Generic.KeyNotFoundException is raised.|
|readonly|-|-|O(N)|-|-|Creates a sequence object that delegates to the given sequence object. This operation ensures that a type cast can’t rediscover and mutate the original sequence. For example, if given an array, the returned sequence will return the elements of the array, but you can’t cast the returned sequence object to an array.|
|reduce|O(N)|O(N)|O(N)|-|-|Applies a function to each element of the collection, threading an accumulator argument through the computation. This function starts by applying the function to the first two elements, passes this result into the function along with the third element, and so on. The function returns the final result.|
|reduceBack|O(N)|O(N)|-|-|-|Applies a function to each element of the collection, threading an accumulator argument through the computation. If the input function is f and the elements are i0...iN, this function computes f i0 (...(f iN-1 iN)).|
|remove|-|-|-|O(log N)|O(log N)|Removes an element from the domain of the map. No exception is raised if the element isn’t present.|
|replicate|-|O(N)|-|-|-|Creates a list of a specified length with every element set to the given value.|
|rev|O(N)|O(N)|-|-|-|Returns a new list with the elements in reverse order.|
|scan|O(N)|O(N)|O(N)|-|-|Applies a function to each element of the collection, threading an accumulator argument through the computation. This operation applies the function to the second argument and the first element of the list. The operation then passes this result into the function along with the second element and so on. Finally, the operation returns the list of intermediate results and the final result.|
|scanBack|O(N)|O(N)|-|-|-|Resembles the foldBack operation but returns both the intermediate and final results.|
|singleton|-|-|O(1)|-|O(1)|Returns a sequence that yields only one item.|
|set|O(1)|-|-|-|-|Sets an element of an array to the specified value.|
|skip|-|-|O(N)|-|-|Returns a sequence that skips N elements of the underlying sequence and then yields the remaining elements of the sequence.|
|skipWhile|-|-|O(N)|-|-|Returns a sequence that, when iterated, skips elements of the underlying sequence while the given predicate returns true and then yields the remaining elements of the sequence.|
|sort|O(N log N) average

O(N^2) worst case|O(N log N)|O(N log N)|-|-|Sorts the collection by element value. Elements are compared using compare [https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c].|
|sortBy|O(N log N) average

O(N^2) worst case|O(N log N)|O(N log N)|-|-|Sorts the given list by using keys that the given projection provides. Keys are compared using compare [https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c].|
|sortInPlace|O(N log N) average

O(N^2) worst case|-|-|-|-|Sorts the elements of an array by mutating it in place and using the given comparison function. Elements are compared by using compare [https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c].|
|sortInPlaceBy|O(N log N) average

O(N^2) worst case|-|-|-|-|Sorts the elements of an array by mutating it in place and using the given projection for the keys. Elements are compared by using compare [https://msdn.microsoft.com/library/295e1320-0955-4c3d-ac31-288fa80a658c].|
|sortInPlaceWith|O(N log N) average

O(N^2) worst case|-|-|-|-|Sorts the elements of an array by mutating it in place and using the given comparison function as the order.|
|sortWith|O(N log N) average

O(N^2) worst case|O(N log N)|-|-|-|Sorts the elements of a collection, using the given comparison function as the order and returning a new collection.|
|sub|O(N)|-|-|-|-|Builds an array that contains the given subrange that’s specified by starting index and length.|
|sum|O(N)|O(N)|O(N)|-|-|Returns the sum of the elements in the collection.|
|sumBy|O(N)|O(N)|O(N)|-|-|Returns the sum of the results that are generated by applying the function to each element of the collection.|
|tail|-|O(1)|-|-|-|Returns the list without its first element.|
|take|-|-|O(N)|-|-|Returns the elements of the sequence up to a specified count.|
|takeWhile|-|-|O(1)|-|-|Returns a sequence that, when iterated, yields elements of the underlying sequence while the given predicate returns true and then returns no more elements.|
|toArray|-|O(N)|O(N)|O(N)|O(N)|Creates an array from the given collection.|
|toList|O(N)|-|O(N)|O(N)|O(N)|Creates a list from the given collection.|
|toSeq|O(1)|O(1)|-|O(1)|O(1)|Creates a sequence from the given collection.|
|truncate|-|-|O(1)|-|-|Returns a sequence that, when enumerated, returns no more than N elements.|
|tryFind|O(N)|O(N)|O(N)|O(log N)|-|Searches for an element that satisfies a given predicate.|
|tryFindIndex|O(N)|O(N)|O(N)|-|-|Searches for the first element that satisfies a given predicate and returns the index of the matching element, or None if no such element exists.|
|tryFindKey|-|-|-|O(log N)|-|Returns the key of the first mapping in the collection that satisfies the given predicate, or returns None if no such element exists.|
|tryPick|O(N)|O(N)|O(N)|O(log N)|-|Applies the given function to successive elements, returning the first result where the function returns Some for some value. If no such element exists, the operation returns None.|
|unfold|-|-|O(N)|-|-|Returns a sequence that contains the elements that the given computation generates.|
|union|-|-|-|-|O(M *


 log N)|Computes the union of the two sets.|
|unionMany|-|-|-|-|O(N1 *


 N2 ...)|Computes the union of a sequence of sets.|
|unzip|O(N)|O(N)|O(N)|-|-|Splits a list of pairs into two lists.|
|unzip3|O(N)|O(N)|O(N)|-|-|Splits a list of triples into three lists.|
|windowed|-|-|O(N)|-|-|Returns a sequence that yields sliding windows of containing elements that are drawn from the input sequence. Each window is returned as a fresh array.|
|zip|O(N)|O(N)|O(N)|-|-|Combines the two collections into a list of pairs. The two lists must have equal lengths.|
|zip3|O(N)|O(N)|O(N)|-|-|Combines the three collections into a list of triples. The lists must have equal lengths.|







See Also


F# Types


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/literals.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Literals (F#)
description: Literals (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 4b1d6e9d-f933-4cd4-966d-d643152c27e4





Literals



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This topic provides a table that shows how to specify the type of a literal in F#.



Literal Types


The following table shows the literal types in F#. Characters that represent digits in hexadecimal notation are not case-sensitive; characters that identify the type are case-sensitive.


|Type|Description|Suffix or prefix|Examples|
|—-|———–|—————-|——–|
|sbyte|signed 8-bit integer|y|86y

0b00000101y|
|byte|unsigned 8-bit natural number|uy|86uy

0b00000101uy|
|int16|signed 16-bit integer|s|86s|
|uint16|unsigned 16-bit natural number|us|86us|
|int

int32|signed 32-bit integer|l or none|86

86l|
|uint

uint32|unsigned 32-bit natural number|u or ul|86u

86ul|
|unativeint|native pointer as an unsigned natural number|un|0x00002D3Fun|
|int64|signed 64-bit integer|L|86L|
|uint64|unsigned 64-bit natural number|UL|86UL|
|single, float32|32-bit floating point number|F or f|4.14F or 4.14f|
|||lf|0x00000000lf|
|float; double|64-bit floating point number|none|4.14 or 2.3E+32 or 2.3e+32|
|||LF|0x0000000000000000LF|
|bigint|integer not limited to 64-bit representation|I|9999999999999999999999999999I|
|decimal|fractional number represented as a fixed point or rational number|M or m|0.7833M or 0.7833m|
|Char|Unicode character|none|'a'|
|String|Unicode string|none|"text\n"

or

@"c:\filename"

or

"""<book title="Paradise Lost">"""

or

"string1" + "string2"

See also Strings.|
|byte|ASCII character|B|'a'B|
|byte[]|ASCII string|B|"text"B|
|String or byte[]|verbatim string|@ prefix|@"\\server\share" (Unicode)

@"\\server\share"B (ASCII)|





Remarks


Unicode strings can contain explicit encodings that you can specify by using \u followed by a 16-bit hexadecimal code or UTF-32 encodings that you can specify by using \U followed by a 32-bit hexadecimal code that represents a Unicode surrogate pair.


As of F# 3.1, you can use the + sign to combine string literals. You can also use the bitwise or (|||) operator to combine enum flags. For example, the following code is legal in F# 3.1:


[<Literal>]
let literal1 = "a" + "b"

[<Literal>]
let fileLocation =   __SOURCE_DIRECTORY__ + "/" + __SOURCE_FILE__

[<Literal>]
let literal2 = 1 ||| 64

[<Literal>]
let literal3 = System.IO.FileAccess.Read ||| System.IO.FileAccess.Write






The use of other bitwise operators isn’t allowed.





Named Literals


Values that are intended to be constants can be marked with the Literal [https://msdn.microsoft.com/library/465f36ce-d146-41c0-b425-679c509cd285] attribute. This attribute has the effect of causing a value to be compiled as a constant.


In pattern matching expressions, identifiers that begin with lowercase characters are always treated as variables to be bound, rather than as literals, so you should generally use initial capitals when you define literals.





See Also


Core.LiteralAttribute Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.literalattribute-class-%5bfsharp%5d]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/external-functions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: External Functions (F#)
description: External Functions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c26b6124-ceaa-471c-9dc9-861b4dfa332a





External Functions


This topic describes F# language support for calling functions in native code.



Syntax


[<DllImport( arguments )>]
extern declaration









Remarks


In the previous syntax, arguments represents arguments that are supplied to the System.Runtime.InteropServices.DllImportAttribute attribute. The first argument is a string that represents the name of the DLL that contains this function, without the .dll extension. Additional arguments can be supplied for any of the public properties of the System.Runtime.InteropServices.DllImportAttribute class, such as the calling convention.


Assume you have a native C++ DLL that contains the following exported function.


#include <stdio.h>
extern "C" void __declspec(dllexport) HelloWorld()
{
    printf("Hello world, invoked by F#!\n");
}






You can call this function from F# by using the following code.


open System.Runtime.InteropServices

module InteropWithNative =
    [<DllImport(@"C:\bin\nativedll", CallingConvention = CallingConvention.Cdecl)>]
    extern void HelloWorld()

InteropWithNative.HelloWorld()






Interoperability with native code is referred to as platform invoke and is a feature of the CLR. For more information, see Interoperating with Unmanaged Code [https://msdn.microsoft.com/library/sd10k43k.aspx]. The information in that section is applicable to F#.





See Also


Functions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

welcome.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Welcome to .NET
description: Getting started
keywords: .NET
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net
ms.technology: .net-technologies
ms.devlang: dotnet
ms.assetid: cb788dcf-2120-467f-9c34-c02a90e1f68f





Welcome to .NET



Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.



Welcome to .NET! You can build any kind of application you want with .NET, from cloud to IoT to games. You can start building your next application today, for Windows, Linux, Android, macOS, and iOS. There are millions of developers that use .NET to power mission critical applications, personal apps and immersive games. You can write the next one.


You can develop apps and games on Windows, macOS and Linux. There are free tools that you can use to build apps or games and deploy them on servers or desktops or publish them to app stores. It’s accessible to students and  used by large businesses throughout the world.



News


There is always something new to learn or explore in the .NET community. Here’s the latest news you may want to check out.



		Announcing .NET Framework 4.6.2 [https://blogs.msdn.microsoft.com/dotnet/2016/08/02/announcing-net-framework-4-6-2/]


		Announcing .NET Core 1.0 [https://blogs.msdn.microsoft.com/dotnet/announcing-net-core-1-0]


		Announcing ASP.NET Core 1.0 [https://blogs.msdn.microsoft.com/webdev/2016/06/27/announcing-asp-net-core-1-0/]


		Open Source Xamarin, Ready for you! [https://blog.xamarin.com/live-from-evolve-open-source-xamarin-ready-for-you/]


		The week in .NET [https://blogs.msdn.microsoft.com/dotnet/tag/week-in-net/]


		Thank you for watching dotnetConf 2016! [https://blogs.msdn.microsoft.com/dotnet/2016/06/09/thank-you-for-watching-dotnetconf-2016/]








Documentation


This documentation will show you how to build an app from scratch or finish one that you are already working on. Key sections you should check out:



		C# Guide


		F# Guide


		.NET Core API


		.NET Core Guide


		.NET Standard Guide








Open Source


Many parts of .NET are built by open source contributors. You can contribute to this .NET Documentation [https://github.com/dotnet/core-docs]. You can also read the source of and contribute to .NET products, including .NET Core [https://github.com/dotnet/core] and Xamarin [http://open.xamarin.com]. Key projects from Microsoft have been contributed to the .NET Foundation [http://dotnetfoundation.org].





Community


Welcome to the .NET community. You can join other people who are already active in the .NET community [https://www.microsoft.com/net/community], to find out what’s new or ask for help.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/entry-point.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Entry Point (F#)
description: Entry Point (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 91455443-ff9d-4510-a7e9-1560bdcd0bb0





Entry Point


This topic describes the method that you use to set the entry point to an F# program.



Syntax


[<EntryPoint>]
let-function-binding









Remarks


In the previous syntax, let-function-binding is the definition of a function in a let binding.


The entry point to a program that is compiled as an executable file is where execution formally starts. You specify the entry point to an F# application by applying the EntryPoint attribute to the program’s main function. This function (created by using a let binding) must be the last function in the last compiled file. The last compiled file is the last file in the project or the last file that is passed to the command line.


The entry point function has type string array -> int. The arguments provided on the command line are passed to the main function in the array of strings. The first element of the array is the first argument; the name of the executable file is not included in the array, as it is in some other languages. The return value is used as the exit code for the process. Zero usually indicates success; nonzero values indicate an error. There is no convention for the specific meaning of nonzero return codes; the meanings of the return codes are application-specific.


The following example illustrates a simple main function.


[!code-fsharpMain]


When this code is executed with the command line EntryPoint.exe 1 2 3, the output is as follows.


Arguments passed to function : [|"1"; "2"; "3"|]









Implicit Entry Point


When a program has no EntryPoint attribute that explicitly indicates the entry point, the top level bindings in the last file to be compiled are used as the entry point.





See Also


Functions


let Bindings








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/compiler-options.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Compiler Options (F#)
description: Compiler Options (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c797cf0b-5953-4053-8626-0558e9eaf10f





Compiler Options


This topic describes compiler command-line options for the F# compiler, fsc.exe. The compilation environment can also be controlled by setting the project properties.



Compiler Options Listed Alphabetically


The following table shows compiler options listed alphabetically. Some of the F# compiler options are similar to the C# compiler options. If that is the case, a link to the C# compiler options topic is provided.


|Compiler Option|Description|
|—————|———–|
|-a****&lt;output-filename

&gt;


|Generates a library and specifies its filename. This option is a short form of –target:library****&lt;filename&gt;


.|
|–baseaddress:&lt;


string&gt;


|Specifies the base address of the library to be built.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


baseaddress (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/2fdbz5xd.aspx].|
|–codepage:&lt;


int&gt;


|Specifies the codepage used to read source files.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


codepage (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/w0kyekyh.aspx].|
|–consolecolors|Specifies that errors and warnings use color-coded text on the console.|
|–crossoptimize[+|


-]|Enables or disables cross-module optimizations.|
|–delaysign[+|


-]|Delay-signs the assembly using only the public portion of the strong name key.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


delaysign (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/ta1sxwy8.aspx].|
|–checked[+|


-]|Enables or disables the generation of overflow checks.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


checked (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/h25wtyxf.aspx].|
|–debug[+|


-]

-g[+|


-]

–debug:[full|


pdbonly]

-g: [full|


pdbonly]|Enables or disables the generation of debug information, or specifies the type of debug information to generate. The default is full, which allows attaching to a running program. Choose pdbonly to get limited debugging information stored in a pdb (program database) file.

Equivalent to the C# compiler option of the same name. For more information, see

/


debug (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/8cw0bt21.aspx].|
|–define:&lt;


string&gt;




-d:&lt;


string&gt;


|Defines a symbol for use in conditional compilation.|
|–doc:&lt;


xmldoc-filename&gt;


|Instructs the compiler to generate XML documentation comments to the file specified. For more information, see XML Documentation.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


doc (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/3260k4x7.aspx].|
|–fullpaths|Instructs the compiler to generate fully qualified paths.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


fullpaths (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/d315xc66.aspx].|
|–help

-?|Displays usage information, including a brief description of all the compiler options.|
|–highentropyva[+|


-]|Enable or disable high-entropy address space layout randomization (ASLR), an enhanced security feature. The OS randomizes the locations in memory where infrastructure for applications (such as the stack and heap) are loaded. If you enable this option, operating systems can use this randomization to use the full 64-bit address-space on a 64-bit machine.|
|–keycontainer:&lt;


string&gt;


|Specifies a strong name key container.|
|–keyfile:&lt;


filename&gt;


|Specifies the name of a public key file for signing the generated assembly.|
|–lib:&lt;


folder-name&gt;




-I:&lt;


folder-name&gt;


|Specifies a directory to be searched for assemblies that are referenced.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


lib (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/s5bac5fx.aspx].|
|–linkresource:&lt;


resource-info&gt;


|Links a specified resource to the assembly. The format of resource-info is filename[,name[,public|


private]]

Linking a single resource with this option is an alternative to embedding an entire resource file with the –resource option.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


linkresource (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/xawyf94k.aspx].|
|–mlcompatibility|Ignores warnings that appear when you use features that are designed for compatibility with other versions of ML.|
|–noframework|Disables the default reference to the .NET Framework assembly.|
|–nointerfacedata|Instructs the compiler to omit the resource it normally adds to an assembly that includes F#-specific metadata.|
|–nologo|Doesn’t show the banner text when launching the compiler.|
|–nooptimizationdata|Instructs the compiler to only include optimization essential for implementing inlined constructs. Inhibits cross-module inlining but improves binary compatibility.|
|–nowin32manifest|Instructs the compiler to omit the default Win32 manifest.|
|–nowarn:&lt;


int-list&gt;


|Disables specific warnings listed by number. Separate each warning number by a comma. You can discover the warning number for any warning from the compilation output.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


nowarn (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/7f28x9z3.aspx].|
|–optimize[+|


-][&lt;


string-list&gt;


]

-O[+|


-] [&lt;


string-list&gt;


]|Enables or disables optimizations. Some optimization options can be disabled or enabled selectively by listing them. These are: nojitoptimize, nojittracking, nolocaloptimize, nocrossoptimize, notailcalls.|
|–out:&lt;


output-filename&gt;




-o:&lt;


output-filename&gt;


|Specifies the name of the compiled assembly or module.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


out (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/bw3t50f3.aspx].|
|–pdb:&lt;


pdb-filename&gt;


|Names the output debug PDB (program database) file. This option only applies when –debug is also enabled.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


pdb (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/ms228625.aspx].|
|–platform:&lt;


platform-name&gt;


|Specifies that the generated code will only run on the specified platform (x86, Itanium, or x64), or, if the platform-name anycpu is chosen, specifies that the generated code can run on any platform.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


platform (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/zekwfyz4.aspx].|
|–quotations-debug|Specifies that extra debugging information should be emitted for expressions that are derived from F# quotation literals and reflected definitions. The debug information is added to the custom attributes of an F# expression tree node. See Code Quotations and Expr.CustomAttributes [https://msdn.microsoft.com/library/eb89943f-5f5b-474e-b125-030ca412edb3].|
|–reference:&lt;


assembly-filename&gt;




-r &lt;


assembly-filename&gt;


|Makes code from an F# or .NET Framework assembly available to the code being compiled.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


reference (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/yabyz3h4.aspx].|
|–resource:&lt;


resource-filename&gt;


|Embeds a managed resource file into the generated assembly.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


resource (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/c0tyye07.aspx].|
|–sig:&lt;


signature-filename&gt;


|Generates a signature file based on the generated assembly. For more information about signature files, see Signatures.|
|–simpleresolution|Specifies that assembly references should be resolved using directory-based Mono rules rather than MSBuild resolution. The default is to use MSBuild resolution except when running under Mono.|
|–standalone|Specifies to produce an assembly that contains all of its dependencies so that it runs by itself without the need for additional assemblies, such as the F# library.|
|–staticlink:&lt;


assembly-name&gt;


|Statically links the given assembly and all referenced DLLs that depend on this assembly. Use the assembly name, not the DLL name.|
|–subsystemversion|Specifies the version of the OS subsystem to be used by the generated executable. Use 6.02 for Windows 8.1, 6.01 for Windows 7, 6.00 for Windows Vista. This option only applies to executables, not DLLs, and need only be used if your application depends on specific security features available only on certain versions of the OS. If this option is used, and a user attempts to execute your application on a lower version of the OS, it will fail with an error message.|
|–tailcalls[+|


-]|Enables or disables the use of the tail IL instruction, which causes the stack frame to be reused for tail recursive functions. This option is enabled by default.|
|–target:[exe |


 winexe |


 library |


 module ] &lt;


output-filename&gt;


|Specifies the type and file name of the generated compiled code.		exe means a console application.


		winexe means a Windows application, which differs from the console application in that it does not have standard input/output streams (stdin, stdout, and stderr) defined.


		library is an assembly without an entry point.


		module is a .NET Framework module (.netmodule), which can later be combined with other modules into an assembly.




This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


target (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/6h25dztx.aspx].|
|–times|Displays timing information for compilation.|
|–utf8output|Enables printing compiler output in the UTF-8 encoding.|
|–warn:&lt;


warning-level&gt;


|Sets a warning level (0 to 5). The default level is 3. Each warning is given a level based on its severity. Level 5 gives more, but less severe, warnings than level 1.

Level 5 warnings are: 21 (recursive use checked at runtime), 22 (let rec evaluated out of order), 45 (full abstraction), and 52 (defensive copy). All other warnings are level 2.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


warn (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/13b90fz7.aspx].|
|–warnon:&lt;


int-list&gt;


|Enable specific warnings that might be off by default or disabled by another command line option. In F# 3.0, only the 1182 (unused variables) warning is off by default.|
|–warnaserror[+|


-] [&lt;


int-list&gt;


]|Enables or disables the option to report warnings as errors. You can provide specific warning numbers to be disabled or enabled. Options later in the command line override options earlier in the command line. For example, to specify the warnings that you don’t want reported as errors, specify –warnaserror+ –warnaserror-:&lt;


int-list&gt;


.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


warnaserror (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/406xhdz3.aspx].|
|–win32manifest:manifest-filename|Adds a Win32 manifest file to the compilation. This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


win32manifest (


C#


 Compiler Options)


 [https://msdn.microsoft.com/library/bb545961.aspx].|
|–win32res:resource-filename|Adds a Win32 resource file to the compilation.

This compiler option is equivalent to the C# compiler option of the same name. For more information, see /


win32res ((


C&#35); Compiler Options)


 [https://msdn.microsoft.com/library/8f2f5x2e.aspx].|







Related Topics


|Title|Description|
|—–|———–|
|F# Interactive Options|Describes command-line options supported by the F# interpreter, fsi.exe.|
|Project Properties Reference [https://msdn.microsoft.com/library/16satcwx.aspx]|Describes the UI for projects, including project property pages that provide build options.|








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

search.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/do-bindings.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: do Bindings (F#)
description: do Bindings (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 4c1057a3-3aa1-4b64-b46a-25ffe33f0be9





do Bindings


A do binding is used to execute code without defining a function or value. Also, do bindings can be used in classes, see do Bindings in Classes.



Syntax


[ attributes ]
[ do ]expression









Remarks


Use a do binding when you want to execute code independently of a function or value definition. The expression in a do binding must return unit. Code in a top-level do binding is executed when the module is initialized. The keyword do is optional.


Attributes can be applied to a top-level do binding. For example, if your program uses COM interop, you might want to apply the STAThread attribute to your program. You can do this by using an attribute on a do binding, as shown in the following code.


[!code-fsharpMain]





See Also


F# Language Reference


Functions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/lambda-expressions-the-fun-keyword.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Lambda Expressions: The fun Keyword (F#)”
description: “Lambda Expressions: The fun Keyword (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: e5d3565c-d7cc-433f-a619-886ed92523a7





Lambda Expressions: The fun Keyword (F#)


The fun keyword is used to define a lambda expression, that is, an anonymous function.



Syntax


fun parameter-list -> expression









Remarks


The parameter-list typically consists of names and, optionally, types of parameters. More generally, the parameter-list can be composed of any F# patterns. For a full list of possible patterns, see Pattern Matching. Lists of valid parameters include the following examples.


// Lambda expressions with parameter lists.
fun a b c -> ...
fun (a: int) b c -> ...
fun (a : int) (b : string) (c:float) -> ...

// A lambda expression with a tuple pattern.
fun (a, b) -> …

// A lambda expression with a list pattern.
fun head :: tail -> …






The expression is the body of the function, the last expression of which generates a return value. Examples of valid lambda expressions include the following:


[!code-fsharpMain]





Using Lambda Expressions


Lambda expressions are especially useful when you want to perform operations on a list or other collection and want to avoid the extra work of defining a function. Many F# library functions take function values as arguments, and it can be especially convenient to use a lambda expression in those cases. The following code applies a lambda expression to elements of a list. In this case, the anonymous function adds 1 to every element of a list.


[!code-fsharpMain]





See Also


Functions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-install-script.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-install scripts reference
description: dotnet-install scripts reference
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 59b9c456-2bfd-4adc-8202-a1c6a0a6c787





dotnet-install scripts reference



NAME


dotnet-install.ps1 | dotnet-install.sh - script used to install the Command Line Interface (CLI) tools and shared runtime





SYNOPSIS


Windows:


dotnet-install.ps1 [-Channel] [-Version] [-InstallDir] [-Debug] [-NoPath] [-SharedRuntime]


OS X/Linux:


dotnet-install.sh [--channel] [--version] [--install-dir] [--debug] [--no-path] [--shared-runtime]





DESCRIPTION


The dotnet-install scripts are used to perform a non-admin install of the CLI toolchain and the shared runtime. You can download the scripts from our CLI GitHub repo [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/scripts/obtain].


Their main use case is to help with automation scenarios and non-admin installations. There are two scripts, one for PowerShell that works on Windows and a bash script that works on Linux/OS X. They both have the same behavior. Bash script also “understands” PowerShell switches so you can use them across the board.


Installation scripts will download the ZIP/tarball file from the CLI build drops and will proceed to install it in either the default location or in a location specified by --install-dir. By default, the installation script
will download the SDK and install it; if you want to get just the shared runtime, you can specify the --shared-runtime argument.


By default, the script will add the install location to the $PATH for the current session. This can be overridden if the --no-path argument is used.


Before running the script, please install all the required dependencies [https://github.com/dotnet/core/blob/master/Documentation/prereqs.md].


You can install a specific version using the --version argument. The version needs to be specified as 3-part version (for example 1.0.0-13232). If omitted, it will default to the first global.json file found in the hierarchy above the folder where the script was invoked in that contains the sdkVersion property. If that is not present, it will use Latest.


You can also use this script to get the SDK or shared runtime debug binaries with debug symbols by using the --debug argument. If you do not do this on first install and realize you do need debug symbols later on, you can re-run the script with this argument and the version of the bits you installed.





Options


Options are different between script implementations.



PowerShell (Windows)


-Channel [CHANNEL]


Which channel (for example, “future”, “preview”, “production”) to install from. The default value is “Production”.


-Version [VERSION]


Which version of CLI to install; you need to specify the version as 3-part version (i.e. 1.0.0-13232). If omitted, it will default to the first global.json that contains the sdkVersion property; if that is not present, it will use Latest.


-InstallDir [DIR]


Path to install to. The directory is created if it doesn’t exist. The default value is %LocalAppData%\.dotnet.


-Debug


true to indicate that larger packages containing debugging symbols should be used; otherwise, false. The default value is false.


-NoPath


true to indicate that the prefix/installdir are not exported to the path for the current session; otherwise, false.
The default value is false, that is, the PATH is modified.
This makes the CLI tools available immediately after install.


-SharedRuntime


true to install just the shared runtime bits; false to install the entire SDK. The default value is false.





Bash (OS X/Linux)


--channel [CHANNEL]


Which channel (for example “future”, “preview”, “production”) to install from. The default value is “Production”.


--version [VERSION]


Which version of CLI to install; you need to specify the version as 3-part version (i.e. 1.0.0-13232). If omitted, it will default to the first global.json that contains the sdkVersion property; if that is not present, it will use Latest.


--install-dir [DIR]


Path to where to install. The directory is created if it doesn’t exist. The default value is $HOME/.dotnet.


--debug


true to indicate that larger packages containing debugging symbols should be used; otherwise, false. The default value is false.


--no-path


true to indicate that the prefix/installdir are not exported to the path for the current session; otherwise, false.
The default value is false, that is, the PATH is modified.
This makes the CLI tools available immediately after install.


--shared-runtime


true to install just the shared runtime bits; false to install the entire SDK. The default value is false.







EXAMPLES


Windows:


./dotnet-install.ps1 -Channel Future






OS X/Linux:


./dotnet-install.sh --channel Future






Installs the dev latest version to the default location.


Windows:


./dotnet-install.ps1 -Channel preview -InstallDir C:\cli






OS X/Linux:


./dotnet-install.sh --channel preview --install-dir ~/cli






Installs the latest preview to the specified location.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Tutorials
description: C# Tutorials
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fcc83b5b-fb68-4e48-9132-0882677d8056





C# Tutorials


These exercises enable you to build C# programs using core CLR.



		Console Application. This tutorial
demonstrates Console I/O, the structure of a Console application, and
the basics of the Task based asynchronous programming model.


		REST Client. This tutorial
demonstrates web communications, JSON serialization, and Object Oriented
features in the C# language.


		Working with LINQ This tutorial demonstrates many of the features of LINQ and the language elements that support it.


		Microservices hosted in Docker This tutorial demonstrates building an asp.net core microservice and hosting it it Docker.









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/console-webapiclient.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: REST client
description: REST client
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 51033ce2-7a53-4cdd-966d-9da15c8204d2





REST client



Introduction


This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:



		The basics of the .NET Core Command Line Interface (CLI).


		An overview of C# Language features.


		Managing dependencies with NuGet


		HTTP Communications


		Processing JSON information


		Managing configuration with Attributes.





You’ll build an application that issues HTTP Requests to a REST
service on GitHub. You’ll read information in JSON format, and convert
that JSON packet into C# objects. Finally, you’ll see how to work with
C# objects.


There are a lot of features in this tutorial. Let’s build them one by one.





Prerequisites


You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor. The descriptions below
use Visual Studio Code [https://code.visualstudio.com/] which is an open
source, cross platform editor. However, you can use whatever tools you are
comfortable with.





Create the Application


The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.


Before you start making modifications, let’s go through the steps to run
the simple Hello World application. After creating the application, type
“dotnet restore” at the command prompt. This command runs the NuGet
package restore process. NuGet is a .NET package manager. This command
downloads any of the missing dependencies for your project. As this is a
new project, none of the dependencies are in place, so the first run will
download the .NET Core framework. After this initial step, you will only
need to run dotnet restore when you add new dependent packages, or update
the versions of any of your dependencies. This process also creates the
project lock file (project.lock.json) in your project directory. This file
helps to manage the project dependencies. It contains the local location
of all the project dependencies. You do not need to put the file in source
control; it will be generated when you run “dotnet restore”.


After restoring packages, you run “dotnet build”. This executes the build
engine and creates your application. Finally, you execute “dotnet run” to
run your application.





Adding New Dependencies


One of the key design goals for .NET Core is to minimize the size of
the .NET framework installation. The .NET Core Application framework contains
only the most common elements of the .NET full framework. This application
needs more libraries for some of its features. You’ll add those
dependencies into your project.json file. You’ll need to add the
System.Net.Http package so that your application can make HTTP requests.
You’ll also need to add the System.Runtime.Serialization.Json package
so your application can process JSON responses.


Open your project.json file. Look for the dependencies section. You should
see one line that looks similar to this:


"dependencies": {
    "Microsoft.NETCore.App": {
        "type": "platform",
        "version": "1.0.0"
    }
},






You’ll add two lines to this section to include the two new libraries:


"dependencies": {
   "Microsoft.NETCore.App": {
        "type": "platform"
        "version": "1.0.0",
    },
    "System.Runtime.Serialization.Json": "4.0.2",
    "System.Runtime.Serialization.Primitives": "4.1.1"
},






Most code editors will provide completion for different versions of these
libraries. You’ll usually want to use the latest version of any package
that you add. However, it is important to make sure that the versions
of all packages match, and that they also match the version of the .NET
Core Application framework.


After you’ve made these changes, you should run “dotnet restore” again so
that those packages are installed on your system.





Making Web Requests


Now you’re ready to start retrieving data from the web. In this
application, you’ll read information from the
GitHub API [https://developer.github.com/v3/]. Let’s read information
about the projects under the
.NET Foundation [http://www.dotnetfoundation.org/] umbrella. You’ll
start by making the request to the GitHub API to retrieve information
on the projects. The endpoint you’ll use is: https://api.github.com/orgs/dotnet/repos. You want to retrieve all the
information about these projects, so you’ll use an HTTP GET request.
Your browser also uses HTTP GET requests, so you can paste that URL into
your browser to see what information you’ll be receiving and processing.


You use the HttpClient class to make web requests. Like all modern .NET
APIs, HttpClient supports only async methods for its long-running APIs.
Start by making an async method. You’ll fill in the implementation as you
build the functionality of the application.


private static async Task ProcessRepositories()
{
    
}






You’ll need to add a using statement at the top of your Main() method so
that the C# compiler recognizes the Task type:


using System.Threading.Tasks;






If you build your project at this point, you’ll get a warning generated
for this method, because it does not contain any await operators and
will run synchronously. Ignore that for now, you’ll add await operators
as you fill in the method.


Next, update the Main() method to call this method. The
ProcessRepositories() method returns a Task, and you shouldn’t exit the
program before that task finishes. Therefore, you must use the Wait()
method to block and wait for the task to finish:


public static void Main(string[] args)
{
    ProcessRepositories().Wait();
}






Now, you have a program that does nothing, but does it asynchronously. Let’s go back to the
ProcessRepositories() method and fill in a first version of it:


private static async Task ProcessRepositories()
{
    var client = new HttpClient();
    client.DefaultRequestHeaders.Accept.Clear();
    client.DefaultRequestHeaders.Accept.Add(
        new MediaTypeWithQualityHeaderValue("application/vnd.github.v3+json"));
    client.DefaultRequestHeaders.Add("User-Agent", ".NET Foundation Repository Reporter");

    var stringTask = client.GetStringAsync("https://api.github.com/orgs/dotnet/repos");

    var msg = await stringTask;
    Console.Write(msg);
}






You’ll need to also add two new using statements at the top of the file for this to compile:


using System.Net.Http;
using System.Net.Http.Headers;






This first version makes a web request to read the list of all repositories under the dotnet
foundation organization. (The gitHub ID for the .NET Foundation is ‘dotnet’). First, you create
a new HttpClient. This object handles the request and the responses. The next few lines setup
the HttpClient for this request. First, it is configured to accept the GitHub JSON responses.
This format is simply JSON. The next line adds a User Agent header to all requests from this
object. These two headers are checked by the GitHub server code, and are necessary to retrieve
information from GitHub.


After you’ve configured the HttpClient, you make a web request, and retrieve the response. In
this first version, you use the GetStringAsync convenience method. This convenience method
starts a task that makes the web request, and then when the request returns, it will read the
response stream, and extract the content from the stream. The body of the response is returned
as a string. The string is available when the task completes.


The final two lines of this method await that task, and then print the response to the console.
Build the app, and run it. The build warning is gone now, because the ProcessRepositories now
does contain an await operator. You’ll see a long display of JSON formatted text.





Processing the JSON Result


At this point, you’ve written the code to retrieve a response from a web server, and display
the text that is contained in that response. Next, let’s convert that JSON response into C#
objects.


The JSON Serializer converts JSON data into C# Objects. Your first task is to define a C# class
type to contain the information you use from this response. Let’s build this slowly, so start with
a simple C# type that contains the name of the repository:


namespace WebAPIClient
{
    public class repo
    {
        public string name;
    }
}






Put the above code in a new file called ‘repo.cs’. This version of the class represents the
simplest path to process JSON data. The class name and the member name match the names used
in the JSON packet, instead of following C# conventions. You’ll fix that by providing some
configuration attributes later. This class demonstrates another important feature of JSON
serialization and deserialization: Not all the fields in the JSON packet are part of this class.
The JSON serializer will ignore information that is not included in the class type being used.
This feature makes it easier to create types that work with only a subset of the fields in
the JSON packet.


Now that you’ve created the type, let’s deserialize it. You’ll need to create a
DataContractJsonSerializer object. This object must know the CLR type expected for the
JSON packet it retrieves. The packet from GitHub contains a sequence of repositories, so a
List<repo> is the correct type. Add the following line to your ProcessRepositories method:


var serializer = new DataContractJsonSerializer(typeof(List<repo>));






You’re using two new namespaces, so you’ll need to add those as well:


using System.Collections.Generic;
using System.Runtime.Serialization.Json;






Next, you’ll use the serializer to convert JSON into C# objects. Replace the call to
GetStringAsync() in your ProcessRepositories method with the following two lines:


var streamTask = client.GetStreamAsync("https://api.github.com/orgs/dotnet/repos");
var repositories = serializer.ReadObject(await streamTask) as List<repo>;






Notice that you’re now using GetStreamAsync instead of GetStringAsync. The serializer
uses a stream instead of a string as its source. Let’s explain a couple features of the C#
language that are being used in the second line above. The argument to ReadObject is an
await expression. Await expressions can appear almost anywhere in your code, even though
up to now, you’ve only seen them as part of an assignment statement.


Secondly, the as operator converts from the compile time type of object to List<repo>.
The declaration of ReadObject declares that it returns an object of type System.Object.
ReadObject will return the type you specified when you constructed it (List<repo> in
this tutorial). If the conversion does not succeed, the as operator evaluates to null,
instead of throwing an exception.


You’re almost done with this section. Now that you’ve converted the JSON to C# objects, let’s display
the name of each repository:


foreach (var repo in repositories)
    Console.WriteLine(repo.name);






Compile and run the application. It will print out the names of the repositories that are part of the
.NET Foundation.





Controlling Serialization


Before you add more features, let’s address the repo type and make it follow more standard
C# conventions. You’ll do this by annotating the repo type with Attributes that control how
the JSON Serializer works. In your case, you’ll use these attributes to define a mapping between
the JSON key names and the C# class and member names. The two attributes used are the DataContract
attribute and the Data Member attribute. By convention, all Attribute classes end in the suffix
Attribute. However, you do not need to use that suffix when you apply an attribute.


The DataContract and DataMember attributes are in a different library, so you’ll need to add
that library to project.json as a dependency. Add the following line to the dependencies section
of the project.json file (remember to add the comma separator on the line above):


"System.Runtime.Serialization.Primitives" : "4.0.1"






After you save the file, run ‘dotnet restore’ to retrieve this package and update the project.json.lock
file.


Next, open the repo.cs file. Let’s change the name to use Pascal Case, and fully spell out the name
Repository. We still want to map JSON ‘repo’ nodes to this type, so you’ll need to add the
DataContract attribute to the class declaration. YOu’ll set the Name property of the attribute
to the name of the JSON nodes that map to this type:


[DataContract(Name="repo")]
public class Repository






The DataContractAttribute is a member of the System.Runtime.Serialization namespace, so you’ll
need to add the appropriate using statement at the top of the file:


using System.Runtime.Serialization;






You changed the name of the repo class to Repository, so you’ll need to make the same name change
in Program.cs (some editors may support a rename refactoring that will make this change automatically:)


var serializer = new DataContractJsonSerializer(typeof(List<Repository>));

// ...

var repositories = serializer.ReadObject(await streamTask) as List<Repository>;






Next, let’s make the same change with the name field, using the DataMemberAttribute class. Make
the following changes to the declaration of the name field in repo.cs:


[DataMember(Name="name")]
public string Name;






This change means you need to change the code that writes the name of each repository in program.cs:


Console.WriteLine(repo.Name);






Do a “dotnet build”, followed by a “dotnet run” to make sure you’ve got the mappings correct. You should
see the same output as before. Before we process more properties from the web server, let’s make one
more change to the Repository class. The Name member is a publicly accessible field. That’s not
a good object oriented practice, so let’s change it to a property. For our purposes, we don’t need
any specific code to run when getting or setting the property, but changing to a property makes it
easier to add those changes later without breaking any code that uses the Repository class.


Remove the field definition, and replace it with an auto-implemented property:


public string Name { get; set; }






The compiler generates the body of the get and set accessors, as well as a private field to
store the name. It would be similar to the following code that you could type by hand:


public string Name 
{ 
    get { return this._name; }
    set { this._name = value; }
}
private string _name;






Let’s make one more change before adding new features. The ProcessRepositories method can do the async
work and return a collection of the repositories. Let’s return the List<Repository> from that method,
and move the code that writes the information into the Main method.


Change the signature of ProcessRepositories to return a task whose result is a list of Repository
objects:


private static async Task<List<Repository>> ProcessRepositories()






Then, just return the repositories after processing the JSON response:


var repositories = serializer.ReadObject(await streamTask) as List<Repository>;
return repositories;






The compiler generates the Task<T> object for the return because you’ve marked this method as async.
Then, let’s modify the Main method so that it captures those results and writes each repository name
to the console. Your Main method now looks like this:


public static void Main(string[] args)
{
    var repositories = ProcessRepositories().Result;

    foreach (var repo in repositories)
        Console.WriteLine(repo.Name);
}






Accessing the Result property of a Task blocks until the task has completed. Normally, you would prefer
to await the completion of the task as in the ProcessRepositories method, but that isn’t allowed in the
Main method.





Reading More Information


Let’s finish this by processing a few more of the properties in the JSON packet that gets sent from the
GitHub API. You won’t want to grab everything, but adding a few properties will demonstrate a few more
features of the C# language.


Let’s start by adding a few more simple types to the Repository class definition. Add these properties
to that class:


[DataMember(Name="description")]
public string Description { get; set; }

[DataMember(Name="html_url")]
public Uri GitHubHomeUrl { get; set; }

[DataMember(Name="homepage")]
public Uri Homepage { get; set; }

[DataMember(Name="watchers")]
public int Watchers { get; set; }






These properties have built in conversions from the string type (which is what the JSON packets contain) to
the target type. The Uri type may be new to you. It represents a URI, or in this case, a URL. In the case
of the Uri and int types, if the JSON packet contains data that does not convert to the target type,
the Serialization action will throw an exception.


Once you’ve added these, update the Main method to display those elements:


foreach (var repo in repositories)
{
    Console.WriteLine(repo.Name);
    Console.WriteLine(repo.Description);
    Console.WriteLine(repo.GitHubHomeUrl);
    Console.WriteLine(repo.Homepage);
    Console.WriteLine(repo.Watchers);
    Console.WriteLine();
}






As a final step, let’s add the information for the last push operation. This information is formatted in
this fashion in the JSON response:


2016-02-08T21:27:00Z






That format does not follow one of the standard .NET DateTime formats. Because of that, you’ll need to write
a custom conversion method. You also probably don’t want the raw string exposed to uses of the Repository
class. Attributes can help control that as well. First, define a private property that will hold the
string representation of the date time in your Repository class:


[DataMember(Name="pushed_at")]
private string JsonDate { get; set; }






The DataMember attribute informs the Serializer that this should be processed, even though it is not
a public member. Next, you need to write a public read only property that converts the string to a
valid DateTime object, and returns that DateTime:


[IgnoreDataMember]
public DateTime LastPush
{
    get
    {
        return DateTime.ParseExact(JsonDate, "yyyy-MM-ddTHH:mm:ssZ", CultureInfo.InvariantCulture);
    }
}






Let’s go over the new constructs above. The IgnoreDatamember attribute instructs the serializer
that this type should not be read to or written from any JSON object. This property contains only a
get accessor. There is no set accessor. That’s how you define a read only property in C#. (Yes,
you can create write only properties in C#, but their value is limited.) The DateTime.ParseExact
method parses a string and creates a DateTime object to return. If the parse operation fails, the
property accessor throws an exception.


Finally, add one more output statement in the console, and you’re ready to build and run this app
again:


Console.WriteLine(repo.LastPush);






Your version should now match the finished version located
here [https://github.com/dotnet/core-docs/tree/master/samples/csharp/getting-started/console-webapiclient].





Conclusion


This tutorial showed you how to make web requests, parse the result, and display properties of
those results. You’ve also added new packages as dependencies in your project. You’ve seen some of
the features of the C# language that support object oriented techniques.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-on-azure/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Using F# on Azure



[!NOTE]
This is still in progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-build.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-build
description: dotnet-build
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 70285a83-4103-4617-be8b-d0e1e9a4a91d





dotnet-build



NAME


dotnet-build – Builds a project and all of its dependencies





SYNOPSIS


dotnet build [--output] [--build-base-path] [--framework] [--configuration] [--runtime] [--version-suffix] [--build-profile] [--no-incremental] [--no-dependencies] [<project>]





DESCRIPTION


The dotnet build command builds multiple source file from a source project and its dependencies into a binary.
By default, the resulting binary is in Intermediate Language (IL) and has a DLL extension.
dotnet build also drops a *.deps file which outlines what the host needs to run the application.


Building requires the existence of a lock file, which means that you have to run dotnet restore prior to building your code.


Before any compilation begins, the build verb analyzes the project and its dependencies for incremental safety checks.
If all checks pass, then build proceeds with incremental compilation of the project and its dependencies;
otherwise, it falls back to non-incremental compilation. Via a profile flag, users can choose to receive additional
information on how they can improve their build times.


All projects in the dependency graph that need compilation must pass the following safety checks in order for the
compilation process to be incremental:



		not use pre/post compile scripts


		not load compilation tools from PATH (for example, resgen, compilers)


		use only known compilers (csc, vbc, fsc)





In order to build an executable application instead of a library, you need a special configuration section in your project.json file:


{ 
    "buildOptions": {
      "emitEntryPoint": true
    }
}









OPTIONS


-o, --output [DIR]


Directory in which to place the built binaries.


-b, --build-base-path [DIR]


Directory in which to place temporary outputs.


-f, --framework [FRAMEWORK]


Compiles for a specific framework. The framework needs to be defined in the project.json file.


-c, --configuration [Debug|Release]


Defines a configuration under which to build.  If omitted, it defaults to Debug.


-r, --runtime [RUNTIME_IDENTIFIER]


Target runtime to build for.


--version-suffix [VERSION_SUFFIX]


Defines what * should be replaced with in the version field in the project.json file. The format follows NuGet’s version guidelines.


--build-profile


Prints out the incremental safety checks that users need to address in order for incremental compilation to be automatically turned on.


--no-incremental


Marks the build as unsafe for incremental build. This turns off incremental compilation and forces a clean rebuild of the project dependency graph.


--no-dependencies


Ignores project-to-project references and only builds the root project specified to build.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/console-teleprompter.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Console Application
description: Console Application
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 883cd93d-50ce-4144-b7c9-2df28d9c11a0





Console Application



Introduction


This tutorial teaches you a number of features in .NET Core and the C# language. You’ll learn:



		The basics of the .NET Core Command Line Interface (CLI).


		The structure of a C# Console Application.


		Console I/O.


		The basics of File I/O APIS in .NET Core


		The basics of the Task Asynchronous Programming Model in .NET Core.





You’ll build an application that reads a text file, and echoes the
contents of that text file to the console. The output to the console will
be paced to match reading it aloud. You can speed up or slow down the pace
by pressing the ‘<’ or ‘>’ keys.


There are a lot of features in this tutorial. Let’s build them one by one.





Prerequisites


You’ll need to setup your machine to run .NET core. You can find the
installation instructions on the .NET Core [https://www.microsoft.com/net/core]
page. You can run this
application on Windows, Linux, macOS or in a Docker container.
You’ll need to install your favorite code editor.





Create the Application


The first step is to create a new application. Open a command prompt and
create a new directory for your application. Make that the current
directory. Type the command “dotnet new” at the command prompt. This
creates the starter files for a basic “Hello World” application.


Before you start making modifications, let’s go through the steps to run
the simple Hello World application. After creating the application, type
“dotnet restore” at the command prompt. This command runs the NuGet
package restore process. NuGet is a .NET package manager. This command
downloads any of the missing dependencies for your project. As this is a
new project, none of the dependencies are in place, so the first run will
download the .NET Core framework. After this initial step, you will only
need to run dotnet restore when you add new dependent packages, or update
the versions of any of your dependencies. This process also creates the
project lock file (project.lock.json) in your project directory. This file
helps to manage the project dependencies. It contains the local location
of all the project dependencies. You do not need to put the file in source
control; it will be generated when you run “dotnet restore”.


After restoring packages, you run “dotnet build”. This executes the build
engine and creates your application executable. Finally, you execute “dotnet run” to
run your application.


The simple Hello World application code is all in Program.cs. Open that
file with your favorite text editor. We’re about to make our first changes.
At the top of the file, see a using statement:


using System;






This statement tells the compiler that any types from the System namespace
are in scope. Like other Object Oriented languages you may have used, C#
uses namespaces to organize types. This hello world program is no
different. You can see that the program is enclosed in the
ConsoleApplication namespace. That’s not a very descriptive name, so
change it to TeleprompterConsole.


namespace TeleprompterConsole









Reading and Echoing the File


The first feature to add is to read a text file, and display all that text
to the console. First, let’s add a text file. Copy the
sampleQuotes.txt [https://github.com/dotnet/core-docs/blob/master/samples/csharp/getting-started/console-teleprompter/sampleQuotes.txt]
file from the GitHub repository for this sample [https://github.com/dotnet/core-docs/tree/master/samples/csharp/csharp/console-tconsole-teleprompter] into your project directory.
This will serve as the script for your
application.


Next, add the following method in your Program class (right below the Main
method):


static IEnumerable<string> ReadFrom(string file)
{
    string line;
    using (var reader = File.OpenText(file))
    {
        while ((line = reader.ReadLine()) != null)
        {
            yield return line;
        }
    }
}






This method uses types from two new namespaces. For this to compile you’ll
need to add the following two lines to the top of the file:


using System.Collections.Generic;
using System.IO;






The IEnumerable<T> interface is defined in the
System.Collections.Generic namespace. The File class is defined in the
System.IO namespace.


This method is a special type of C# method called an Enumerator method.
Enumerator methods return sequences that are evaluated lazily. That means
each item in the sequence is generated as it is requested by the code
consuming the sequence. Enumerator methods are methods that contain one or
more yield return statements. The object returned by the ReadFrom()
method contains the code to generate each item in the sequence. In this
example, that involves reading the next line of text from the source file,
and returning that string. Each time the calling code requests the next
item from the sequence, the code reads the next line of text from the file
and returns it. When the file has been completely read, the sequence
indicates that there are no more items.


There are two other C# syntax elements that may be new to you. The using
statement in this method manages resource cleanup. The variable that is
initialized in the using statement (reader, in this example) must
implement the IDisposable interface. The IDisposable interface
defines a single method, Dispose(), that should be called when the
resource should be released. The compiler generates that call when
execution reaches the closing brace of the using statement. The
compiler-generated code ensures that the resource is released even if an
exception is thrown from the code in the block defined by the using
statement.


The reader variable is defined using the var keyword. var defines an
implicitly typed local variable. That means the type of the variable is
determined by the compile time type of the object assigned to the
variable. Here, that is the return value from File.OpenText(), which is
a StreamReader object.


Now, let’s fill in the code to read the file in the Main method:


var lines = ReadFrom("SampleQuotes.txt");
foreach (var line in lines)
{
    Console.WriteLine(line); 
}






Run the program (using “dotnet run” and you can see every line printed out
to the console.





Adding Delays and Formatting output


What you have is being displayed far too fast to read aloud. Now you need
to add the delays in the output. As you start, you’ll be building some of
the core code that enables asynchronous processing. However, these first
steps will follow a few anti-patterns. The anti-patterns are pointed out
in comments as you add the code, and the code will be updated in later
steps.


There are two steps to this section. First, you’ll update the iterator
method to return single words instead of entire lines. That’s done with
these modifications. Replace the yield return line; statement with the
following code:


var words = line.Split(' ');
foreach (var word in words)
{
    yield return word + " ";
}
yield return Environment.NewLine;






Next, you need to modify how you consume the lines of the file, and add a
delay after writing each word. Replace the Console.WriteLine() statement
in the Main method with the following block:


{
    Console.Write(line);
    if (!string.IsNullOrWhiteSpace(line))
    {
        var pause = Task.Delay(200);
        // Synchronously waiting on a task is an
        // anti-pattern. This will get fixed in later
        // steps.
        pause.Wait();
    }
}






The Task class is in the System.Threading.Tasks namespace, so you need
to add that using statement at the top of file:


using System.Threading.Tasks;






Run the sample, and check the output. Now, each single word is printed,
followed by a 200 ms delay. However, the displayed output shows some
issues because the source text file has several lines that have more than
80 characters without a line break. That can be hard to read while it’s
scrolling by. That’s easy to fix. You’ll just keep track of the length of
each line, and generate a new line whenever the line length reaches a
certain threshold. Declare a local variable after the declaration of
words that holds the line length:


var lineLength = 0;






Then, add the following code after the yield return word; statement
(before the closing brace):


lineLength += word.Length + 1;
if (lineLength > 70)
{
    yield return Environment.NewLine;
    lineLength = 0;
}






Run the sample, and you’ll be able to read aloud at its pre-configured
pace.





Async Tasks


In this final step, you’ll add the code to write the output asynchronously
in one task, while also running another task to read input from the user
if they want to speed up or slow down the text display. This has a few
steps in it and by the end, you’ll have all the updates that you need.
The first step is to create an asynchronous Task returning method that
represents the code you’ve created so far to read and display the file.


Add this method to your Program class: (It’s taken from the body of your
Main method:


private static async Task ShowTeleprompter()
{
    var words = ReadFrom("SampleQuotes.txt");
    foreach (var line in words)
    {
        Console.Write(line);
        if (!string.IsNullOrWhiteSpace(line))
        {
            await Task.Delay(200);
        }
    }
}






You’ll notice two changes. First, in the body of the method, instead of
calling Wait() to synchronously wait for a task to finish, this version
uses the await keyword. In order to do that, you need to add the async
modifier to the method signature. This method returns a Task. Notice that
there are no return statements that return a Task object. Instead, that
Task object is created by code the compiler generates when you use the
await operator. You can imagine that this method returns when it reaches
an await. The returned Task indicates that the work has not completed.
The method resumes when the awaited task completes. When it has executed
to completion, the returned Task indicates that it is complete.
Calling code can
monitor that returned task to determine when it has completed.


You can call this new method in your Main program:


ShowTeleprompter().Wait();






Here, in Main(), the code does synchronously wait. You should use the
await operator instead of synchronously waiting whenever possible. But,
in a console application’s Main method, you cannot use the await
operator. That would result in the application exiting before all tasks
have completed.


Next, you need to write the second asynchronous method to read from the
Console and watch for the ‘<’ and ‘>’ keys. Here’s the method you add for
that task:


private static async Task GetInput()
{
    var delay = 200;
    Action work = () =>
    {
        do {
            var key = Console.ReadKey(true);
            if (key.KeyChar == '>')
            {
                delay -= 10;
            }
            else if (key.KeyChar == '<')
            {
                delay += 10;
            }
        } while (true);
    };
    await Task.Run(work);
}






This creates a lambda expression to represent an Action that reads a key
from the Console and modifies a local variable representing the delay when
the user presses the ‘<’ or ‘>’ keys. This method uses Console.ReadKey()
to block and wait for the user to press a key.


To finish this feature, you need to create a new async task returning
method that starts both of these tasks (GetInput() and
ShowTeleprompter(), and also manage the shared data between these two
tasks.


It’s time to create a class that can handle the shared data between these
two tasks. This class contains two public properties: the delay, and a
flag to indicate that the file has been completely read:


namespace TeleprompterConsole
{
    internal class TelePrompterConfig
    {
        private object lockHandle = new object();
        public int DelayInMilliseconds { get; private set; } = 200;

        public void UpdateDelay(int increment) // negative to speed up
        {
            var newDelay = Min(DelayInMilliseconds + increment, 1000);
            newDelay = Max(newDelay, 20);
            lock (lockHandle)
            {
                DelayInMilliseconds = newDelay;
            }
        }
    }
}






Put that class in a new file, and enclose that class in the
TeleprompterConsole namespace as shown above. You’ll also need to add a static using
statement so that you can reference the Min and Max method without the
enclosing class or namespace names. A static using statement imports the
methods from one class. This is in contrast with the using statements used
up to this point that have imported all classes from a namespace.


using static System.Math;






The other language feature that’s new is the lock statement. This
statement ensures that only a single thread can be in that code at any
given time. If one thread is in the locked section, other threads must
wait for the first thread to exit that section. The lock statement uses an
object that guards the lock section. This class follows a standard idiom
to lock a private object in the class.


Next, you need to update the ShowTeleprompter and GetInput methods to
use the new config object. Write one final Task returning async method to
start both tasks and exit when the first task finishes:


private static async Task RunTeleprompter()
{
    var config = new TelePrompterConfig();
    var displayTask = ShowTeleprompter(config);

    var speedTask = GetInput(config);
    await Task.WhenAny(displayTask, speedTask);
}






The one new method here is the Task.WhenAny() call. That creates a Task
that finishes as soon as any of the tasks in its argument list completes.


Next, you need to update both the ShowTeleprompter and GetInput methods to
use the config object for the delay:


private static async Task ShowTeleprompter(TelePrompterConfig config)
{
    var words = ReadFrom("SampleQuotes.txt");
    foreach (var line in words)
    {
        Console.Write(line);
        if (!string.IsNullOrWhiteSpace(line))
        {
            await Task.Delay(config.DelayInMilliseconds);
        }
    }
    config.SetDone();
}

private static async Task GetInput(TelePrompterConfig config)
{

    Action work = () =>
    {
        do {
            var key = Console.ReadKey(true);
            if (key.KeyChar == '>')
                config.UpdateDelay(-10);
            else if (key.KeyChar == '<')
                config.UpdateDelay(10);
        } while (!config.Done);
    };
    await Task.Run(work);
}






This new version of ShowTeleprompter calls a new method in the
TeleprompterConfig class. Now, you need to update Main to call
RunTeleprompter instead of ShowTeleprompter:


RunTeleprompter().Wait();






To finish, you’ll need to add the
SetDone method, and the Done property to the TelePrompterConfig class:


public bool Done => done;

private bool done;

public void SetDone()
{
    done = true;    
}









Conclusion


This tutorial showed you a number of the features around the C# language
and the .NET Core libraries related to working in Console applications.
You can build on this knowledge to explore more about the language, and
the classes introduced here. You’ve seen the basics of File and Console
I/O, blocking and non-blocking use of the Task based Asynchronous
programming model, a tour of the C# language and how C# programs are
organized and the .NET Core Command Line Interface and tools.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/values/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Values (F#)
description: Values (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 5e1e73c3-5adb-4bba-9976-d57f1ff6cd8d





Values


Values in F# are quantities that have a specific type; values can be integral or floating point numbers, characters or text, lists, sequences, arrays, tuples, discriminated unions, records, class types, or function values.



Binding a Value


The term binding means associating a name with a definition. The let keyword binds a value, as in the following examples:


[!code-fsharpMain]


The type of a value is inferred from the definition. For a primitive type, such as an integral or floating point number, the type is determined from the type of the literal. Therefore, in the previous example, the compiler infers the type of b to be unsigned int, whereas the compiler infers the type of a to be int. The type of a function value is determined from the return value in the function body. For more information about function value types, see Functions. For more information about literal types, see Literals.





Why Immutable?


Immutable values are values that cannot be changed throughout the course of a program’s execution. If you are used to languages such as C++, Visual Basic, or C#, you might find it surprising that F# puts primacy over immutable values rather than variables that can be assigned new values during the execution of a program. Immutable data is an important element of functional programming. In a multithreaded environment, shared mutable variables that can be changed by many different threads are difficult to manage. Also, with mutable variables, it can sometimes be hard to tell if a variable might be changed when it is passed to another function.


In pure functional languages, there are no variables, and functions behave strictly as mathematical functions. Where code in a procedural language uses a variable assignment to alter a value, the equivalent code in a functional language has an immutable value that is the input, an immutable function, and different immutable values as the output. This mathematical strictness allows for tighter reasoning about the behavior of the program. This tighter reasoning is what enables compilers to check code more stringently and to optimize more effectively, and helps make it easier for developers to understand and write correct code. Functional code is therefore likely to be easier to debug than ordinary procedural code.


F# is not a pure functional language, yet it fully supports functional programming. Using immutable values is a good practice because doing this allows your code to benefit from an important aspect of functional programming.





Mutable Variables


You can use the keyword mutable to specify a variable that can be changed. Mutable variables in F# should generally have a limited scope, either as a field of a type or as a local value. Mutable variables with a limited scope are easier to control and are less likely to be modified in incorrect ways.


You can assign an initial value to a mutable variable by using the let keyword in the same way as you would define a value. However, the difference is that you can subsequently assign new values to mutable variables by using the &lt;- operator, as in the following example.


[!code-fsharpMain]





Related Topics


|Title|Description|
|—–|———–|
|let Bindings|Provides information about using the letkeyword to bind names to values and functions.|
|Functions|Provides an overview of functions in F#.|





See Also


Null Values


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/using-ci-with-cli.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using .NET Core SDK and tools in Continuous Integration (CI)
description: Using .NET Core SDK and tools in Continuous Integration (CI)
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 5fb15297-a276-417f-8c4f-267281357769





Using .NET Core SDK and tools in Continuous Integration (CI)



Overview


This document outlines the usage of .NET Core SDK and its tools on the build server. In general, on a CI build server,
you want to automate the installation in some way. The automation, ideally, should not require administrative
privileges if at all possible.


For SaaS CI solutions, there are several options. This document will cover two very popular ones, TravisCI [https://travis-ci.org/] and
AppVeyor [https://www.appveyor.com/]. There are, of course, many other services out there, but the installation and
usage mechanisms should be similar.





Installation options for CI build servers





Using the native installers


If using installers that require administrative privileges is not something that presents a problem, native installers for
each platform can be used to set up the build server. This approach, especially in the case of Linux build servers, has
one advantage which is automatic installing of dependencies needed for the SDK to run. The native installers will also
install a system-wide version of the SDK, which may be desired; if it’s not, you should look into the
installer script usage outlined below.


Using this approach is simple. For Linux, there is a choice of using a feed-based package manager, such as apt-get for
Ubuntu or yum for CentOS, or using the packages themselves (that is, DEB or RPM). The former would require setting up the
feed that contains the packages.


For Windows platforms, you can use the MSI.


All of the binaries can be found on the .NET Core getting started page [https://aka.ms/dotnetcoregs] which points to the
latest stable releases. If you wish to use newer (and potentially unstable) releases or the latest, you can use the
links from the CLI repo [https://github.com/dotnet/cli].





Using the installer script


Using the installer script allows for non-administrative installation on your build server. It also allows a very easy
automation. The script itself will download the ZIP/tarball files needed and will unpack them; it will also add the
install location on the local machine to the PATH so that the tools become available for invocation immediately
post-install.


The installer script can easily be automated at the start of the build to fetch and install the needed version of the SDK.
The “needed version” is whatever version application being built requires. You can choose the installation path so you
can install the SDK locally and then clean up after the build completes. This brings additional encapsulation and
atomicity to the build process.


The installation script reference can be found in the dotnet-install document.



Dealing with the dependencies


Using the installer script means that the native dependencies are not installed automatically and that you have to
install them if the operating system you are installing on already doesn’t have them. You can see the list of prerequisites
in the CLI repo [https://github.com/dotnet/core/blob/master/Documentation/prereqs.md].







CI services setup examples


The below sections show examples of configurations using the mentioned CI SaaS offerings.



TravisCI


The travis-ci [https://travis-ci.org/] can be configured to install the .NET Core SDK using the csharp language and the dotnet key.


Just use:


dotnet: 1.0.0-preview2-003121






Travis can run both osx (OS X 10.11) and linux ( Ubuntu 14.04 ) job in a build matrix, see example .travis.yml [https://github.com/dotnet/core-docs/blob/master/.travis.yml]
for more information.





AppVeyor


The appveyor.com ci [https://www.appveyor.com/] has .NET Core SDK preview2 already installed
in the build worker image Visual Studio 2015.


Just use:


os: Visual Studio 2015






It’s possible to install a specific version of .NET Core SDK, see example appveyor.yml [https://github.com/dotnet/core-docs/blob/master/appveyor.yml]
for more info.


In the example, the .NET Core SDK binaries are downloaded, unzipped in a subdirectory and added to PATH env var.


A build matrix can be added to run integration tests with multiple version of
the .NET Core SDK.


environment:
  matrix:
    - CLI_VERSION: 1.0.0-preview2-003121
    - CLI_VERSION: Latest

install:
  # .NET Core SDK binaries
  - ps: $url = "https://dotnetcli.blob.core.windows.net/dotnet/preview/Binaries/$($env:CLI_VERSION)/dotnet-dev-win-x64.$($env:CLI_VERSION.ToLower()).zip"
  # follow normal installation from binaries














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/exploring-with-csharp-interactive.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using C# Interactive to explore and experiment | C# Guide
description: C# interactive provides a great environment for learning about an API. You can explore interactively and quickly.
keywords: C#, Getting Started, Cross Platform, REPL, Interactive
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 13b5c1b7-d3f1-4c96-910c-4890162866c1





🔧 Using C# Interactive to explore and experiment



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/949] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/introduction-to-functional-programming/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Introduction to Functional Programming in F#



[!NOTE]
This is still in-progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/extensibility.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core CLI extensibility model
description: .NET Core CLI extensibility model
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1bebd25a-120f-48d3-8c25-c89965afcbcd





.NET Core CLI extensibility model



Overview


This document will cover the main ways how to extend the CLI tools and explain the scenarios that drive each of them.
It will the outline how to consume the tools as well as provide short notes on how to build both types of tools.





How to extend CLI tools


The CLI tools can be extended in two main ways:



		Via NuGet packages on a per-project basis


		Via the system’s PATH





The two extensibility mechanisms outlined above are not exclusive; you can use both or just one. Which one to pick
depends largely on what is the goal you are trying to achieve with your extension.





Per-project based extensibility


Per-project tools are portable console applications that are distributed as NuGet packages. Tools are
only available in the context of the project that references them and for which they are restored; invocation outside
of the context of the project (for example, outside of the directory that contains the project) will fail as the command will
not be able to be found.


These tools are perfect for build servers as well, since nothing outside of project.json is needed. The build process
runs restore for the project it builds and tools will be available. Language projects, such as F#, are also in this
category; after all, each project can only be written in one specific language.


Finally, this extensibility model provides support for creation of tools that need access to the built output of the
project. For instance, various Razor view tools in ASP.NET [https://www.asp.net/] MVC applications fall into this
category.



Consuming per-project tools


Consuming these tools requires you to add a tools node to your project.json. Inside the tools node, you reference
the package in which the tool resides. After running dotnet restore, the tool and its dependencies are restored.


For tools that need to load the build output of the project for execution, there is usually another dependency which is
listed under the regular dependencies in the project file. This means that tools that load project’s code have two
components:



		The “tools” main invoker


		Any number of other tools that contain the logic to work with





Why two things? Tools that need to load the build output of a project need to have unified dependency graph with the
project they are working. By adding the dependency bit, we enable NuGet to resolve these dependencies as a unified
graph. The invoker is there because it needs to reason about the location as well as the frameworks of the dependency
tool. The invoker can accept all of the redirection arguments (-c, -o, -b) that the user specifies and finds the
dependency tool; it can also implement any policies for cases where multiple dependency tools exist for multiple
frameworks (that is, does it run all of them, just one, etc.) In general, logic can be shared between these two tools any way
that is needed.


Let’s review an example of adding a simple tools-only tool to a simple project. Given an example command called
dotnet-api-search that allows you to search through the NuGet packages for the specified
API, here is a console application’s project.json file that uses that tool:


{
    "version": "1.0.0",
    "compilationOptions": {
        "emitEntryPoint": true
    },
    "dependencies": {
        "Microsoft.NETCore.App": {
            "type": "platform",
            "version": "1.0.0"
        }
    },
    "tools": {
        "dotnet-api-search": {
            "version": "1.0.0",
            "imports": ["dnxcore50"]
        }
    },
    "frameworks": {
        "netcoreapp1.0": {}
    }
}






The tools node is structured in a similar way as the dependencies node. It needs the package ID of the package
containing the tool and its version at the very least. In the example above, we can see that there is another statement,
the imports one. This influences the tool’s restore process and specifies that the tool is also compatible, in
addition to any targeted frameworks the tools has, with dnxcore50 target. For more information you can
consult the project.json reference.





Building tools


As mentioned, tools are just portable console applications. You would build one as you would build any console application.
After you build it, you would use dotnet pack command to create a NuGet package (nupkg) that contains
your code, information about its dependencies and so on. The package name can be whatever the author wants, but the
application inside, the actual tool binary, has to conform to the convention of dotnet-<command> in order for dotnet
to be able to invoke it.


Since tools are portable applications, the user consuming the tool has to have the version of the .NET Core libraries
that the tool was built against in order to run the tool. Any other dependency that the tool uses and that is not
contained within the .NET Core libraries is restored and placed in the NuGet cache. The entire tool is, therefore, run
using the assemblies from the .NET Core libraries as well as assemblies from the NuGet cache.


These kind of tools have a dependency graph that is completely separate from the dependency graph of the project that
uses them. The restore process will first restore the project’s dependencies, and will then restore each of the tools and
their dependencies.


You can find richer examples and different combinations of this in the .NET Core CLI repo [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestProjects].
You can also see the implementation of tools used [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages] in the same repo.


Building tools that load project’s build outputs for execution is slightly different. As stated, for these kinds of
tools there are two components:



		A dispatcher tool that the user invokes


		A framework-specific dependency that contains the logic on how to find the build outputs and what to do with it





A prime example of this are Entity Framework (EF) [https://github.com/aspnet/EntityFramework] commands as well as the dotnet test command. In both
cases, there is a tool that is referenced in the tools node of the project.json and that is the main dispatcher. The
user invokes this tool on the command line. The second piece of the puzzle is the dependency that is given in the
project’s main dependencies (either root ones or framework-specific ones). This package contains the actual logic of
the tool. The package is a normal dependency, thus it will be restored as part of the restore process for the project.


Unlike the previous kind of tools, these tool are actually part of the graph of the project that consumes them. This is
because they need access to the project’s code and potentially all of its dependencies. For instance, the EF tools need
this because they need to scan the assemblies to find the code they need, such as migrations.


Another reason why this two-pronged solution exists is to allow a cleaner invocation model. Most CLI commands that
drop certain artifacts on disk (for example, dotnet build, dotnet publish) allow users to redirect the outputs to a different
path using the --output argument or --build-base-path argument or --configuration argument. For EF tools, for
example, to be able to find the build output of your project, you would have to provide the same arguments with the same
values to both dotnet driver as well as the ef command. With the invocation model, the users pass any arguments to
the dispatcher tool which can then use that to find the needed binary that contains the logic in the output directories.


A good example of this approach can be found in the .NET Core CLI repo [https://github.com/dotnet/cli]:



		Sample project.json file [https://github.com/dotnet/cli/blob/rel/1.0.0-preview2/TestAssets/DesktopTestProjects/AppWithDirectDependencyDesktopAndPortable/project.json]


		Implementation of the dispatcher [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages/dotnet-dependency-tool-invoker]


		Implementation of the framework-specific dependency [https://github.com/dotnet/cli/tree/rel/1.0.0-preview2/TestAssets/TestPackages/dotnet-desktop-and-portable]








PATH-based extensibility


PATH-based extensibility is usually used for development machines where you need a tool that conceptually covers more
than a single project. The main drawback of this extensions mechanism is that it is tied to the machine where the
tool exists. If you need it on another machine, you would have to deploy it.


This pattern of CLI toolset extensibility is very simple. As covered in the .NET Core CLI overview, dotnet driver
can run any command that is named after the dotnet-<command> convention. The default resolution logic will first
probe several locations and will finally fall to the system PATH. If the requested command exists in the system PATH
and is a binary that can be invoked, dotnet driver will invoke it.


The binary can be pretty much anything that the operating system can execute. On Unix systems, this means anything that
has the execute bit set via chmod +x. On Windows it means anything that Windows knows how to run.


As an example, let’s take a look at a very simple implementation of a dotnet clean command. We will use bash to
implement this command. The command will simply delete the bin/ and obj/ directories in the current directory. If
the --lock argument is passed to it, it will also delete project.lock.json file. The entirety of the command is
given below.


#!/bin/bash

# Delete the bin and obj dirs
rm -rf bin/ obj/

LOCK_FILE=$1
if [[ "$LOCK_FILE" = "--lock" ]]; then
    rm project.lock.json
fi


echo "Cleaning complete..."






On macOS, we can save this script as dotnet-clean and set its executable bit with chmod +x dotnet-clean. We can then
create a symbolic link to it in /usr/local/bin using the command ln -s dotnet-clean /usr/local/bin/. This will make
it possible to invoke the clean command using the dotnet clean syntax. You can test this by creating an app, running
dotnet build on it and then running dotnet clean.







Conclusion


The .NET Core CLI tools allow two main extensibility points. The per-project tools are contained within the project’s
context, but they allow easy installation through restoration. PATH-based tools are good for general, cross-project
tools that are usable on a single machine.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/create-debug-deploy.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using Visual Studio to create, debug and deploy applications | C# Guide
description: Understanding the Visual Studio tools that enable creating, debugging and deploying applications.
keywords: C#, Getting Started, Visual Studio, Tutorial
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 9b5ce7a7-7325-45b6-86c9-c199d0203997





🔧 Using Visual Studio to create, debug, and deploy applications



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/948] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/using-fsharp-on-azure/using-fsharp-on-azure-service-fabric.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Using F# on Azure Service Fabric



[!NOTE]
This is still in progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/global-json.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Global.json reference
description: Global.json reference
keywords: .NET, .NET Core
author: aL3891
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: e1ac9659-425f-4486-a376-c12ca942ead8





Global.json reference



		projects/sources


		packages





[bookmark: projects]



projects


Type: String[]


Specifies what folders the build system should search for projects when resolving dependencies.  The build system will only search top level child folders.


[bookmark: packages]





packages


Type: String[]


The folder to store packages.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/asynchronous-ui-programming.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Asynchronous UI Programming | C# Guide
description: Learn techniques for keeping the UI responsive while a programming is working on asynchronous operations
keywords: C#, UWP, XAML
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 7402b29b-1093-456d-be4c-f60ecb8926bb





🔧 Asynchronous UI Programming



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/951] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/telemetry.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Tools Telemetry
description: .NET Core
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 07/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f2b312bb-f80b-4b0d-9101-93908f06a6fa





.NET Core Tools Telemetry


The .NET Core Tools include a telemetry feature [https://github.com/dotnet/cli/pull/2145] that collects usage information. It’s important that the .NET Team understands how the tools are being used so that we can improve them.


The data collected is anonymous and will be published in an aggregated form for use by both Microsoft and community engineers under the Creative Commons Attribution License [https://creativecommons.org/licenses/by/4.0/].



Scope


The dotnet command is used to launch both apps and the .NET Core Tools. The dotnet command itself does not collect telemetry. It is the .NET Core Tools that are run via the dotnet command that collect telemetry.


.NET Core commands (telemetry is not enabled):



		dotnet


		dotnet [path-to-app]





.NET Core Tools commands (telemetry is enabled), such as:



		dotnet build


		dotnet pack


		dotnet restore


		dotnet run





##Behavior


The .NET Core Tools telemetry feature is enabled by default. You can opt-out of the telemetry feature by setting an environment variable DOTNET_CLI_TELEMETRY_OPTOUT (for example, export on macOS/Linux, set on Windows) to true (for example, “true”, 1).


##Data Points


The feature collects the following pieces of data:



		The command being used (for example, “build”, “restore”)


		The ExitCode of the command


		For test projects, the test runner being used


		The timestamp of invocation


		The framework used


		Whether runtime IDs are present in the “runtimes” node


		The CLI version being used





The feature will not collect any personal data, such as usernames or emails. It will not scan your code and not extract any project-level data that can be considered sensitive, such as name, repo or author (if you set those in your project.json). We want to know how the tools are used, not what you are building with the tools. If you find sensitive data being collected, that’s a bug. Please file an issue [https://github.com/dotnet/cli/issues] and it will be fixed.


##License


The Microsoft distribution of .NET Core is licensed with the MICROSOFT .NET LIBRARY EULA [https://aka.ms/dotnet-core-eula]. This includes the “DATA” section re-printed below, to enable telemetry.


.NET NuGet packages [https://www.nuget.org/profiles/dotnetframework] use this same license but do not enable telemetry (see Scope above).


2.      DATA.  The software may collect information about you and your use of
the software, and send that to Microsoft. Microsoft may use this information
to improve our products and services. You can learn more about data collection
and use in the help documentation and the privacy statement at
http://go.microsoft.com/fwlink/?LinkId=528096 . Your use of the software
operates as your consent to these practices.









Disclosure


The .NET Core Tools display the following text when you first run one of the commands (for example, dotnet restore). This “first run” experience is how Microsoft notifies you about data collection. This same experience also initially populates your NuGet cache with the libraries in the .NET Core SDK, avoiding requests to NuGet.org (or other NuGet feed) for these libraries.


Welcome to .NET Core!
---------------------

Learn more about .NET Core @ https://aka.ms/dotnet-docs. Use dotnet --help to
see available commands or go to https://aka.ms/dotnet-cli-docs.

Telemetry
---------

The .NET Core tools collect usage data in order to improve your experience.
The data is anonymous and does not include commandline arguments. The data is
collected by Microsoft and shared with the community.

You can opt out of telemetry by setting a DOTNET_CLI_TELEMETRY_OPTOUT
environment variable to 1 using your favorite shell.

You can read more about .NET Core tools telemetry @ https://aka.ms/dotnet-cli-
telemetry.

Configuring...
--------------

A command is running to initially populate your local package cache, to
improve restore speed and enable offline access. This command will take up to
a minute to complete and will only happen once. 












          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/roslyn/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using the .NET Compiler SDK | C# Guide
description: Explore the the Roslyn APIs to create automatic diagnostics and code fixes
keywords: .NET, .NET Core, C#, Roslyn,
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: abed9e00-2ddc-468e-9cca-d033bd6a7e36





🔧 UUsing the .NET Compiler SDK



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/972] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].






This is a meta-topic for an entire section. Areas that need to be covered here include:



		Getting Started


		Samples and tutorials


		conceptual content


		overall model of the APIs


		links to samples on the roslyn-analyzers [http://github.com/dotnet/roslyn-analyzers] repository


		links to other reference content









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-run.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-run
description: dotnet-run
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 495ff50b-cb30-4d30-8f20-beb3d5e7c31f





dotnet-run



NAME


dotnet-run – Runs source code ‘in-place’ without any explicit compile or launch commands.





SYNOPSIS


dotnet run [--framework] [--configuration] [--project] [--help] [--]





DESCRIPTION


The dotnet run command provides a convenient option to run your application from the source code with one command.
It compiles source code, generates an output program and then runs that program.
This command is useful for fast iterative development and can also be used to run a source-distributed program (for example, a website).


This command relies on dotnet build to build source inputs to a .NET assembly, before launching the program.
The requirements for this command and the handling of source inputs are all inherited from the build command.
The documentation for the build command provides more information on those requirements.


Output files are written to the child bin folder, which will be created if it doesn’t exist.
Files will be overwritten as needed.
Temporary files are written to the child obj folder.


In case of a project with multiple specified frameworks, dotnet run will first select the .NET Core frameworks. If those do not exist, it will error out. To specify other frameworks, use the --framework argument.


The dotnet run command must be used in the context of projects, not built assemblies. If you’re trying to execute a DLL instead, you should use dotnet without any command like in the following example:


dotnet myapp.dll


For more information about the dotnet driver, see the .NET Core Command Line Tools (CLI) topic.





OPTIONS


--


Delimits arguments to dotnet run from arguments for the application being run.
All arguments after this one will be passed to the application being run.


-f, --framework [FID]


Runs the application for a given framework identifier (FID).


-c, --configuration [Debug|Release]


Configuration to use when publishing. The default value is “Debug”.


-p, --project [PATH]


Specifies which project to run.
It can be a path to a project.json file or to a directory containing a project.json file. It defaults to
current directory if not specified.





EXAMPLES


dotnet run


Runs the project in the current directory.


dotnet run --project /projects/proj1/project.json


Runs the project specified.


dotnet run --configuration Release -- --help


Runs the project in the current directory. The --help argument above is passed to the application being run, since the -- argument was used.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/getting-started/with-visual-studio-code.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with visual Studio Code | C# Guide
description: Getting Started with Visual Studio Code
keywords: C#, Getting Started, Acquisition, Install, Visual Studio Code, Cross Platform
author: dotnet-bot
manager: wpickett
ms.date: 08/23/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 76c23597-4cf9-467e-8a47-0c3703ce37e7





🔧 Getting started with Visual Studio Code



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/944] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-new.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-new
description: dotnet-new
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 263c3d05-3a47-46a6-8023-3ca16b488410





dotnet-new



NAME


dotnet-new – Creates a new .NET Core project





SYNOPSIS


dotnet new [--type] [--lang]





DESCRIPTION


The dotnet new command provides a convenient way to initialize a valid .NET Core project and sample source code to try out the Command Line Interface (CLI) toolset.


This command is invoked in the context of a directory. When invoked, the command will result in two main artifacts being dropped to the directory:



		A Program.cs (or Program.fs) file that contains a sample “Hello World” program.


		A valid project.json file.





After this, the project is ready to be compiled and/or edited further.





Options


-l, --lang [C#|F#]


Language of the project. Defaults to C#. csharp (fsharp) or cs (fs) are also valid options.


-t, --type


Type of the project. Valid values are console, web, lib and xunittest.





EXAMPLES


dotnet new


Drops a C# project in the current directory.


dotnet new --lang f#


Drops an F# project in the current directory.


dotnet new --lang c#


Drops an C# project in the current directory.


dotnet new -t web


Drops a new ASP.NET Core project in the current directory.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/creating-portable-libraries.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Creating Portable Libraries| C# Guide
description: Learn how to create portable libraries, and specify the platforms and versions your library supports.
keywords: C#, UWP, Portable Assembly, Cross Platform
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 254836c0-3be7-4549-bd9a-40fc0f445c31





🔧 Creating Portable Libraries



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/950] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet command
description: dotnet command
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 93015521-2127-4fe9-8fce-ca79bcc4ff49





dotnet command



NAME


dotnet – General driver for running the command-line commands





SYNOPSIS


dotnet [--version] [--help] [--verbose] [--info] <command> [<args>]





DESCRIPTION


dotnet is a generic driver for the Command Line Interface (CLI) toolchain. Invoked on its own, it will give out brief usage instructions.


Each specific feature is implemented as a command. In order to use the feature, the command is specified after dotnet, such as dotnet build. All of the arguments following the command are its own arguments.


The only time dotnet is used as a command on its own is to run portable apps. Just specify a portable application DLL after the dotnet verb to execute the application.





OPTIONS


-v, --verbose


Enables verbose output.


--version


Prints out the version of the CLI tooling.


--info


Prints out more detailed information about the CLI tooling, such as the current operating system, commit SHA for the version, etc.


-h, --help


Prints out a short help and a list of current commands.





DOTNET COMMANDS


The following commands exist for dotnet:



		dotnet-new
		Initializes a C# or F# console application project.








		dotnet-restore
		Restores the dependencies for a given application.








		dotnet-build
		Builds a .NET Core application.








		dotnet-publish
		Publishes a .NET portable or self-contained application.








		dotnet-run
		Runs the application from source.








		dotnet-test
		Runs tests using a test runner specified in the project.json.








		dotnet-pack
		Creates a NuGet package of your code.














EXAMPLES


dotnet new


Initializes a sample .NET Core console application that can be compiled and run.


dotnet restore


Restores dependencies for a given application.


dotnet compile


Compiles the application in a given directory.


dotnet myapp.dll


Runs a portable app named myapp.dll.





ENVIRONMENT


DOTNET_PACKAGES


The primary package cache. If not set, it defaults to $HOME/.nuget/packages on Unix or %HOME%\NuGet\Packages on Windows.


DOTNET_SERVICING


Specifies the location of the servicing index to use by the shared host when loading the runtime.


DOTNET_CLI_TELEMETRY_OPTOUT


Specifies whether data about the .NET Core tools usage is collected and sent to Microsoft. true to opt-out of the telemetry feature (values true, 1 or yes accepted); otherwise, false (values false, 0 or no accepted). If not set, it defaults to false, that is, the telemetry feature is on.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/asynchronous-server-programming.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Asynchronous Server Programming | C# Guide
description: Learn techniques for offloading server workloads using asynchronous programming techniques
keywords: C#, async, CPU bound, network bound
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 7402b29b-1093-456d-be4c-f60ecb8926bb





🔧 Asynchronous Server Programming



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/952] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-pack.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-pack
description: dotnet-pack
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8b4b8cef-f56c-4a10-aa01-fde8bfaae53e





dotnet-pack



NAME


dotnet-pack - Packs the code into a NuGet package





SYNOPSIS


dotnet pack [--output] [--no-build] [--build-base-path] [--configuration] [--version-suffix] [<project>]





DESCRIPTION


The dotnet pack command builds the project and creates NuGet packages. The result of this operation is two packages with the nupkg extension. One package contains the code and the other contains the debug symbols.


NuGet dependencies of the project being packed are added to the nuspec file, so they are able to be resolved when the package is installed.
Project-to-project references are not packaged inside the project by default. If you wish to do this, you need to reference the required project in your dependencies node with a type set to “build” like in the following example:


{
    "version": "1.0.0-*",
    "dependencies": {
        "ProjectA": {
            "target": "project",
            "type": "build"
        }
    }
}






dotnet pack by default first builds the project. If you wish to avoid this, pass the --no-build option. This can be useful in Continuous Integration (CI) build scenarios in which you know the code was just previously built, for example.





OPTIONS


[project]


The project to pack. It can be either a path to a project.json file or to a directory. If omitted, it will
default to the current directory.


-o, --output [DIR]


Places the built packages in the directory specified.


--no-build


Skips the building phase of the packing process.


--build-base-path


Places the temporary build artifacts in the specified directory. By default, they go to the obj directory in the current directory.


-c, --configuration [Debug|Release]


Configuration to use when building the project. If not specified, will default to “Debug”.


--version-suffix


Updates the star in -* package version suffix with a specified string.





EXAMPLES


dotnet pack


Packs the current project.


dotnet pack ~/projects/app1/project.json


Packs the app1 project.


dotnet pack --output nupkgs


Packs the current project and place the resulting packages into the specified folder.


dotnet pack --no-build --output nupkgs


Packs the current project into the specified folder and skips the build step.


dotnet pack --version-suffix "ci-1234"


Packs the current project and updates the resulting packages version with the given suffix. E.g. version 1.0.0-* will be updated to 1.0.0-ci-1234.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-restore.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-restore
description: dotnet-restore
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 60489b25-38de-47e6-bed1-59d9f42e2d46





dotnet-restore



NAME


dotnet-restore - Restores the dependencies and tools of a project





SYNOPSIS


dotnet restore [--source] [--packages] [--disable-parallel] [--fallbacksource] [--configfile] [--verbosity] [<root>]





DESCRIPTION


The dotnet restore command uses NuGet to restore dependencies as well as project-specific tools that are specified in the project.json file.
By default, the restoration of dependencies and tools are done in parallel.


In order to restore the dependencies, NuGet needs the feeds where the packages are located.
Feeds are usually provided via the NuGet.config configuration file; a default one is present when the CLI tools are installed.
You can specify more feeds by creating your own NuGet.config file in the project directory.
Feeds can also be specified per invocation on the command line.


For dependencies, you can specify where the restored packages are placed during the restore operation using the
--packages argument.
If not specified, the default NuGet package cache is used.
It is found in the .nuget/packages directory in the user’s home directory on all operating systems (for example, /home/user1 on Linux or C:\Users\user1 on Windows).


For project-specific tooling, dotnet restore first restores the package in which the tool is packed, and then
proceeds to restore the tool’s dependencies as specified in its project.json.





OPTIONS


[root]


A list of projects or project folders to restore. The list can contain either a path to a project.json file, or a path to global.json file or folder. The restore operation runs recursively for all subdirectories and restores for each given project.json file it finds.


-s, --source [SOURCE]


Specifies a source to use during the restore operation. This overrides all of the sources specified in the NuGet.config file(s). Multiple sources can be provided by specifying this option multiple times.


--packages [DIR]


Specifies the directory to place the restored packages in.


--disable-parallel


Disables restoring multiple projects in parallel.


-f, --fallbacksource [FEED]


Specifies a fallback source that will be used in the restore operation if all other sources fail. All valid feed formats are allowed. Multiple fallback sources can be provided by specifying this option multiple times.


--configfile [FILE]


Configuration file (NuGet.config) to use for the restore operation.


--verbosity [LEVEL]


The verbosity of logging to use. Allowed values: Debug, Verbose, Information, Minimal, Warning, or Error.





EXAMPLES


dotnet restore


Restores dependencies and tools for the project in the current directory.


dotnet restore ~/projects/app1/project.json


Restores dependencies and tools for the app1 project found in the given path.


dotnet restore -f c:\packages\mypackages


Restores the dependencies and tools for the project in the current directory using the file path provided as the fallback source.


dotnet restore -f c:\packages\mypackages -f c:\packages\myotherpackages


Restores the dependencies and tools for the project in the current directory using the two file paths provided as the fallback sources.


dotnet restore --verbosity Error


Restores dependencies and tools for the project in the current directory and shows only errors in the output.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tutorials/concurrent-programming.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Concurrent Programming | C# Guide
description: Learn techniques for running (likely CPU bound) tasks in parallel
keywords: C#, async, CPU bound, network bound
author: dotnet-bot
manager: wpickett
ms.date: 08/24/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 0f8b42de-858a-44a3-87d9-998211f26377





🔧 Concurrent Programming



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/953] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/operator-overloading.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Operator Overloading (F#)
description: Operator Overloading (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 019277ed-f649-4fa5-ad43-097865f449d9





Operator Overloading


This topic describes how to overload arithmetic operators in a class or record type, and at the global level.



Syntax


// Overloading an operator as a class or record member.
static member (operator-symbols) (parameter-list) =
    method-body
// Overloading an operator at the global level
let [inline] (operator-symbols) parameter-list = function-body









Remarks


In the previous syntax, the operator-symbol is one of +, -, *, /, =, and so on. The parameter-list specifies the operands in the order they appear in the usual syntax for that operator. The method-body constructs the resulting value.


Operator overloads for operators must be static. Operator overloads for unary operators, such as + and -, must use a tilde (~) in the operator-symbol to indicate that the operator is a unary operator and not a binary operator, as shown in the following declaration.


static member (~-) (v : Vector)






The following code illustrates a vector class that has just two operators, one for unary minus and one for multiplication by a scalar. In the example, two overloads for scalar multiplication are needed because the operator must work regardless of the order in which the vector and scalar appear.


[!code-fsharpMain]





Creating New Operators


You can overload all the standard operators, but you can also create new operators out of sequences of certain characters. Allowed operator characters are !, %, &, *, +, -, ., /, <, =, >, ?, @, ^, |, and ~. The ~ character has the special meaning of making an operator unary, and is not part of the operator character sequence. Not all operators can be made unary.


Depending on the exact character sequence you use, your operator will have a certain precedence and associativity. Associativity can be either left to right or right to left and is used whenever operators of the same level of precedence appear in sequence without parentheses.


The operator character . does not affect precedence, so that, for example, if you want to define your own version of multiplication that has the same precedence and associativity as ordinary multiplication, you could create operators such as .*.


A table that shows the precedence of all operators in F# can be found in Symbol and Operator Reference.





Overloaded Operator Names


When the F# compiler compiles an operator expression, it generates a method that has a compiler-generated name for that operator. This is the name that appears in the Microsoft intermediate language (MSIL) for the method, and also in reflection and IntelliSense. You do not normally need to use these names in F# code.


The following table shows the standard operators and their corresponding generated names.


|Operator|Generated name|
|——–|————–|
|[]|op_Nil|
|::|op_Cons|
|+|op_Addition|
|-|op_Subtraction|
|*|op_Multiply|
|/|op_Division|
|@|op_Append|
|^|op_Concatenate|
|%|op_Modulus|
|&&&|op_BitwiseAnd|
|

|


|


|


|op_BitwiseOr|
|^^^|op_ExclusiveOr|
|<<<|op_LeftShift|
|~~~|op_LogicalNot|
|>>>|op_RightShift|
|~+|op_UnaryPlus|
|~-|op_UnaryNegation|
|=|op_Equality|
|<=|op_LessThanOrEqual|
|>=|op_GreaterThanOrEqual|
|<|op_LessThan|
|>|op_GreaterThan|
|?|op_Dynamic|
|?<-|op_DynamicAssignment|
||


>|op_PipeRight|
|<|


|op_PipeLeft|
|!|op_Dereference|
|>>|op_ComposeRight|
|<<|op_ComposeLeft|
|<@ @>|op_Quotation|
|<@@ @@>|op_QuotationUntyped|
|+=|op_AdditionAssignment|
|-=|op_SubtractionAssignment|
|*=|op_MultiplyAssignment|
|/=|op_DivisionAssignment|
|..|op_Range|
|.. ..|op_RangeStep|
Other combinations of operator characters that are not listed here can be used as operators and have names that are made up by concatenating names for the individual characters from the following table. For example, +! becomes op_PlusBang.


|Operator character|Name|
|——————|—-|
|>|Greater|
|<|Less|
|+|Plus|
|-|Minus|
|*|Multiply|
|/|Divide|
|=|Equals|
|~|Twiddle|
|%|Percent|
|.|Dot|
|&|Amp|
|

|


|Bar|
|@|At|
|^|Hat|
|!|Bang|
|?|Qmark|
|(|LParen|
|,|Comma|
|)|RParen|
|[|LBrack|
|]|RBrack|





Prefix and Infix Operators


Prefix operators are expected to be placed in front of an operand or operands, much like a function. Infix operators are expected to be placed between the two operands.


Only certain operators can be used as prefix operators. Some operators are always prefix operators, others can be infix or prefix, and the rest are always infix operators. Operators that begin with !, except !=, and the operator ~, or repeated sequences of~, are always prefix operators. The operators +, -, +., -., &, &&, %, and %% can be prefix operators or infix operators. You distinguish the prefix version of these operators from the infix version by adding a ~ at the beginning of a prefix operator when it is defined. The ~ is not used when you use the operator, only when it is defined.





Example


The following code illustrates the use of operator overloading to implement a fraction type. A fraction is represented by a numerator and a denominator. The function hcf is used to determine the highest common factor, which is used to reduce fractions.


[!code-fsharpMain]


Output:


3/4 + 1/2 = 5/4
3/4 - 1/2 = 1/4
3/4 * 1/2 = 3/8
3/4 / 1/2 = 3/2
3/4 + 1 = 7/4









Operators at the Global Level


You can also define operators at the global level. The following code defines an operator +?.


[!code-fsharpMain]


The output of the above code is 12.


You can redefine the regular arithmetic operators in this manner because the scoping rules for F# dictate that newly defined operators take precedence over the built-in operators.


The keyword inline is often used with global operators, which are often small functions that are best integrated into the calling code. Making operator functions inline also enables them to work with statically resolved type parameters to produce statically resolved generic code. For more information, see Inline Functions and Statically Resolved Type Parameters.





See Also


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/the-invalidArg-function.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Exceptions: The invalidArg Function (F#)”
description: “Exceptions: The invalidArg Function (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: d375b704-6b27-493e-bd1d-ee217a53c4b5





Exceptions: The invalidArg Function


The invalidArg function generates an argument exception.



Syntax


invalidArg parameter-name error-message-string









Remarks


The parameter-name in the previous syntax is a string with the name of the parameter whose argument was invalid. The error-message-string is a literal string or a value of type string. It becomes the Message property of the exception object.


The exception generated by invalidArg is a System.ArgumentException exception. The following code illustrates the use of invalidArg to throw an exception.


[!code-fsharpMain]


The output is the following, followed by a stack trace (not shown).


December
January
System.ArgumentException: Month parameter out of range.









See Also


Exception Handling


Exception Types


Exceptions: The try...with Expression


Exceptions: The try...finally Expression


Exceptions: the raise Function


Exceptions: The failwith Function








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/exception-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Exception Types (F#)
description: Exception Types (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: e850205a-b8da-459e-8f6d-cb3510f8f173





Exception Types


There are two categories of exceptions in F#: .NET exception types and F# exception types. This topic describes how to define and use F# exception types.



Syntax


exception exception-type of argument-type









Remarks


In the previous syntax, exception-type is the name of a new F# exception type, and argument-type represents the type of an argument that can be supplied when you raise an exception of this type. You can specify multiple arguments by using a tuple type for argument-type.


A typical definition for an F# exception resembles the following.


[!code-fsharpMain]


You can generate an exception of this type by using the raise function, as follows.


[!code-fsharpMain]


You can use an F# exception type directly in the filters in a try...with expression, as shown in the following example.


[!code-fsharpMain]


The exception type that you define with the exception keyword in F# is a new type that inherits from System.Exception.





See Also


Exception Handling


Exceptions: the raise Function


Exception Hierarchy [https://msdn.microsoft.com/library/z4c5tckx.aspx]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/let-bindings.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: let Bindings (F#)
description: let Bindings (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: bee69edc-d5ae-46bd-8b56-f02d97725d0d





let Bindings


A binding associates an identifier with a value or function. You use the let keyword to bind a name to a value or function.



Syntax


// Binding a value:
let identifier-or-pattern [: type] =expressionbody-expression
// Binding a function value:
let identifier parameter-list [: return-type ] =expressionbody-expression









Remarks


The let keyword is used in binding expressions to define values or function values for one or more names. The simplest form of the let expression binds a name to a simple value, as follows.


[!code-fsharpMain]


If you separate the expression from the identifier by using a new line, you must indent each line of the expression, as in the following code.


[!code-fsharpMain]


Instead of just a name, a pattern that contains names can be specified, for example, a tuple, as shown in the following code.


[!code-fsharpMain]


The body-expression is the expression in which the names are used. The body expression appears on its own line, indented to line up exactly with the first character in the let keyword:


[!code-fsharpMain]


A let binding can appear at the module level, in the definition of a class type, or in local scopes, such as in a function definition. A let binding at the top level in a module or in a class type does not need to have a body expression, but at other scope levels, the body expression is required. The bound names are usable after the point of definition, but not at any point before the let binding appears, as is illustrated in the following code.


[!code-fsharpMain]





Function Bindings


Function bindings follow the rules for value bindings, except that function bindings include the function name and the parameters, as shown in the following code.


[!code-fsharpMain]


In general, parameters are patterns, such as a tuple pattern:


[!code-fsharpMain]


A let binding expression evaluates to the value of the last expression. Therefore, in the following code example, the value of result is computed from 100 * function3 (1, 2), which evaluates to 300.


[!code-fsharpMain]


For more information, see Functions.





Type Annotations


You can specify types for parameters by including a colon (:) followed by a type name, all enclosed in parentheses. You can also specify the type of the return value by appending the colon and type after the last parameter. The full type annotations for function1, with integers as the parameter types, would be as follows.


[!code-fsharpMain]


When there are no explicit type parameters, type inference is used to determine the types of parameters of functions. This can include automatically generalizing the type of a parameter to be generic.


For more information, see Automatic Generalization and Type Inference.





let Bindings in Classes


A let binding can appear in a class type but not in a structure or record type. To use a let binding in a class type, the class must have a primary constructor. Constructor parameters must appear after the type name in the class definition. A let binding in a class type defines private fields and members for that class type and, together with do bindings in the type, forms the code for the primary constructor for the type. The following code examples show a class MyClass with private fields field1 and field2.


[!code-fsharpMain]


The scopes of field1 and field2 are limited to the type in which they are declared. For more information, see let Bindings in Classes and Classes.





Type Parameters in let Bindings


A let binding at the module level, in a type, or in a computation expression can have explicit type parameters. A let binding in an expression, such as within a function definition, cannot have type parameters. For more information, see Generics.





Attributes on let Bindings


Attributes can be applied to top-level let bindings in a module, as shown in the following code.


[!code-fsharpMain]





Scope and Accessibility of Let Bindings


The scope of an entity declared with a let binding is limited to the portion of the containing scope (such as a function, module, file or class) after the binding appears. Therefore, it can be said that a let binding introduces a name into a scope. In a module, a let-bound value or function is accessible to clients of a module as long as the module is accessible, since the let bindings in a module are compiled into public functions of the module. By contrast, let bindings in a class are private to the class.


Normally, functions in modules must be qualified by the name of the module when used by client code. For example, if a module Module1 has a function function1, users would specify Module1.function1 to refer to the function.


Users of a module may use an import declaration to make the functions within that module available for use without being qualified by the module name. In the example just mentioned, users of the module can in that case open the module by using the import declaration open Module1 and thereafter refer to function1 directly.


module Module1 =
    let function1 x = x + 1.0

module Module2 =
    let function2 x =
        Module1.function1 x

open Module1

let function3 x =
    function1 x






Some modules have the attribute RequireQualifiedAccess [https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15], which means that the functions that they expose must be qualified with the name of the module. For example, the F# List module has this attribute.


For more information on modules and access control, see Modules and Access Control.





See Also


Functions


let Bindings in Classes








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/inline-functions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Inline Functions (F#)
description: Inline Functions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3fa31178-08f8-463d-9d41-d29220a90027





Inline Functions


Inline functions are functions that are integrated directly into the calling code.



Using Inline Functions


When you use static type parameters, any functions that are parameterized by type parameters must be inline. This guarantees that that the compiler can resolve these type parameters. When you use ordinary generic type parameters, there is no such restriction.


Other than enabling the use of member constraints, inline functions can be helpful in optimizing code. However, overuse of inline functions can cause your code to be less resistant to changes in compiler optimizations and the implementation of library functions. For this reason, you should avoid using inline functions for optimization unless you have tried all other optimization techniques. Making a function or method inline can sometimes improve performance, but that is not always the case. Therefore, you should also use performance measurements to verify that making any given function inline does in fact have a positive effect.


The inline modifier can be applied to functions at the top level, at the module level, or at the method level in a class.


The following code example illustrates an inline function at the top level, an inline instance method, and an inline static method.


[!code-fsharpMain]





Inline Functions and Type Inference


The presence of inline affects type inference. This is because inline functions can have statically resolved type parameters, whereas non-inline functions cannot. The following code example shows a case where inline is helpful because you are using a function that has a statically resolved type parameter, the float conversion operator.


[!code-fsharpMain]


Without the inline modifier, type inference forces the function to take a specific type, in this case int. But with the inline modifier, the function is also inferred to have a statically resolved type parameter. With the inline modifier, the type is inferred to be the following:


^a -> unit when ^a : (static member op_Explicit : ^a -> float)






This means that the function accepts any type that supports a conversion to float.





See Also


Functions


Constraints


Statically Resolved Type Parameters








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/the-raise-function.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Exceptions: the raise Function (F#)”
description: “Exceptions: the raise Function (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: b00da469-4789-4cdd-9f77-7a2e29f28637





Exceptions: the raise Function


The raise function is used to indicate that an error or exceptional condition has occurred. Information about the error is captured in an exception object.



Syntax


raise (expression)









Remarks


The raise function generates an exception object and initiates a stack unwinding process. The stack unwinding process is managed by the common language runtime (CLR), so the behavior of this process is the same as it is in any other .NET language. The stack unwinding process is a search for an exception handler that matches the generated exception. The search starts in the current try...with expression, if there is one. Each pattern in the with block is checked, in order. When a matching exception handler is found, the exception is considered handled; otherwise, the stack is unwound and with blocks up the call chain are checked until a matching handler is found. Any finally blocks that are encountered in the call chain are also executed in sequence as the stack unwinds.


The raise function is the equivalent of throw in C# or C++. Use reraise in a catch handler to propagate the same exception up the call chain.


The following code examples illustrate the use of the raise function to generate an exception.


[!code-fsharpMain]


The raise function can also be used to raise .NET exceptions, as shown in the following example.


[!code-fsharpMain]





See Also


Exception Handling


Exception Types


Exceptions: The try...with Expression


Exceptions: The try...finally Expression


Exceptions: The failwith Function


Exceptions: The invalidArg Function








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/the-failwith-function.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Exceptions: The failwith Function (F#)”
description: “Exceptions: The failwith Function (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 2e0c1f28-cc6c-4ecd-bb93-3816c4dd7cd3





Exceptions: The failwith Function


The failwith function generates an F# exception.



Syntax


failwith error-message-string









Remarks


The error-message-string in the previous syntax is a literal string or a value of type string. It becomes the Message property of the exception.


The exception that is generated by failwith is a System.Exception exception, which is a reference that has the name Failure in F# code. The following code illustrates the use of failwith to throw an exception.


[!code-fsharpMain]





See Also


Exception Handling


Exception Types


Exceptions: The try...with Expression


Exceptions: The try...finally Expression


Exceptions: the raise Function








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/the-try-with-expression.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Exceptions: The try...with Expression (F#)”
description: “Exceptions: The try...with Expression (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 36721076-95cd-4636-ae43-79dd512bee6c





Exceptions: The try...with Expression


This topic describes the try...with expression, the expression that is used for exception handling in the F# language.



Syntax


try
    expression1
with
| pattern1 -> expression2
| pattern2 -> expression3
...









Remarks


The try...with expression is used to handle exceptions in F#. It is similar to the try...catch statement in C#. In the preceding syntax, the code in expression1 might generate an exception. The try...with expression returns a value. If no exception is thrown, the whole expression returns the value of expression1. If an exception is thrown, each pattern is compared in turn with the exception, and for the first matching pattern, the corresponding expression, known as the exception handler, for that branch is executed, and the overall expression returns the value of the expression in that exception handler. If no pattern matches, the exception propagates up the call stack until a matching handler is found. The types of the values returned from each expression in the exception handlers must match the type returned from the expression in the try block.


Frequently, the fact that an error occurred also means that there is no valid value that can be returned from the expressions in each exception handler. A frequent pattern is to have the type of the expression be an option type. The following code example illustrates this pattern.


[!code-fsharpMain]


Exceptions can be .NET exceptions, or they can be F# exceptions. You can define F# exceptions by using the exception keyword.


You can use a variety of patterns to filter on the exception type and other conditions; the options are summarized in the following table.


|Pattern|Description|
|——-|———–|
|:? exception-type|Matches the specified .NET exception type.|
|:? exception-type as identifier|Matches the specified .NET exception type, but gives the exception a named value.|
|exception-name(arguments)|Matches an F# exception type and binds the arguments.|
|identifier|Matches any exception and binds the name to the exception object. Equivalent to :? System.Exception asidentifier|
|identifier when condition|Matches any exception if the condition is true.|





Examples


The following code examples illustrate the use of the various exception handler patterns.


[!code-fsharpMain]



[!NOTE]
The try...with construct is a separate expression from the try...finally expression. Therefore, if your code requires both a with block and a finally block, you will have to nest the two expressions.




[!NOTE]
You can use try...with in asynchronous workflows and other computation expressions, in which case a customized version of the try...with expression is used. For more information, see Asynchronous Workflows, and Computation Expressions.






See Also


Exception Handling


Exception Types


Exceptions: The try...finally Expression








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Exception Handling (F#)
description: Exception Handling (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: ad475c4a-d94e-47d9-b27b-3ff000b65f8e





Exception Handling


This section contains information about exception handling support in the F# language.



Exception Handling Basics


Exception handling is the standard way of handling error conditions in the .NET Framework. Thus, any .NET language must support this mechanism, including F#. An exception is an object that encapsulates information about an error. When errors occur, exceptions are raised and regular execution stops. Instead, the runtime searches for an appropriate handler for the exception. The search starts in the current function, and proceeds up the stack through the layers of callers until a matching handler is found. Then the handler is executed.


In addition, as the stack is unwound, the runtime executes any code in finally blocks, to guarantee that objects are cleaned up correctly during the unwinding process.





Related Topics


|Title|Description|
|—–|———–|
|Exception Types|Describes how to declare an exception type.|
|Exceptions: The try...with Expression|Describes the language construct that supports exception handling.|
|Exceptions: The try...finally Expression|Describes the language construct that enables you to execute clean-up code as the stack unwinds when an exception is thrown.|
|Exceptions: the raise Function|Describes how to throw an exception object.|
|Exceptions: The failwith Function|Describes how to generate a general F# exception.|
|Exceptions: The invalidArg Function|Describes how to generate an invalid argument exception.|








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/framework-libraries.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Framework Libraries
description: Framework Libraries
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 7b77b6c1-8367-4602-bff3-91e4c05ac643





Framework Libraries


.NET has an expansive standard set of class libraries, referred to as either the base class libraries (core set) or framework class libraries (complete set). These libraries provide implementations for many general and app-specific types, algorithms and utility functionality. Both commercial and community libraries build on top of the framework class libraries, providing easy to use off-the-shelf libraries for a wide set of computing tasks.


A subset of these libraries are provided with each .NET implementation. Base Class Library (BCL) APIs are expected with any .NET implementation, both because developers will want them and because popular libraries will need them to run. App-specific libraries above the BCL, such as ASP.NET, will not be available on all .NET implementations.



Base Class Libraries


The BCL provides the most foundational types and utility functionality and are the base of all other .NET class libraries. They aim to provide very general implementations without any bias to any workload. Performance is always an important consideration, since apps might prefer a particular policy, such as low-latency to high-throughput or low-memory to low-CPU usage. These libraries are intended to be high-performance generally, and take a middle-ground approach according to these various performance concerns. For most apps, this approach has been quite successful.





Primitive Types


.NET includes a set of primitive types, which are used (to varying degrees) in all programs. These types contain data, such as numbers, strings, bytes and arbitrary objects. The C# language includes keywords for these types. A sample set of these types is listed below, with the matching C# keywords.



		System.Object [https://msdn.microsoft.com/library/system.object.aspx] (object [https://msdn.microsoft.com/library/9kkx3h3c.aspx]) - The ultimate base class in the CLR type system. It is the root of the type hierarchy.


		System.Int16 [https://msdn.microsoft.com/library/system.int16.aspx] (short [https://msdn.microsoft.com/library/ybs77ex4.aspx]) - A 16-bit signed integer type. The unsigned UInt16 [https://msdn.microsoft.com/library/system.uint16.aspx] also exists.


		System.Int32 [https://msdn.microsoft.com/library/system.int32.aspx] (int [https://msdn.microsoft.com/library/5kzh1b5w.aspx]) - A 32-bit signed integer type. The unsigned UInt32 [https://msdn.microsoft.com/library/x0sksh43.aspx] also exists.


		System.Single [https://msdn.microsoft.com/library/system.single.aspx] (float [https://msdn.microsoft.com/library/b1e65aza.aspx]) - A 32-bit floating-point type.


		System.Decimal [https://msdn.microsoft.com/library/system.decimal.aspx] (decimal [https://msdn.microsoft.com/library/364x0z75.aspx]) - A 128-bit decimal type.


		System.Byte [https://msdn.microsoft.com/library/system.byte.aspx] (byte [https://msdn.microsoft.com/library/5bdb6693.aspx]) - An unsigned 8-bit integeger that represents a byte of memory.


		System.Boolean [https://msdn.microsoft.com/library/system.boolean.aspx] (bool [https://msdn.microsoft.com/library/c8f5xwh7.aspx]) - A boolean type that represents ‘true’ or ‘false’.


		System.Char [https://msdn.microsoft.com/library/system.char.aspx] (char [https://msdn.microsoft.com/library/x9h8tsay.aspx]) - A 16-bit numeric type that represents a Unicode character.


		System.String [https://msdn.microsoft.com/library/system.string.aspx] (string [https://msdn.microsoft.com/library/362314fe.aspx]) - Represents a series of characters. Different than a char[], but enables indexing into each individual char in the string.








Data Structures


.NET includes a set of data structures that are the workhorses of almost any .NET apps. These are mostly collections, but also include other types.



		Array [https://msdn.microsoft.com/library/system.array.aspx] - Represents an array of strongly types objects that can be accessed by index. Has a fixed size, per its construction.


		List [https://msdn.microsoft.com/library/6sh2ey19.aspx] - Represents a strongly typed list of objects that can be accessed by index. Is automatically resized as needed.


		Dictionary [https://msdn.microsoft.com/library/xfhwa508.aspx] - Represents a collection of values that are indexed by a key. Values can be accessed via key. Is automatically resized as needed.


		Uri [https://msdn.microsoft.com/library/system.uri.aspx] - Provides an object representation of a uniform resource identifier (URI) and easy access to the parts of the URI.


		DateTime [https://msdn.microsoft.com/library/system.datetime.aspx] - Represents an instant in time, typically expressed as a date and time of day.








Utility APIs


.NET includes a set of utility APIs that provide functionality for many important tasks.



		HttpClient [https://msdn.microsoft.com/library/system.net.http.httpclient.aspx] - An API for sending HTTP requests and receiving HTTP responses from a resource identified by a URI.


		XDocument [https://msdn.microsoft.com/library/system.xml.linq.xdocument.aspx] - An API for loading, and querying XML documents with LINQ.


		StreamReader [https://msdn.microsoft.com/library/system.io.streamreader.aspx] - An API for reading files (StreamWriter [https://msdn.microsoft.com/library/system.io.stringwriter.aspx]) Can be used to write files.








App-Model APIs


There are many app-models that can be used with .NET, provided by several companies.



		ASP.NET [http://asp.net] - Provides a web framework for building Web sites and services. Supported on Windows, Linux and macOS (depends on ASP.NET version).











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/docker-tools-vscode-f5.png
) DEBUG NET Core Docker Launch (¢ ## [P  Dockerfile.debug X R T 1m -
4 VARIABLES FROM microsoft/dotnet:1.0.0-preview2-sdk
ENV NUGET_XMLDOC_MODE skip
yo ARG CLRDBG_VERSION=S2015U2

WORKDIR /clrdbg
RUN curl -SL https://raw.githubusercontent. con/Microsoft/MIEngine/getclrdbg-release/scripts/GetClrbg. sh —output GetClrdbg.sh \
® & chmod 700 GetClrdbg.sh \
& ./GetClrdbg.sh $CLRDBG_VERSION \
& rm GetClrbg.sh

WORKDIR /app
ENV ASPNETCORE_URLS http://%:5000
EXPOSE 5000
ENTRYPOINT ["/bin/bash", "-c", "if [ -z \"$REMOTE_DEBUGGING\" 1; then dotnet api.dll; else sleep infinity; fi"]
COPY . /app
4 warcH
outeuT Tasks p=E -

Building the project (debug).
Publishing api for .NETCoreApp,Version=vi.o
Project api (.NETCoreApp,Version=v1.0) was previously compiled. Skipping compilation.
Configuring the following project for use with IIS: 'bin/debug/netcoreappl.o/publish'
Updating web.config at 'bin/debug/netcoreappl.o/publish/web. config"
Configuring project completed successfully
publish: Published to bin/debug/netcoreappl.o/publish
Published 1/1 projects successfully
4 CALL STACK Building the inage api (debug).

Building api

Step 1 : FROM microsoft/dotnet:
——> a92c3d9adoe

Step 2 : ENV NUGET_XMLDOC_MODE skip

——> Using cache

——> c5e8760145ed

Step 3 : ARG CLRDBG_VERSION=S2015U2

——> Using cache

——> f8c76d7d3313

Step 4 : WORKDIR /clrdbg

——> Using cache

——> 4b37b37542e1

BREAKPOINTS Step 5 : RUN curl —SL https://raw.githubusercontent. con/Microsoft/MIEngine/getclrdbg-release/scripts/GetCLrobg.sh —output GetClrdbg.sh

@ All Exceptions & chmod 700 GetClrobg.sh & ./GetClrdbg.sh SCLRDBG_VERSION & rm GetClrDbg.sh
——> Using cache

jser-Unhandled Exceptions ili ili i il

o-preview2-sdk






_images/project.xproj.png
=) globaljson Each *xproi

wouldtarget
Car.xproj existing full
£3—l— proiectison Framework,
iy NET Core and
src. Car any other
atforms
Car.Tests.xproj

R R Rt

tests CanTests - WheelTestes





standard/frameworks.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Frameworks
description: Frameworks
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 09/01/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6ef56a2e-593d-497b-925a-1e25bb6df2e6





Frameworks


The .NET ecosystem has a concept of frameworks. Frameworks define the API that you can use to target a particular platform. The .NET Framework 4.6 is one of those platforms. Frameworks are used in Visual Studio and other IDEs and editors to provide you with the correct set of APIs. They are also used by NuGet, for both production and consumption of NuGet packages, to ensure that you produce and use appropriate packages (and underlying assets) for the framework you are targeting. One can think of frameworks as one of the key currencies in the .NET ecosystem. The concept is there for correctness, to help you and your customers avoid seeing @System.MissingMethodException and friends at runtime.



Framework Versions


The table below defines the set of frameworks that you can use, how they are referred to and which version of the .NET Standard Library that they implement.


| Framework | Latest Version | Target Framework Moniker (TFM) | Compact Target Framework Moniker (TFM) | .NET Standard Version | Metapackage | |
|:——–: | :–: | :–: | :–: | :–: | :–: | :–: |
| .NET Standard | 1.6 | .NETStandard,Version=1.6 | netstandard1.6 | N/A | NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library]|
| .NET Core Application | 1.0 | .NETCoreApp,Version=1.0 | netcoreapp1.0 | 1.6 | Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App]|
| .NET Framework | 4.6.2 | .NETFramework,Version=4.6.2 | net462 | 1.5 | N/A |



[!NOTE]
These framework versions are the latest stable versions. There may be pre-released versions as well that are not described by this table.






Writing about Frameworks


There are multiple ways to refer to frameworks in written form, most of which are used in this documentation. They are described below, both as a legend for interpreting the documentation but also to guide use in other documents.


Using .NET Framework 4.6.1 as an example, the following forms can be used:


Referring to a product


You can refer to a .NET platform or runtime.



		”.NET Framework 4.6.1”





Referring to a Framework


You can refer to a framework or targeting of a framework using long- or short-forms of the TFM. Both are equally valid in the general case.



		.NETFramework,Version=4.6.1


		net461





Referring to a family of Frameworks


You can refer to a family of frameworks using long- or short-forms of the framework ID. Both are equally valid in the general case.



		.NETFramework


		net











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/vscodedebugger.png
Desuc K| NETCoolanc | £ B1  Program.cs

4 VARIABLES 1 using static System.Cc

2 using Library;
o :
Start Program, 1 nanespace Consoleappl:
= 5
® 6 public class Prog:
7 1
8 public static
® s ¢
e 10 WriteLine(
+ watch b 5 b
Open Debugger; ,;
Open Debugger;






standard/async.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Async Overview
description: Async Overview
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1e38e9d9-8284-46ee-a15f-199adc4f26f4





Async Overview


Not so long ago, apps got faster simply by buying a newer PC or server and then that trend stopped. In fact, it reversed. Mobile phones appeared with 1ghz single core ARM chips and server workloads transitioned to VMs. Users still want responsive UI and business owners want servers that scale with their business. The transition to mobile and cloud and an internet-connected population of >3B users has resulted in a new set of software patterns.



		Client applications are expected to be always-on, always-connected and constantly responsive to user interaction (e.g. touch) with high app store ratings!


		Services are expected to handle spikes in traffic by gracefully scaling up and down.





Async programming is a key technique that makes it straightforward to handle blocking I/O and concurrent operations on multiple cores. .NET provides the capability for apps and services to be responsive and elastic with easy-to-use, language-level asynchronous programming models in C#, VB, and F#.



Why Write Async Code?


Modern apps make extensive use of file and networking I/O. I/O APIs traditionally block by default, resulting in poor user experiences and hardware utilization unless you want to learn and use challenging patterns. Async APIs and the language-level asynchronous programming model invert this model, making async execution the default with few new concepts to learn.


Async code has the following characteritics:



		Handles more server requests by yielding threads to handle more requests while waiting for I/O requests to return.


		Enables UIs to be more responsive by yielding threads to UI interaction while waiting for I/O requests and by transitioning long-running work to other CPU cores.


		Many of the newer .NET APIs are asynchronous.


		It’s super easy to write async code in .NET!








What’s next?


For a deep dive into async concepts and programming, see Async in depth.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/pcl-targets-dialog-net46-aspnetcore10.png
Add Portable Class Library.

Targets:

[J.NET Framework 4.6

O Windows Universal 10.0

O Windows Phone Silverlight 8.1
[ ASP.NET Core 1.0
Osilverlight 5

O Windows Phone 8.1

Install additional targets,

& The selection makes this project incompatible with
Visual Studio 2013 and lower.






standard/numerics.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Numerics in .NET Core
description: Numerics in .NET Core
keywords: .NET, .NET Core
author: rpetrusha
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 6b8696be-55f5-4b66-98f3-69ff827c2c49





Numerics in .NET Core


.NET Core supports the standard numeric integral and floating-point primitives, as well as System.Numerics.BigInteger [https://docs.microsoft.com/dotnet/core/api/System.Numerics.BigInteger], an integral type with no theoretical upper or lower bound, System.Numerics.Complex [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Complex], a type that represents complex numbers, and a set of Single Instruction Multiple Data (SIMD [https://en.wikipedia.org/wiki/SIMD])-enabled vector types in the System.Numerics [https://docs.microsoft.com/dotnet/core/api/System.Numerics] namespace.



Integral types


.NET Core supports both signed and unsigned integers ranging from one byte to eight bytes in length. The following table lists the integral types and their size, indicates whether they are signed or unsigned, and documents their range. All integers are value types.


Type | Signed/Unsigned | Size (bytes) | Minimum Value | Maximum Value
—- | ————— | ———— | ————- | ————-
System.Byte [https://docs.microsoft.com/dotnet/core/api/System.Byte] | Unsigned | 1 | 0 | 255
System.Int16 [https://docs.microsoft.com/dotnet/core/api/System.Int16] | Signed | 2 | -32,768 | 32,767
System.Int32 [https://docs.microsoft.com/dotnet/core/api/System.Int32] | Signed | 4 | -2,147,483,648 | 2,147,483,647
System.Int64 [https://docs.microsoft.com/dotnet/core/api/System.Int64] | Signed | 8 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807
System.SByte [https://docs.microsoft.com/dotnet/core/api/System.SByte] | Signed | 1 | -128 | 127
System.UInt16 [https://docs.microsoft.com/dotnet/core/api/System.UInt16] | Unsigned | 2 | 0 | 65,535
System.UInt32 [https://docs.microsoft.com/dotnet/core/api/System.UInt32] | Unsigned | 4 | 0 | 4,294,967,295
System.UInt64 [https://docs.microsoft.com/dotnet/core/api/System.UInt64] | Unsigned | 8 | 0 | 18,446,744,073,709,551,615


Each integral type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each integer also includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a number to that integer, and to convert an integer to its string representation. Some additional mathematical operations beyond those handled by the standard operators, such as rounding and identifying the smaller or larger value of two integers, are available from the System.Math [https://docs.microsoft.com/dotnet/core/api/System.Math] class. You can also work with the individual bits in an integer value by using the System.BitConverter [https://docs.microsoft.com/dotnet/core/api/System.BitConverter] class.


Note that the unsigned integral types are not CLS-compliant. For more information, see .NET Common Type System & Common Language Specification.





Floating-point types


.NET Core includes three primitive floating point types, which are listed in the following table.


Type | Size (bytes) | Minimum Value | Maximum Value
—- | ———— | ————- | ————-
System.Double [https://docs.microsoft.com/dotnet/core/api/System.Double] | 8 | -1.79769313486232e308 | 1.79769313486232e308
System.Single [https://docs.microsoft.com/dotnet/core/api/System.Single] | 4 | -3.402823e38 | 3.402823e38
System.Decimal [https://docs.microsoft.com/dotnet/core/api/System.Decimal] | 16 | -79,228,162,514,264,337,593,543,950,335 | 79,228,162,514,264,337,593,543,950,335


Each floating-point type supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators. Each also includes methods to perform equality comparisons and relative comparisons, to convert the string representation of a floating-point number, and to convert a floating-point number to its string representation. Some additional mathematical, algebraic, and trigonometric operations are available from the Math class. You can also work with the individual bits in Double and Single values by using the BitConverter class. The Decimal structure has its own methods, Decimal.GetBits and Decimal.Decimal(Int32()), for working with a decimal value’s individual bits, as well as its own set of methods for performing some additional mathematical operations.


The Double and Single types are intended to be used for values that by their nature are imprecise (such as the distance between two stars in the solar system) and for applications in which a high degree of precision and small rounding error is not required. You should use the Decimal type for cases in which greater precision is required and rounding error is undesirable.





BigInteger


System.Numerics.BigInteger [https://docs.microsoft.com/dotnet/core/api/System.Numerics.BigInteger] is an immutable type that represents an arbitrarily large integer whose value in theory has no upper or lower bounds. The methods of the BigInteger type closely parallel those of the other integral types.





Complex


The System.Numerics.Complex [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Complex] type represents a complex number, that is, a number with a real number part and an imaginary number part. It supports a standard set of arithmetic, comparison, equality, explicit conversion, and implicit conversion operators, as well as mathematical, algebraic, and trigonometric methods.





SIMD-enabled vector types


The System.Numerics namespace includes a set of SIMD-enabled vector types for .NET Core. SIMD allows some operations to be parallelized at the hardware level, which results in huge performance improvements in mathematical, scientific, and graphics apps that perform computations over vectors.


The SIMD-enabled vector types in .NET Core include the following:



		System.Numerics.Vector2 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector2], System.Numerics.Vector3 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector3], and System.Numerics.Vector4 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector4] types, which are 2-, 3-, and 4-dimensional vectors of type Single.


		The Vector&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Vector-1] structure that allows you to create a vector of any primitive numeric type. The primitive numeric types include all numeric types in the System namespace except for Decimal.


		Two matrix types, System.Numerics.Matrix3x2 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Matrix3x2], which represents a 3x2 matrix; and System.Numerics.Matrix4x4 [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Matrix4x4], which represents a 4x4 matrix.


		The System.Numerics.Plane [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Plane] type, which represents a three-dimensional plane, and the System.Numerics.Quaternion [https://docs.microsoft.com/dotnet/core/api/System.Numerics.Quaternion] type, which represents a vector that is used to encode three-dimensional physical rotations.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/assembly-headers.png
PE Headers

CLI Header

CLI Data : metadata, IL method bodies, fix-ups

Native Image Sections






standard/clr.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Common Language Runtime (CLR)
description: Common Language Runtime (CLR)
keywords: .NET, .NET Core
author: rpetrusha
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 7704d9c9-e5fa-4969-a423-081cce0e21e6





Common Language Runtime (CLR)


The .NET Framework provides a run-time environment called the common language runtime, which runs the code and provides services that make the development process easier.


Compilers and tools expose the common language runtime’s functionality and enable you to write code that benefits from this managed execution environment. Code that you develop with a language compiler that targets the runtime is called managed code; it benefits from features such as cross-language integration, cross-language exception handling, enhanced security, versioning and deployment support, a simplified model for component interaction, and debugging and profiling services.



[!NOTE]
Compilers and tools are able to produce output that the common language runtime can consume because the type system, the format of metadata, and the runtime environment (the virtual execution system) are all defined by a public standard, the ECMA Common Language Infrastructure specification. For more information, see ECMA C# and Common Language Infrastructure Specifications [https://www.visualstudio.com/en-us/mt639507].



To enable the runtime to provide services to managed code, language compilers must emit metadata that describes the types, members, and references in your code. Metadata is stored with the code; every loadable common language runtime portable executable (PE) file contains metadata. The runtime uses metadata to locate and load classes, lay out instances in memory, resolve method invocations, generate native code, enforce security, and set run-time context boundaries.


The runtime automatically handles object layout and manages references to objects, releasing them when they are no longer being used. Objects whose lifetimes are managed in this way are called managed data. Garbage collection eliminates memory leaks as well as some other common programming errors. If your code is managed, you can use managed data, unmanaged data, or both managed and unmanaged data in your .NET Framework application. Because language compilers supply their own types, such as primitive types, you might not always know (or need to know) whether your data is being managed.


The common language runtime makes it easy to design components and applications whose objects interact across languages. Objects written in different languages can communicate with each other, and their behaviors can be tightly integrated. For example, you can define a class and then use a different language to derive a class from your original class or call a method on the original class. You can also pass an instance of a class to a method of a class written in a different language. This cross-language integration is possible because language compilers and tools that target the runtime use a common type system defined by the runtime, and they follow the runtime’s rules for defining new types, as well as for creating, using, persisting, and binding to types.


As part of their metadata, all managed components carry information about the components and resources they were built against. The runtime uses this information to ensure that your component or application has the specified versions of everything it needs, which makes your code less likely to break because of some unmet dependency. Information about the types you define (and their dependencies) is stored with the code as metadata, making the tasks of component replication and removal much less complicated.


Language compilers and tools expose the runtime’s functionality in ways that are intended to be useful and intuitive to developers. This means that some features of the runtime might be more noticeable in one environment than in another. How you experience the runtime depends on which language compilers or tools you use. The runtime provides the following benefits:



		The ability to easily use components developed in other languages.


		Extensible types provided by a class library.


		Language features such as inheritance, interfaces, and overloading for object-oriented programming.


		Support for explicit free threading that allows creation of multithreaded, scalable applications.


		Support for structured exception handling.


		Support for custom attributes.


		Garbage collection.


		Use of delegates instead of function pointers for increased type safety and security.






Versions of the Common Language Runtime


The version number of the .NET Framework doesn’t necessarily correspond to the version number of the CLR it includes. The following table shows how the two version numbers correlate.


.NET Framework version | Includes CLR version
———————- | ——————–
1.0 | 1.0
1.1 | 1.1
2.0 | 2.0
3.0 | 2.0
3.5 | 2.0
4 | 4
4.5 (including 4.5.1 and 4.5.2) | 4
4.6 (including 4.6.1 and 4.6.2) | 4





See Also


Automatic Memory Management








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/project.pcl.png
Car.csproj

packages.config Each * Core csproj
“Wheel.cs references existing

source code Inthe
ST carcorecsproj same directory
e Car Car.Core.project.json

Car.Tests.csproj
packages.config

- WheelTest.cs
1—‘\1—' Car.Tests.Core.csproj

tests  CarTests  CarTests.Core.project.json





standard/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Primer
description: .NET Primer
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bbfe6465-329d-4982-869d-472e7ef85d93





.NET Primer



Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.



.NET is a general purpose development platform. It can be used for any kind of app type or workload where general purpose solutions are used. It has several key features that are attractive to many developers, including automatic memory management and modern programming languages, that make it easier to efficiently build high-quality applications. .NET enables a high-level programming environment with many convenience features, while providing low-level access to native memory and APIs.


Multiple implementations of .NET are available, based on open .NET Standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that specify the fundamentals of the platform. They are separately optimized for different application types (e.g. desktop, mobile, gaming, cloud) and support many chips (e.g. x86/x64, ARM) and operating systems (e.g. Windows, Linux, iOS, Android, macOS). Open source is also an important part of the .NET ecosystem, with multiple .NET implementations and many libraries available under OSI-approved licenses.


You can take a look at the Overview of .NET implementations document to figure out all of the different editions of the .NET Framework that are available, both Microsoft’s and others.


This Primer will help you understand some of the key concepts in the .NET Platform and point you to more resources
for each given topic. By the end of it, you should have enough information to be able to recognize significant terms and
concepts in the .NET Platform and to know how to further your knowledge about them.



Key .NET Concepts


There is a certain number of concepts that are very important to understand if you are new to the .NET Platform. These concepts are the cornerstone of the entire platform, and understanding them at the outset is important for general understanding of how .NET works.


Most of these concepts are defined in the What is .NET? article.





A stroll through .NET


As any mature and advanced application development framework, .NET has many powerful features that make the developer’s job easier and aim to make writing code more powerful and expressive. This section will outline the basics of the most salient features and provide pointers to more detailed discussions where needed. After finishing this stroll, you should have enough information to be able to read the samples on our GitHub repos as well as other code and understand what is going on.



		Programming languages


		Automatic memory management


		Type safety


		Delegates and lambdas


		Generic Types (Generics)


		Language Integrated Query (LINQ)


		Async Programming


		Native interoperability


		Unsafe Code






Programming languages


As a developer, you can choose any programming language that supports .NET to create your application. Because .NET provides language independence and interoperability, you can interact with other .NET applications and components regardless of the language with which they were developed.


Languages that allow you to develop applications for the .NET Platform adhere to the Common Language Infrastructure (CLI) specification [https://www.visualstudio.com/en-us/mt639507].


Microsoft languages that .NET supports include C#, F#, and Visual Basic.



		C# is simple, powerful, type-safe, and object-oriented while retaining the expressiveness and elegance of C-style languages. Anyone familiar with C and similar languages will find few problems in adapting to C#.


		F# is a cross-platform, functional-first programming language that also supports traditional object-oriented and imperative programming.


		Visual Basic is an easy language to learn that you can use to build a variety of applications that run on .NET.






[!NOTE]
In the current release of .NET Core, only C# is fully supported.






Automatic memory management


Garbage collection is the most well-known of .NET features. Developers do not need to actively manage memory, although there are mechanisms to provide more information to the garbage collector (GC). C# includes the new keyword to allocate memory in terms of a particular type, and the using keyword to provide scope for the usage of the object. The GC operates on a lazy approach to memory management, preferring application throughput to the immediate collection of memory.


The following two lines both allocate memory:


var title = ".NET Primer";
var list = new List<string>;






There is no analogous keyword to de-allocate memory, as de-allocation happens automatically when the garbage collector reclaims the memory through its scheduled running.


Method variables normally go out of scope once a method completes, at which point they can be collected. However, you can indicate to the GC that a particular object is out of scope sooner than method exit using the using statement.


using(FileStream stream = GetFileStream(context))
{
    //operations on the stream
}






Once the using block completes, the GC will know that the stream object in the example above is free to be collected and its memory reclaimed.


One of the less obvious but quite far-reaching features that a garbage collector enables is memory safety. The invariant of memory safety is very simple: a program is memory safe if it accesses only memory that has been allocated (and not freed). Dangling pointers are always bugs, and tracking them down is often quite difficult.


The .NET runtime provides additional services, to complete the promise of memory safety, not naturally offered by a GC. It ensures that programs do not index off the end of an array or accessing a phantom field off the end of an object.


The following example will throw an exception as a result of memory safety.


int[] numbers = new int[42];
int number = numbers[42]; // will throw (indexes are 0-based)









Type Safety


Objects are allocated in terms of types. The only operations allowed for a given object, and the memory it consumes, are those of its type. A Dog type may have Jump and WagTail methods, but not likely a SumTotal method. A program can only call the declared methods of a given type. All other calls will result either in a compile-time error or a run-time exception (in case of using dynamic features or object).


.NET languages are object-oriented, with hierarchies of base and derived classes. The .NET runtime will only allow object casts and calls that align with the object hierarchy. Remember that every type defined in any .NET language derives from the base object type.


Dog dog = Dog.AdoptDog(); // Returns a Dog type
Pet pet = (Pet)dog; // Dog derives from Pet
pet.ActCute();
Car car = (Car)dog; // will throw - no relationship between Car and Dog
object temp = (object)dog; // legal - a Dog is an object
car = (Car)temp; // will throw - the runtime isn't fooled
car.Accelerate() // the dog won't like this, nor will the program get this far






Type safety is also used to help enforce encapsulation by guaranteeing the fidelity of the accessor keywords. Accessor keywords are artifacts which control access to members of a given type by other code. These are usually used for various kinds of data within a type that are used to manage its behavior.


Dog dog = Dog._nextDogToBeAdopted; // will throw - this is a private field






Some .NET languages support type inference. Type inference means that the compiler will deduce the type of the expression on the left-hand side from the expression on the right-hand side. This doesn’t mean that the type safety is broken or avoided. The resulting type has a strong type with everything that implies. Let’s rewrite the first two lines of the previous example to introduce type inference. You will note that the rest of the example is completely the same.


  var dog = Dog.AdoptDog();
  var pet = (Pet)dog;
  pet.ActCute();
  Car car = (Car)dog; // will throw - no relationship between Car and Dog
  object temp = (object)dog; // legal - a Dog is an object
  car = (Car)temp; // will throw - the runtime isn't fooled
  car.Accelerate() // the dog won't like this, nor will the program get this far









Delegates and Lambdas


Delegates are like C++ function pointers, with a big difference that they are type safe. They are a kind of disconnected method within the CLR type system. Regular methods are attached to a class and only directly callable through static or instance calling conventions.


Delegates are used in various APIs and places in the .NET world, especially through lambda expressions, which are a cornerstone of LINQ.


Read more about it in the Delegates and lambdas document.





Generic Types (Generics)


Generic types, also commonly called “generics” are a feature that was added in .NET Framework 2.0. In short, generics allow the programmer to introduce a “type parameter” when designing their classes, that will allow the client code (the users of the type) to specify the exact type to use in place of the type parameter.


Generics were added in order to help programmers implement generic data structures. Before their arrival, in order for a, say, List type to be generic, it would have to work with elements that were of type object. This would have various performance as well as semantic problems, not to mention possible subtle runtime errors. The most notorious of the latter is when a data structure contains, for instance, both integers and strings, and an InvalidCastException is thrown on working with the list’s members.


The below sample shows a basic program running using an instance of List types.


using System;
using System.Collections.Generic;

namespace GenericsSampleShort {
    public static void Main(string[] args){
        // List<string> is the client way of specifying the actual type for the type parameter T
        List<string> listOfStrings = new List<string> { "First", "Second", "Third" };

        // listOfStrings can accept only strings, both on read and write.
        listOfStrings.Add("Fourth");

        // Below will throw a compile-time error, since the type parameter
        // specifies this list as containing only strings.
        listOfStrings.Add(1);

    }
}






Read more about it in the Generic Types (Generics) Overview document.





Async Programming


Async programming is a first-class concept within .NET, with async support in the runtime, the framework libraries, and .NET language constructs. Internally, they are based off of objects (such as Task) which take advantage of the operating system to perform I/O-bound jobs as efficiently as possible.


To learn more about async programming in .NET, start with the Async Overview.





Language Integrated Query (LINQ)


LINQ is a powerful set of features for C# and VB that allow you to write simple, declarative code for operating on data. The data can be in many forms (such as in-memory objects, in a SQL database, or an XML document), but the LINQ code you write typically won’t look different for each data source!


To learn more and see some samples, check out LINQ (Language Integrated Query).





Native Interoperability


Every operating system in current use provides a lot of platform support for various programming tasks. .NET provides several ways to tap into those APIs. Collectively, this support is called “native interoperability” and in this section we will take a look at how to access native APIs from managed, .NET code.


The main way to do native interoperability is via “platform invoke” or P/Invoke for short. This support in .NET Core is available across Linux and Windows platforms. Another, Windows-only way of doing native interoperability is known as “COM interop” which is used to work with COM components [https://msdn.microsoft.com/library/bwa2bx93.aspx] in managed code. It is built on top of P/Invoke infrastructure, but it works in subtly different ways.


Most of Mono’s (and thus Xamarin’s) interoperability support for Java and Objective-C are built similarly, that is, they use the same principles.


Read more about it in the Native interoperability document.





Unsafe Code


The CLR enables the ability to access native memory and do pointer arithmetic via unsafe code. These operations are needed for certain algorithms and system interoperability. Although powerful, use of unsafe code is discouraged unless it is necessary to interop with system APIs or implement the most efficient algorithm. Unsafe code may not execute the same way in different environments, and also loses the benefits of a garbage collector and type safety. It’s recommended to confine and centralize unsafe code as much as possible, and test that code thoroughly.


The ToString() method from the StringBuilder class [https://github.com/dotnet/coreclr/blob/master/src/mscorlib/src/System/Text/StringBuilder.cs#L327] illustrates how using unsafe code can efficiently implement an algorithm by moving around chunks of memory directly:


public override String ToString() {
          Contract.Ensures(Contract.Result<String>() != null);

          VerifyClassInvariant();

          if (Length == 0)
              return String.Empty;

          string ret = string.FastAllocateString(Length);
          StringBuilder chunk = this;
          unsafe {
              fixed (char* destinationPtr = ret)
              {
                  do
                  {
                      if (chunk.m_ChunkLength > 0)
                      {
                          // Copy these into local variables so that they are stable even in the presence of ----s (hackers might do this)
                          char[] sourceArray = chunk.m_ChunkChars;
                          int chunkOffset = chunk.m_ChunkOffset;
                          int chunkLength = chunk.m_ChunkLength;

                          // Check that we will not overrun our boundaries.
                          if ((uint)(chunkLength + chunkOffset) <= ret.Length && (uint)chunkLength <= (uint)sourceArray.Length)
                          {
                              fixed (char* sourcePtr = sourceArray)
                                  string.wstrcpy(destinationPtr + chunkOffset, sourcePtr, chunkLength);
                          }
                          else
                          {
                              throw new ArgumentOutOfRangeException("chunkLength", Environment.GetResourceString("ArgumentOutOfRange_Index"));
                          }
                      }
                      chunk = chunk.m_ChunkPrevious;
                  } while (chunk != null);
              }
          }
          return ret;
      }











Notes


The term ”.NET runtime” is used throughout the document to accommodate for the multiple implementations of .NET, such as CLR, Mono, IL2CPP and others. The more specific names are only used if needed.


This document is not intended to be historical in nature, but describe the .NET platform as it is now. It isn’t important whether a .NET feature has always been available or was only recently introduced, only that it is important enough to highlight and discuss.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

about/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: About .NET
description: .NET Products
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/23/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2e38e9d9-8284-46ee-a15f-199adc4f26f4





About .NET



Check out the “Getting Started with .NET Core” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.



.NET is a general purpose development platform. It can be used for any kind of app type or workload where general purpose solutions are used. It has several key features that are attractive to many developers, including automatic memory management and modern programming languages, that make it easier to efficiently build high-quality applications. .NET enables a high-level programming environment with many convenience features, while providing low-level access to native memory and APIs.


C#, F# and Visual Basic are popular languages that target and rely on the .NET platform. The .NET languages are known for key features such as their asynchronous programming model, language-integrated query, generic types and type system reflection. The languages also provide great options for both object-oriented and functional programming paradigms.


There is great diversity across these languages, in philosophy and syntax, but also symmetry provided by a shared type system. This type system is provided by the underlying runtime environment. .NET was designed around the idea of a “common language runtime” that could support the requirements of diverse languages – for example, dynamic and statically typed languages – and enable interoperability between them. For example, it’s possible to pass a collection of People objects between languages with no loss in semantics or capability.


Multiple .NET implementations and products are available, based on open .NET Standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that specify the fundamentals of the platform. They are separately optimized for different application types (for example, desktop, mobile, gaming, cloud) and support many chips (for example, x86/x64, ARM) and operating systems (for example, Windows, Linux, iOS, Android, macOS). Open source is also an important part of the .NET ecosystem, with multiple .NET implementations and many libraries available under OSI-approved licenses.



		Learn about .NET


		Learn about C#


		Learn about F#


		Browse the .NET API Library


		Introduction to the Common Language Runtime [https://github.com/dotnet/coreclr/blob/master/Documentation/botr/intro-to-clr.md]






Fundamentals


Multi-Language – .NET provides a well-defined type system, file formats, runtime, framework and tools that can be used by multiple languages, both for their own execution and also to interoperate with other languages using those same components of .NET as their shared currency.


Managed Memory – .NET automatically manages memory for you via a garbage collector. It ensures that you always reference live objects, guaranteeing that you avoid nasty problems like buffer overruns and access violations. This includes array bounds checking.


Type Safety – The primary .NET model for functionality and memory representation is “types”. Types define shape and optionally behavior. The runtime ensures that calling code can only operate on types according to their definition and specified visibility of members, providing consistent, reliable and secure results.





Features


User-defined Value Types – Value types are a useful category of types since they offer the semantic of “pass by value” instead of “pass by reference”, as is the case for classes. Value types are most obviously usefully for numeric data. .NET enables value types for both primitive types, like integers, and user-defined types.


Generic types – Generic types are types with one or more type parameters that can be specified on a per-instantiation basis. This is useful for many types, which otherwise would  expose contents as the Object type or require multiple type definitions. For example, a given instantiation of a collection type can be made specific to People, GPS locations or strings.


Reflection – .NET defines a metadata format that describes the types within a binary. The reflection subsystem uses this data, exposing APIs for both reading and instantiating types at runtime. This facility is very useful for dynamic scenarios where it is not convenient to know the exact implementation of a program ahead of time.


Flexible code generation – .NET does not prescribe a specific approach to transforming .NET binaries into machine code. Many approaches have been used successfully, including interpretation, just-in-time (JIT) compilation, ahead-of-time (AOT) compilation with JIT fallback and AOT compilation with no JIT fallback. Each of these strategies can be valuable and there are opportunities for using them together.


Cross-platform – .NET was intended to be cross platform from its inception. The binary format and the instruction set are operating system, CPU and pointer-size agnostic. A given .NET binary built in 2000 to run on a 32-bit Windows machine can run on the ARM64 iOS device on 2016 without modification.





Open source


The .NET Core [https://github.com/dotnet/core] and Mono [https://github.com/mono/mono] implementations of .NET are open source, using the MIT license. Documentation uses the Creative Commons CC-BY [https://creativecommons.org/licenses/by/4.0/] license. .NET Core and Mono are sponsored by Microsoft and have many contributors from the community.


These general purpose runtimes can be used as the basis of academic research or teaching/learning or commercial products. Their open nature also means that anyone can contribute back to the upstream product code given a bug or the desire for a new feature.





Projects



		CoreCLR [https://github.com/dotnet/coreclr] - .NET runtime, used by .NET Core.


		Mono [https://github.com/mono/mono] - .NET runtime, used by Xamarin and others.


		CoreFX [https://github.com/dotnet/coreclr] - .NET class libraries, used by .NET Core and to a degree by Mono via source sharing.


		Roslyn [https://github.com/dotnet/roslyn] - C# and Visual Basic compilers, used by most .NET platforms and tools. Exposes APIs for reading, writing and analyzing source code.


		F# [https://github.com/microsoft/visualfsharp] - F# compiler.


		Xamarin SDK [http://open.xamarin.com] - Tools and libraries needed to write Android, iOS and macOS in C# and F#.








Standardized


.NET is specified via open ECMA standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] that outline its capabilities and that can be used to make a new implementation. There are other .NET implementations, with Mono and Unity being the most popular beyond the Microsoft ones.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/library.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Standard Library
description: .NET Standard Library
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c044882c-af15-45f2-96d1-534557a5ee9b





.NET Standard Library


The .NET Standard Library is a formal specification of .NET APIs that are intended to be available on all .NET runtimes. The motivation behind the Standard Library is establishing greater uniformity in the .NET ecosystem. ECMA 335 [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] continues to establish uniformity for .NET runtime behavior, but there is no similar spec for the .NET Base Class Libraries (BCL) for .NET library implementations.


The .NET Standard Library enables the following key scenarios:



		Defines uniform set of BCL APIs for all .NET platforms to implement, independent of workload.


		Enables developers to produce portable libraries that are usable across .NET runtimes, using this same set of APIs.


		Reduces and hopefully eliminates conditional compilation of shared source due to .NET APIs, only for OS APIs.





The various .NET runtimes implement specific versions of the .NET Standard Library. Each .NET runtime version advertises the highest .NET Standard version it supports, a statement that means it also supports previous versions. For example, the .NET Framework 4.6 implements the .NET Standard Library 1.3, which means that it exposes all APIs defined in .NET Standard Library versions 1.0 through 1.3. Similarly, the .NET Framework 4.6.2 implements .NET Standard Library 1.5, while .NET Core 1.0 implements the .NET Standard Library 1.6.



.NET Platforms Support


You can see the complete set of .NET runtimes that support the .NET Standard Library.


| Platform Name | Alias |  |  |  |  |  | | |
| :———- | :——— |:——— |:——— |:——— |:——— |:——— |:——— |:——— |
|.NET Standard | netstandard | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 |
|.NET Core|netcoreapp|

→


|→


|→


|→


|→


|→


|1.0|
|.NET Framework|net|→


|4.5|4.5.1|4.6|4.6.1|4.6.2|vNext|
|Mono/Xamarin Platforms||→


|→


|→


|→


|→


|→


|*|
|Universal Windows Platform|uap|→


|→


|→


|→


|10.0|||
|Windows|win|→


|8.0|8.1|||||
|Windows Phone|wpa|→


|→


|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||





Comparison to Portable Class Libraries


.NET Standard Library can be thought of as the next generation of Portable Class Libraries (PCL) [https://msdn.microsoft.com/library/gg597391.aspx]. The .NET Standard Library improves on the experience of creating portable libraries by curating a standard BCL and establishing greater uniformity across .NET runtimes as a result. A library that targets the .NET Standard Library is a PCL or a ”.NET Standard-based PCL”. Existing PCLs are “profile-based PCLs”.


The .NET Standard Library and PCL profiles were created for similar purposes but also differ in key ways.


Similarities:



		Defines APIs that can be used for binary code sharing.





Differences:



		The .NET Standard Library is a curated set of APIs, while PCL profiles are defined by intersections of existing platforms.


		The .NET Standard Library linearly versions, while PCL profiles do not.


		PCL profiles represents Microsoft platforms while the .NET Standard Library is agnostic to platform.








Specification


The .NET Standard Library spec is a standardized set of APIs. The spec is maintained by .NET runtime implementors, specifically Microsoft (includes .NET Framework, .NET Core and Mono) and Unity. A public feedback process is used as part of establishing new .NET Standard Library versions.



Official Artifacts


The official spec is a set of .cs files that define the APIs that are part of the standard. The ref directory [https://github.com/dotnet/corefx/tree/master/src/System.Runtime/ref] for each component [https://github.com/dotnet/corefx/tree/master/src] defines the .NET Standard Library APIs. While the ref artifacts reside in the CoreFX repo [https://github.com/dotnet/corefx], they are not .NET Core specific.


The NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] metapackage (source [https://github.com/dotnet/corefx/blob/master/pkg/NETStandard.Library/NETStandard.Library.packages.targets]) describes the set of libraries that define (in part) one or more .NET Standard Library versions.


A given component, like System.Runtime, describes:



		Part of .NET Standard Library (just its scope).


		Multiple versions of .NET Standard Library, for that scope.





Derivative artifacts are provided to enable more convenient reading and to enable certain developer scenarios (for example, using a compiler).



		API list in markdown (TBD)


		Reference assemblies, distributed as NuGet packages and referenced by the NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library/] metapackage.








Package Representation


The primary distribution vehicle for the .NET Standard Library reference assemblies is NuGet packages. Implementations will be delivered in a variety of ways, appropriate for each .NET runtime.


NuGet packages target one or more frameworks. The .NET Standard Library packages target the ”.NET Standard” framework. You can target the .NET Standard Framework using the netstandard compact TFM (for example, netstandard1.4). Libraries that are intended to run on multiple runtimes should target this framework.


The NETStandard.Library metapackage references the complete set of NuGet packages that define the .NET Standard Library.  The most common way to target netstandard is by referencing this metapackage. It describes and provides access to the ~40 .NET  libraries and associated APIs that define the .NET Standard Library. You can reference additional packages that target netstandard to get access to additional APIs.





Versioning


The spec is not singular, but an incrementally growing and linearly versioned set of APIs. The first version of the standard establishes a baseline set of APIs. Subsequent versions add APIs and inherit APIs defined by previous versions. There is no established provision for removing APIs from the standard.


The .NET Standard Library is not specific to any one .NET runtime, nor does it match the versioning scheme of any of those runtimes.


APIs added to any of the runtimes (such as, .NET Framework, .NET Core and Mono) can be considered as candidates to add to the specification, particularly if they are thought to be fundamental in nature. New versions of the .NET Standard Library [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md#list-of-net-corefx-apis-and-their-associated-net-platform-standard-version] are created based on .NET runtime releases, enabling you to target new APIs from a .NET Standard PCL. The versioning mechanics are described in more detail in .NET Core Versioning.


.NET Standard Library versioning is important for usage. Given a .NET Standard Library version, you can use libraries that target that same or lower version. The following approach describes the workflow for using .NET Standard Library PCLs, specific to .NET Standard Library targeting.



		Select a .NET Standard Library version to use for your PCL.


		Use libraries that depend on the same .NET Standard Library version or lower.


		If you find a library that depends on a higher .NET Standard Library version, you either need to adopt that same version or decide not to use that library.








PCL Compatibility


The .NET Standard Library is compatible with a subset of PCL profiles. .NET Standard Library 1.0, 1.1 and 1.2 each overlap with a set of PCL profiles. This overlap was created for two reasons:



		Enable .NET Standard-based PCLs to reference profile-based PCLs.


		Enable profile-based PCLs to be packaged as .NET Standard-based PCLs.





Profile-based PCL compatibility is provided by the Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] NuGet package. This dependency is required when referencing NuGet packages that contain profile-based PCLs.


Profile-based PCLs packaged as netstandard are easier to consume than typically packaged profile-based PCLs in project.json. netstandard packaging is compatible with existing users.


You can see the set of PCL profiles that are compatible with the .NET Standard:


| Profile | .NET Platform Standard version |
| ———| ————— |
| Profile7  .NET Portable Subset (.NET Framework 4.5, Windows 8) | 1.1 |
| Profile31 .NET Portable Subset (Windows 8.1, Windows Phone Silverlight 8.1)| 1.0 |
| Profile32 .NET Portable Subset (Windows 8.1, Windows Phone 8.1) | 1.2 |
| Profile44 .NET Portable Subset (.NET Framework 4.5.1, Windows 8.1) | 1.2 |
| Profile49 .NET Portable Subset (.NET Framework 4.5, Windows Phone Silverlight 8) | 1.0 |
| Profile78 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone Silverlight 8) | 1.0 |
| Profile84 .NET Portable Subset (Windows Phone 8.1, Windows Phone Silverlight 8.1) | 1.0 |
| Profile111 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone 8.1) | 1.1 |
| Profile151 .NET Portable Subset (.NET Framework 4.5.1, Windows 8.1, Windows Phone 8.1) | 1.2 |
| Profile157 .NET Portable Subset (Windows 8.1, Windows Phone 8.1, Windows Phone Silverlight 8.1) | 1.0 |
| Profile259 .NET Portable Subset (.NET Framework 4.5, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8) | 1.0 |







Targeting .NET Standard Library


You can build .NET Standard Libraries using a combination of the netstandard framework and the NETStandard.Library metapackage. You can see examples of targeting the .NET Standard Library with .NET Core tools.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/393001.png
Allocating e Allocating
Thread 1 o P
Allocating Suspended Allocating
Thread 2 - e
Allocating Suspended Allocating
Thread 3 = > >e-
o o—p

Suspended l—)





fsharp/tutorials/fsharp-interactive/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Interactive (fsi.exe) Reference
description: F# Interactive (fsi.exe) Reference
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 36af8d1b-dc08-4a37-9497-d23c0a0ac11c





Interactive Programming with F#



[!NOTE]
This article currently describes the experience for Windows only.  It will be rewritten.




[!NOTE]
The API reference link will take you to MSDN.  The docs.microsoft.com API reference is not complete.



F# Interactive (fsi.exe) is used to run F# code interactively at the console, or to execute F# scripts. In other words, F# interactive executes a REPL (Read, Evaluate, Print Loop) for the F# language.


To run F# Interactive from the console, run fsi.exe.  You will find fsi.exe in “c:\Program Files (x86)\Microsoft SDKs\F#<version>\Framework<version>\”. For information about command line options available, see F# Interactive Options.


To run F# Interactive through Visual Studio, you can click the appropriate toolbar button labeled F# Interactive, or use the keys Ctrl+Alt+F. Doing this will open the interactive window, a tool window running an F# Interactive session. You can also select some code that you want to run in the interactive window and hit the key combination ALT+ENTER. F# Interactive starts in a tool window labeled F# Interactive. When you use this key combination, make sure that the editor window has the focus.


Whether you are using the console or Visual Studio, a command prompt appears and the interpreter awaits your input. You can enter code just as you would in a code file. To compile and execute the code, enter two semicolons (;;) to terminate a line or several lines of input.


F# Interactive attempts to compile the code and, if successful, it executes the code and prints the signature of the types and values that it compiled. If errors occur, the interpreter prints the error messages.


Code entered in the same session has access to any constructs entered previously, so you can build up programs. An extensive buffer in the tool window allows you to copy the code into a file if needed.


When run in Visual Studio, F# Interactive runs independently of your project, so, for example, you cannot use constructs defined in your project in F# Interactive unless you copy the code for the function into the interactive window.


If you have a project open that references some libraries, you can reference these in F# Interactive through Solution Explorer. To reference a library in F# Interactive, expand the References node, open the shortcut menu for the library, and choose Send to F# Interactive.


You can control the F# Interactive command line arguments (options) by adjusting the settings. On the Tools menu, select Options..., and then expand F# Tools. The two settings that you can change are the F# Interactive options and the 64-bit F# Interactive setting, which is relevant only if you are running F# Interactive on a 64-bit machine. This setting determines whether you want to run the dedicated 64-bit version of fsi.exe or fsianycpu.exe, which uses the machine architecture to determine whether to run as a 32-bit or 64-bit process.





Scripting with F#


Scripts use the file extension .fsx or .fsscript. Instead of compiling source code and then later running the compiled assembly, you can just run fsi.exe and specify the filename of the script of F# source code, and F# interactive reads the code and executes it in real time.





Differences Between the Interactive, Scripting and Compiled Environments


When you are compiling code in F# Interactive, whether you are running interactively or running a script, the symbol INTERACTIVE is defined. When you are compiling code in the compiler, the symbol COMPILED is defined. Thus, if code needs to be different in compiled and interactive modes, you can use preprocessor directives for conditional compilation to determine which to use.


Some directives are available when you are executing scripts in F# Interactive that are not available when you are executing the compiler. The following table summarizes directives that are available when you are using F# Interactive.


|Directive|Description|
|———|———–|
|#help|Displays information about available directives.|
|#I|Specifies an assembly search path in quotation marks.|
|#load|Reads a source file, compiles it, and runs it.|
|#quit|Terminates an F# Interactive session.|
|#r|References an assembly.|
|#time [“on”

|


“off”]|By itself, #time toggles whether to display performance information. When it is enabled, F# Interactive measures real time, CPU time, and garbage collection information for each section of code that is interpreted and executed.|


When you specify files or paths in F# Interactive, a string literal is expected. Therefore, files and paths must be in quotation marks, and the usual escape characters apply. Also, you can use the @ character to cause F# Interactive to interpret a string that contains a path as a verbatim string. This causes F# Interactive to ignore any escape characters.


One of the differences between compiled and interactive mode is the way you access command line arguments. In compiled mode, use System.Environment.GetCommandLineArgs. In scripts, use fsi.CommandLineArgs.


The following code illustrates how to create a function that reads the command line arguments in a script and also demonstrates how to reference another assembly from a script. The first code file, MyAssembly.fs, is the code for the assembly being referenced. Compile this file with the command line: fsc -a MyAssembly.fs and then execute the second file as a script with the command line: fsi –exec file1.fsx test


// MyAssembly.fs
module MyAssembly
let myFunction x y = x + 2 * y






// file1.fsx
#r "MyAssembly.dll"

printfn "Command line arguments: "

for arg in fsi.CommandLineArgs do
    printfn "%s" arg

printfn "%A" (MyAssembly.myFunction 10 40)






The output is as follows:


Command line arguments: 
file1.fsx
test
60









Related Topics


|Title|Description|
|—–|———–|
|F# Interactive Options|Describes command line syntax and options for the F# Interactive, fsi.exe.|
|F# Interactive Library Reference [https://msdn.microsoft.com/visualfsharpdocs/conceptual/fsharp-interactive-library-reference]|Describes library functionality available when executing code in F# interactive.|






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/TreeStructureDiagram.png





fsharp/tutorials/fsharp-interactive/fsharp-interactive-options.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Interactive Options
description: F# Interactive Options
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: f9f3e39b-ce6c-41ff-991f-0625f46441ae





F# Interactive Options



[!NOTE]
This article currently describes the experience for Windows only.  It will be rewritten.



This topic describes the command-line options supported by F# Interactive, fsi.exe. F# Interactive accepts many of the same command line options as the F# compiler, but also accepts some additional options.



Using F# Interactive for Scripting


F# Interactive, fsi.exe, can be launched interactively, or it can be launched from the command line to run a script. The command line syntax is


> fsi.exe [options] [ script-file [arguments] ]






The file extension for F# script files is .fsx.





Table of F# Interactive Options


The following table summarizes the options supported by F# Interactive. You can set these options on the command-line or through the Visual Studio IDE. To set these options in the Visual Studio IDE, open the Tools menu, select Options..., then expand the F# Tools node and select F# Interactive.


Where lists appear in F# Interactive option arguments, list elements are separated by semicolons (;).


|Option|Description|
|——|———–|
|–|Used to instruct F# Interactive to treat remaining arguments as command line arguments to the F# program or script, which you can access in code by using the list fsi.CommandLineArgs.|
|–checked[+

|


-]|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–codepage:&lt;


int&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–crossoptimize[+|


-]|Enable or disable cross-module optimizations.|
|–debug[+|


-]

–debug:[full|


pdbonly]

-g[+|


-]

-g:[full|


pdbonly]|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–define:&lt;


string&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–exec|Instructs F# interactive to exit after loading the files or running the script file given on the command line.|
|–fullpaths|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–gui[+|


-]|Enables or disables the Windows Forms event loop. The default is enabled.|
|–help

-?|Used to display the command line syntax and a brief description of each option.|
|–lib:&lt;


folder-list&gt;




-I:&lt;


folder-list&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–load:&lt;


filename&gt;


|Compiles the given source code at startup and loads the compiled F# constructs into the session. If the target source contains scripting directives such as #use or #load, then you must use –use or #use instead of –load or #load.|
|–mlcompatibility|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–noframework|Same as the fsc.exe compiler option. For more information, see Compiler Options|
|–nologo|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–nowarn:&lt;


warning-list&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–optimize[+|


-]|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–quiet|Suppress F# Interactive’s output to the stdout stream.|
|–quotations-debug|Specifies that extra debugging information should be emitted for expressions that are derived from F# quotation literals and reflected definitions. The debug information is added to the custom attributes of an F# expression tree node. See Code Quotations and Expr.CustomAttributes [https://msdn.microsoft.com/library/eb89943f-5f5b-474e-b125-030ca412edb3].|
|–readline[+|


-]|Enable or disable tab completion in interactive mode.|
|–reference:&lt;


filename&gt;




-r:&lt;


filename&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–tailcalls[+|


-]|Enable or disable the use of the tail IL instruction, which causes the stack frame to be reused for tail recursive functions. This option is enabled by default.|
|–use:&lt;


filename&gt;


|Tells the interpreter to use the given file on startup as initial input.|
|–utf8output|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–warn:&lt;


warning-level&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–warnaserror[+|


-]|Same as the fsc.exe compiler option. For more information, see Compiler Options.|
|–warnaserror[+|


-]:&lt;


int-list&gt;


|Same as the fsc.exe compiler option. For more information, see Compiler Options.|





Related Topics


|Title|Description|
|—–|———–|
|Compiler Options|Describes command line options available for the F# compiler, fsc.exe.|








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/dotnet-test-execute.png
Adapter

Run dome.test - prt

T
|
r
|
|
|
|
!
i<
|

S e
- VersonCheck Verson: ) - 4

| Testbxecution.GetTestRunnerProcessStatinto (Testsl— b
__Testesecution.GetTestiumerprocessSiartnfo____|
< (FileName:XvZ Arguments X1Z} 1

ettt runner ssemby UndeTest desgntime —partZ-viat-

‘
‘
‘
‘
‘
‘
‘
‘
3
r
‘
‘
‘

N

TestExecution TestResult-

i
!
. Testecuton compleed

N

! Testsesion Terminte
!

~TestRunner.WaitingCommand —

“TestExecution TestStarted— —

TestExecution. TestResult-

TestRunner.Completed- —






standard/managed-code.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: What is “managed code”?
description: What is “managed code”?
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 20bb7ea8-192e-4a96-8ef3-e10e1950fd3d





What is “managed code”?


When working with .NET Framework, you will often encounter the term “managed code”. This document will explain what this term means and additional information around it.


To put it very simply, managed code is just that: code whose execution is managed by a runtime. In this case, the runtime in question is called the Common Language Runtime or CLR, regardless of the implementation (Mono [http://www.mono-project.com/] or .NET Framework or .NET Core). CLR is in charge of taking the managed code, compiling it into machine code and then executing it. On top of that, runtime provides several important services such as automatic memory management, security boundaries, type safety etc.


Contrast this to the way you would run a C/C++ program, also called “unmanaged code”. In the unmanaged world, the programmer is in charge of pretty much everything. The actual program is, essentially, a binary that the operating system (OS) loads into memory and starts. Everything else, from memory management to security considerations are a burden of the programmer.


Managed code is written in one of the high-level languages that can be run on top of the .NET platform, such as C#, Visual Basic, F# and others. When you compile code written in those languages with their respective compiler, you don’t get machine code. You get Intermediate Language code which the runtime then compiles and executes. C++ is the one exception to this rule, as it can also produce native, unmanaged binaries that run on Windows.



Intermediate Language & Execution


What is “Intermediate Language” (or IL for short)? It is a product of compilation of code written in high-level .NET languages. Once you compile your code written in one of these languages, you will get a binary that is made out of IL. It is important to note that the IL is independent from any specific language that runs on top of the runtime; there is even a separate specification for it that you can read if you’re so inclined.


Once you produce IL from your high-level code, you will most likely want to run it. This is where the CLR takes over and starts the process of Just-In-Time compiling, or JIT-ing your code from IL to machine code that can actually be run on a CPU. In this way, the CLR knows exactly what your code is doing and can effectivelly manage it.





Unmanaged code interoperability


Of course, the CLR allows passing the boundaries between managed and unmanaged world, and there is a lot of code that does that, even in the Base Class Libraries. This is called interoperability or just interop for short. These provisions would allow you to, for example, wrap up an unmanaged library and call into it. However, it is important to note that once you do this, when the code passes the boundaries of the runtime, the actual management of the execution is again in the hand of unmanged code, and thus falls under the same restrictions.


Similar to this, C# is one language that allows you to use unmanaged constructs such as pointers directly in code by utilizing what is known as unsafe context which designates a piece of code for which the execution is not managed by the CLR.





More resources



		.NET Framework Conceptual Overview [https://msdn.microsoft.com/library/zw4w595w.aspx]


		Unsafe Code and Pointers [https://msdn.microsoft.com/library/t2yzs44b.aspx]


		Interoperability (C# Programming guide) [https://msdn.microsoft.com/library/ms173184.aspx]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/delegates-lambdas.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Delegates and lambdas
description: Delegates and lambdas
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: fe2e4b4c-6483-4106-a4b4-a33e2e306591





Delegates and lambdas


Delegates define a type, which specify a particular method signature. A method (static or instance) that satisfies this signature can be assigned to a variable of that type, then called directly (with the appropriate arguments) or passed as an argument itself to another method and then called. The following example demonstrates delegate use.


public class Program
{

  public delegate string Reverse(string s);

  static string ReverseString(string s)
  {
      return new string(s.Reverse().ToArray());
  }

  static void Main(string[] args)
  {
      Reverse rev = ReverseString;

      Console.WriteLine(rev("a string"));
  }
}







		On line 4 we create a delegate type of a certain signature, in this case a method that takes a string parameter and then returns a string parameter.


		On line 6, we define the implementation of the delegate by providing a method that has the exact same signature.


		On line 13, the method is assigned to a type that conforms to the Reverse delegate.


		Finally, on line 15 we invoke the delegate passing a string to be reversed.





In order to streamline the development process, .NET includes a set of delegate types that programmers can reuse and not have to create new types. These are Func<>, Action<> and Predicate<>, and they can be used in various places throughout the .NET APIs without the need to define new delegate types. Of course, there are some differences between the three as you will see in their signatures which mostly have to do with the way they were meant to be used:



		Action<> is used when there is a need to perform an action using the arguments of the delegate.


		Func<> is used usually when you have a transformation on hand, that is, you need to transform the arguments of the delegate into a different result. Projections are a prime example of this.


		Predicate<> is used when you need to determine if the argument satisfies the condition of the delegate. It can also be written as a Func<T, bool>.





We can now take our example above and rewrite it using the Func<> delegate instead of a custom type. The program will continue running exactly the same.


public class Program
{

  static string ReverseString(string s)
  {
      return new string(s.Reverse().ToArray());
  }

  static void Main(string[] args)
  {
      Func<string, string> rev = ReverseString;

      Console.WriteLine(rev("a string"));
  }
}






For this simple example, having a method defined outside of the Main() method seems a bit superfluous. It is because of this that .NET Framework 2.0 introduced the concept of anonymous delegates. With their support you are able to create “inline” delegates without having to specify any additional type or method. You simply inline the definition of the delegate where you need it.


For an example, we are going to switch it up and use our anonymous delegate to filter out a list of only even numbers and then print them to the console.


public class Program
{

  public static void Main(string[] args)
  {
    List<int> list = new List<int>();

    for (int i = 1; i <= 100; i++)
    {
        list.Add(i);
    }

    List<int> result = list.FindAll(
      delegate(int no)
      {
          return (no%2 == 0);
      }
    );

    foreach (var item in result)
    {
        Console.WriteLine(item);
    }
  }
}






Notice the highlighted lines. As you can see, the body of the delegate is just a set of expressions, as any other delegate. But instead of it being a separate definition, we’ve introduced it ad hoc in our call to the FindAll() method of the List<T> type.


However, even with this approach, there is still much code that we can throw away. This is where lambda expressions come into play.


Lambda expressions, or just “lambdas” for short, were introduced first in C# 3.0, as one of the core building blocks of Language Integrated Query (LINQ). They are just a more convenient syntax for using delegates. They declare a signature and a method body, but don’t have an formal identity of their own, unless they are assigned to a delegate. Unlike delegates, they can be directly assigned as the left-hand side of event registration or in various Linq clauses and methods.


Since a lambda expression is just another way of specifying a delegate, we should be able to rewrite the above sample to use a lambda expression instead of an anonymous delegate.


public class Program
{

  public static void Main(string[] args)
  {
    List<int> list = new List<int>();

    for (int i = 1; i <= 100; i++)
    {
        list.Add(i);
    }

    List<int> result = list.FindAll(i => i % 2 == 0);

    foreach (var item in result)
    {
        Console.WriteLine(item);
    }
  }
}






If you take a look at the highlighted lines, you can see how a lambda expression looks like. Again, it is just a very convenient syntax for using delegates, so what happens under the covers is similar to what happens with the anonymous delegate.


Again, lambdas are just delegates, which means that they can be used as an event handler without any problems, as the following code snippet illustrates.


public MainWindow()
{
    InitializeComponent();

    Loaded += (o, e) =>
    {
        this.Title = "Loaded";
    };
}







Further reading and resources



		Delegates [https://msdn.microsoft.com/library/ms173171.aspx]


		Anonymous Functions [https://msdn.microsoft.com/library/bb882516.aspx]


		Lambda expressions [https://msdn.microsoft.com/library/bb397687.aspx]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/StudentCourseDB.png
CourseSelection Course
StudentlD ? Courseld
CourselD poc———@s |  CourseName
5

Student Laststudent

¥ studentid ¥ studenti
Name Name
Age Age






fsharp/language-reference/functions/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Functions (F#)
description: Functions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 6dea2c3e-2f9d-4c9d-97a2-d8f9a72b6f4c





Functions


Functions are the fundamental unit of program execution in any programming language. As in other languages, an F# function has a name, can have parameters and take arguments, and has a body. F# also supports functional programming constructs such as treating functions as values, using unnamed functions in expressions, composition of functions to form new functions, curried functions, and the implicit definition of functions by way of the partial application of function arguments.


You define functions by using the let keyword, or, if the function is recursive, the let rec keyword combination.



Syntax


// Non-recursive function definition.
let [inline] function-nameparameter-list [ : return-type ] = function-body
// Recursive function definition.
let rec function-nameparameter-list = recursive-function-body









Remarks


The function-name is an identifier that represents the function. The parameter-list consists of successive parameters that are separated by spaces. You can specify an explicit type for each parameter, as described in the Parameters section. If you do not specify a specific argument type, the compiler attempts to infer the type from the function body. The function-body consists of an expression. The expression that makes up the function body is typically a compound expression consisting of a number of expressions that culminate in a final expression that is the return value. The return-type is a colon followed by a type and is optional. If you do not specify the type of the return value explicitly, the compiler determines the return type from the final expression.


A simple function definition resembles the following:


let f x = x + 1






In the previous example, the function name is f, the argument is x, which has type int, the function body is x + 1, and the return value is of type int.


The inline specifier is a hint to the compiler that the function is small and that the code for the function can be integrated into the body of the caller.





Scope


At any level of scope other than module scope, it is not an error to reuse a value or function name. If you reuse a name, the name declared later shadows the name declared earlier. However, at the top level scope in a module, names must be unique. For example, the following code produces an error when it appears at module scope, but not when it appears inside a function:


[!code-fsharpMain]


But the following code is acceptable at any level of scope:


[!code-fsharpMain]



Parameters


Names of parameters are listed after the function name. You can specify a type for a parameter, as shown in the following example:


let f (x : int) = x + 1






If you specify a type, it follows the name of the parameter and is separated from the name by a colon. If you omit the type for the parameter, the parameter type is inferred by the compiler. For example, in the following function definition, the argument x is inferred to be of type int because 1 is of type int.


let f x = x + 1






However, the compiler will attempt to make the function as generic as possible. For example, note the following code:


let f x = (x, x)






The function creates a tuple from one argument of any type. Because the type is not specified, the function can be used with any argument type. For more information, see Automatic Generalization.







Function Bodies


A function body can contain definitions of local variables and functions. Such variables and functions are in scope in the body of the current function but not outside it. When you have the lightweight syntax option enabled, you must use indentation to indicate that a definition is in a function body, as shown in the following example:


[!code-fsharpMain]


For more information, see Code Formatting Guidelines and Verbose Syntax.





Return Values


The compiler uses the final expression in a function body to determine the return value and type. The compiler might infer the type of the final expression from previous expressions. In the function cylinderVolume, shown in the previous section, the type of pi is determined from the type of the literal 3.14159 to be float. The compiler uses the type of pi to determine the type of the expression h * pi * r * r to be float. Therefore, the overall return type of the function is float.


To specify the return value explicitly, write the code as follows:


[!code-fsharpMain]


As the code is written above, the compiler applies float to the entire function; if you mean to apply it to the parameter types as well, use the following code:


let cylinderVolume (radius : float) (length : float) : float









Calling a Function


You call functions by specifying the function name followed by a space and then any arguments separated by spaces. For example, to call the function cylinderVolume and assign the result to the value vol, you write the following code:


let vol = cylinderVolume 2.0 3.0









Partial Application of Arguments


If you supply fewer than the specified number of arguments, you create a new function that expects the remaining arguments. This method of handling arguments is referred to as currying and is a characteristic of functional programming languages like F#. For example, suppose you are working with two sizes of pipe: one has a radius of 2.0 and the other has a radius of 3.0. You could create functions that determine the volume of pipe as follows:


[!code-fsharpMain]


You would then supply the additional argument as needed for various lengths of pipe of the two different sizes:


[!code-fsharpMain]





Recursive Functions


Recursive functions are functions that call themselves. They require that you specify the rec keyword following the let keyword. Invoke the recursive function from within the body of the function just as you would invoke any function call. The following recursive function computes the nth Fibonacci number. The Fibonacci number sequence has been known since antiquity and is a sequence in which each successive number is the sum of the previous two numbers in the sequence.


[!code-fsharpMain]


Some recursive functions might overflow the program stack or perform inefficiently if you do not write them with care and with awareness of special techniques, such as the use of accumulators and continuations.





Function Values


In F#, all functions are considered values; in fact, they are known as function values. Because functions are values, they can be used as arguments to other functions or in other contexts where values are used. Following is an example of a function that takes a function value as an argument:


[!code-fsharpMain]


You specify the type of a function value by using the -> token. On the left side of this token is the type of the argument, and on the right side is the return value. In the previous example, apply1 is a function that takes a function transform as an argument, where transform is a function that takes an integer and returns another integer. The following code shows how to use apply1:


[!code-fsharpMain]


The value of result will be 101 after the previous code runs.


Multiple arguments are separated by successive -> tokens, as shown in the following example:


[!code-fsharpMain]


The result is 200.





Lambda Expressions


A lambda expression is an unnamed function. In the previous examples, instead of defining named functions increment and mul, you could use lambda expressions as follows:


[!code-fsharpMain]


You define lambda expressions by using the fun keyword. A lambda expression resembles a function definition, except that instead of the = token, the -> token is used to separate the argument list from the function body. As in a regular function definition, the argument types can be inferred or specified explicitly, and the return type of the lambda expression is inferred from the type of the last expression in the body. For more information, see Lambda Expressions: The fun Keyword.





Function Composition and Pipelining


Functions in F# can be composed from other functions. The composition of two functions function1 and function2 is another function that represents the application of function1 followed the application of function2:


[!code-fsharpMain]


The result is 202.


Pipelining enables function calls to be chained together as successive operations. Pipelining works as follows:


let result = 100 |> function1 |> function2






The result is again 202.


The composition operators take two functions and return a function; by contrast, the pipeline operators take a function and an argument and return a value. The following code example shows the difference between the pipeline and composition operators by showing the differences in the function signatures and usage.


// Function composition and pipeline operators compared.

let addOne x = x + 1
let timesTwo x = 2 * x

// Composition operator
// ( >> ) : ('T1 -> 'T2) -> ('T2 -> 'T3) -> 'T1 -> 'T3
let Compose2 = addOne >> timesTwo

// Backward composition operator
// ( << ) : ('T2 -> 'T3) -> ('T1 -> 'T2) -> 'T1 -> 'T3
let Compose1 = addOne << timesTwo

// Result is 5
let result1 = Compose1 2

// Result is 6
let result2 = Compose2 2

// Pipelining
// Pipeline operator
// ( <| ) : ('T -> 'U) -> 'T -> 'U
let Pipeline1 x = addOne <| timesTwo x

// Backward pipeline operator
// ( |> ) : 'T1 -> ('T1 -> 'U) -> 'U
let Pipeline2 x = addOne x |> timesTwo

// Result is 5
let result3 = Pipeline1 2

// Result is 6
let result4 = Pipeline2 2









Overloading Functions


You can overload methods of a type but not functions. For more information, see Methods.





See Also


Values


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/functions/recursive-functions-the-rec-keyword.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Recursive Functions: The rec Keyword (F#)”
description: “Recursive Functions: The rec Keyword (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 1a95639f-9bfe-4f1d-a5e2-246d1d37776e





Recursive Functions: The rec Keyword


The rec keyword is used together with the let keyword to define a recursive function.



Syntax


// Recursive function:
let rec function-nameparameter-list =
function-body

// Mutually recursive functions:
let rec function1-nameparameter-list =
function1-body
and function2-nameparameter-list =
function2-body
...









Remarks


Recursive functions, functions that call themselves, are identified explicitly in the F# language. This makes the identifer that is being defined available in the scope of the function.


The following code illustrates a recursive function that computes the nth Fibonacci number.


[!code-fsharpMain]



[!NOTE]
In practice, code like that above is wasteful of memory and processor time because it involves the recomputation of previously computed values.



Methods are implicitly recursive within the type; there is no need to add the rec keyword. Let bindings within classes are not implicitly recursive.





Mutually Recursive Functions


Sometimes functions are mutually recursive, meaning that calls form a circle, where one function calls another which in turn calls the first, with any number of calls in between. You must define such functions together in the one let binding, using the and keyword to link them together.


The following example shows two mutually recursive functions.


[!code-fsharpMain]





See Also


Functions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Members (F#)
description: Members (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: e472f50a-4939-4e62-abbc-471f8f265790





Members


This section describes members of F# object types.



Remarks


Members are features that are part of a type definition and are declared with the member keyword. F# object types such as records, classes, discriminated unions, interfaces, and structures support members. For more information, see Records, Classes, Discriminated Unions, Interfaces, and Structures.


Members typically make up the public interface for a type, which is why they are public unless otherwise specified. Members can also be declared private or internal. For more information, see Access Control. Signatures for types can also be used to expose or not expose certain members of a type. For more information, see Signatures.


Private fields and do bindings, which are used only with classes, are not true members, because they are never part of the public interface of a type and are not declared with the member keyword, but they are described in this section also.





Related Topics


|Topic|Description|
|—–|———–|
|let Bindings in Classes|Describes the definition of private fields and functions in classes.|
|do Bindings in Classes|Describes the specification of object initialization code.|
|Properties|Describes property members in classes and other types.|
|Indexed Properties|Describes array-like properties in classes and other types.|
|Methods|Describes functions that are members of a type.|
|Constructors|Describes special functions that initialize objects of a type.|
|Operator Overloading|Describes the definition of customized operators for types.|
|Events|Describes the definition of events and event handling support in F#.|
|Explicit Fields: The val Keyword|Describes the definition of uninitialized fields in a type.|








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/explicit-fields-the-val-keyword.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Explicit Fields: The val Keyword (F#)”
description: “Explicit Fields: The val Keyword (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3bdbc745-436b-407f-bf54-5d11ca829cd0





Explicit Fields: The val Keyword


The val keyword is used to declare a location to store a value in a class or structure type, without initializing it. Storage locations declared in this manner are called explicit fields. Another use of the val keyword is in conjunction with the member keyword to declare an auto-implemented property. For more information on auto-implemented properties, see Properties.



Syntax


val [ mutable ] [ access-modifier ] field-name : type-name









Remarks


The usual way to define fields in a class or structure type is to use a let binding. However, let bindings must be initialized as part of the class constructor, which is not always possible, necessary, or desirable. You can use the val keyword when you want a field that is uninitialized.


Explicit fields can be static or non-static. The access-modifier can be public, private, or internal. By default, explicit fields are public. This differs from let bindings in classes, which are always private.


The DefaultValue [https://msdn.microsoft.com/library/a3a3307b-8c05-441e-b109-245511614d58] attribute is required on explicit fields in class types that have a primary constructor. This attribute specifies that the field is initialized to zero. The type of the field must support zero-initialization. A type supports zero-initialization if it is one of the following:



		A primitive type that has a zero value.


		A type that supports a null value, either as a normal value, as an abnormal value, or as a representation of a value. This includes classes, tuples, records, functions, interfaces, .NET reference types, the unit type, and discriminated union types.


		A .NET value type.


		A structure whose fields all support a default zero value.





For example, an immutable field called someField has a backing field in the .NET compiled representation with the name someField@, and you access the stored value using a property named someField.


For a mutable field, the .NET compiled representation is a .NET field.



[!WARNING]
Note The .NET Framework namespace System.ComponentModel contains an attribute that has the same name. For information about this attribute, see System.ComponentModel.DefaultValueAttribute.



The following code shows the use of explicit fields and, for comparison, a let binding in a class that has a primary constructor. Note that the let-bound field myInt1 is private. When the let-bound field myInt1 is referenced from a member method, the self identifier this is not required. But when you are referencing the explicit fields myInt2 and myString, the self identifier is required.


[!code-fsharpMain]


The output is as follows:


11 12 abc
30 def






The following code shows the use of explicit fields in a class that does not have a primary constructor. In this case, the DefaultValue attribute is not required, but all the fields must be initialized in the constructors that are defined for the type.


[!code-fsharpMain]


The output is 35 22.


The following code shows the use of explicit fields in a structure. Because a structure is a value type, it automatically has a default constructor that sets the values of its fields to zero. Therefore, the DefaultValue attribute is not required.


[!code-fsharpMain]


The output is 11 xyz.


Explicit fields are not intended for routine use. In general, when possible you should use a let binding in a class instead of an explicit field. Explicit fields are useful in certain interoperability scenarios, such as when you need to define a structure that will be used in a platform invoke call to a native API, or in COM interop scenarios. For more information, see External Functions. Another situation in which an explicit field might be necessary is when you are working with an F# code generator which emits classes without a primary constructor. Explicit fields are also useful for thread-static variables or similar constructs. For more information, see System.ThreadStaticAttribute.


When the keywords member val appear together in a type definition, it is a definition of an automatically implemented property. For more information, see Properties.





See Also


Properties


Members


let Bindings in Classes








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/indexed-properties.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Indexed Properties (F#)
description: Indexed Properties (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: f1266b8b-e2e3-4f49-9332-65c6d34dc0f3





Indexed Properties


Indexed properties are properties that provide array-like access to ordered data.



Syntax


// Indexed property that has both get and set defined.
member self-identifier.PropertyName
    with get(index-variable) =
        get-function-body
    and set index-variablesvalue-variables =
        set-function-body

// Indexed property that has get only.
member self-identifier.PropertyName(index-variable) =
    get-function-body

// Alternative syntax for indexed property with get only
member self-identifier.PropertyName
    with get(index-variables) =
        get-function-body

// Indexed property that has set only.
member self-identifier.PropertyName
    with set index-variablesvalue-variables = 
        set-function-body









Remarks


The three forms of the previous syntax show how to define indexed properties that have both a get and a set method, have a get method only, or have a set method only. You can also combine both the syntax shown for get only and the syntax shown for set only, and produce a property that has both get and set. This latter form allows you to put different accessibility modifiers and attributes on the get and set methods.


When the PropertyName is Item, the compiler treats the property as a default indexed property. A default indexed property is a property that you can access by using array-like syntax on the object instance. For example, if obj is an object of the type that defines this property, the syntax obj.[index] is used to access the property.


The syntax for accessing a nondefault indexed property is to provide the name of the property and the index in parentheses. For example, if the property is Ordinal, you write obj.Ordinal(index) to access it.


Regardless of which form you use, you should always use the curried form for the set method on an indexed property. For information about curried functions, see Functions.





Example


The following code example illustrates the definition and use of default and non-default indexed properties that have get and set methods.


[!code-fsharpMain]





Output


ONE two three four five six seven eight nine ten
ONE first two second three third four fourth five fifth six 6th
seven seventh eight eighth nine ninth ten tenth









Indexed Properties with Multiple Index Variables


Indexed properties can have more than one index variable. In that case, the variables are separated by commas when the property is used. The set method in such a property must have two curried arguments, the first of which is a tuple containing the keys, and the second of which is the value being set.


The following code demonstrates the use of an indexed property with multiple index variables.


[!code-fsharpMain]





See Also


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/do-bindings-in-classes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: do Bindings in Classes (F#)
description: do Bindings in Classes (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 78987cb8-bdba-46e2-b5b2-994c83fe42c4





do Bindings in Classes


A do binding in a class definition performs actions when the object is constructed or, for a static do binding, when the type is first used.



Syntax


[static] do expression









Remarks


A do binding appears together with or after let bindings but before member definitions in a class definition. Although the do keyword is optional for do bindings at the module level, it is not optional for do bindings in a class definition.


For the construction of every object of any given type, non-static do bindings and non-static let bindings are executed in the order in which they appear in the class definition. Multiple do bindings can occur in one type. The non-static let bindings and the non-static do bindings become the body of the primary constructor. The code in the non-static do bindings section can reference the primary constructor parameters and any values or functions that are defined in the let bindings section.


Non-static do bindings can access members of the class as long as the class has a self identifier that is defined by an as keyword in the class heading, and as long as all uses of those members are qualified with the self identifier for the class.


Because let bindings initialize the private fields of a class, which is often necessary to guarantee that members behave as expected, do bindings are usually put after let bindings so that code in the do binding can execute with a fully initialized object. If your code attempts to use a member before the initialization is complete, an InvalidOperationException is raised.


Static do bindings can reference static members or fields of the enclosing class but not instance members or fields. Static do bindings become part of the static initializer for the class, which is guaranteed to execute before the class is first used.


Attributes are ignored for do bindings in types. If an attribute is required for code that executes in a do binding, it must be applied to the primary constructor.


In the following code, a class has a static do binding and a non-static do binding. The object has a constructor that has two parameters, a and b, and two private fields are defined in the let bindings for the class. Two properties are also defined. All of these are in scope in the non-static do bindings section, as is illustrated by the line that prints all those values.


[!code-fsharpMain]


The output is as follows.


Initializing MyType.
Initializing object 1 2 2 4 8 16









See Also


Members


Classes


Constructors


let Bindings in Classes


do Bindings








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/let-bindings-in-classes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: let Bindings in Classes (F#)
description: let Bindings in Classes (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 9d3710f5-68b1-4e4c-b02b-27fe018f20e8





let Bindings in Classes


You can define private fields and private functions for F# classes by using let bindings in the class definition.



Syntax


// Field.
[static] let [ mutable ] binding1 [ and ... binding-n ]

// Function.
[static] let [ rec ] binding1 [ and ... binding-n ]









Remarks


The previous syntax appears after the class heading and inheritance declarations but before any member definitions. The syntax is like that of let bindings outside of classes, but the names defined in a class have a scope that is limited to the class. A let binding creates a private field or function; to expose data or functions publicly, declare a property or a member method.


A let binding that is not static is called an instance let binding. Instance let bindings execute when objects are created. Static let bindings are part of the static initializer for the class, which is guaranteed to execute before the type is first used.


The code within instance let bindings can use the primary constructor’s parameters.


Attributes and accessibility modifiers are not permitted on let bindings in classes.


The following code examples illustrate several types of let bindings in classes.


[!code-fsharpMain]


The output is as follows.


10 52 1 204









Alternative Ways to Create Fields


You can also use the val keyword to create a private field. When using the val keyword, the field is not given a value when the object is created, but instead is initialized with a default value. For more information, see Explicit Fields: The val Keyword.


You can also define private fields in a class by using a member definition and adding the keyword private to the definition. This can be useful if you expect to change the accessibility of a member without rewriting your code. For more information, see Access Control.





See Also


Members


do Bindings in Classes


let Bindings








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/constructors.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Constructors (F#)
description: Constructors (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: e0da2250-29de-4145-a1be-e5faff080759





Constructors


This topic describes how to define and use constructors to create and initialize class and structure objects.



Construction of Class Objects


Objects of class types have constructors. There are two kinds of constructors. One is the primary constructor, whose parameters appear in parentheses just after the type name. You specify other, optional additional constructors by using the new keyword. Any such additional constructors must call the primary constructor.


The primary constructor contains let and do bindings that appear at the start of the class definition. A let binding declares private fields and methods of the class; a do binding executes code. For more information about let bindings in class constructors, see let Bindings in Classes. For more information about do bindings in constructors, see do Bindings in Classes.


Regardless of whether the constructor you want to call is a primary constructor or an additional constructor, you can create objects by using a new expression, with or without the optional new keyword. You initialize your objects together with constructor arguments, either by listing the arguments in order and separated by commas and enclosed in parentheses, or by using named arguments and values in parentheses. You can also set properties on an object during the construction of the object by using the property names and assigning values just as you use named constructor arguments.


The following code illustrates a class that has a constructor and various ways of creating objects.


[!code-fsharpMain]


The output is as follows.


Initialized object that has coordinates (1, 2, 3)
Initialized object that has coordinates (4, 5, 6)
Initialized object that has coordinates (7, 8, 9)
Initialized object that has coordinates (0, 0, 0)









Construction of Structures


Structures follow all the rules of classes. Therefore, you can have a primary constructor, and you can provide additional constructors by using new. However, there is one important difference between structures and classes: structures can have a default constructor (that is, one with no arguments) even if no primary constructor is defined. The default constructor initializes all the fields to the default value for that type, usually zero or its equivalent. Any constructors that you define for structures must have at least one argument so that they do not conflict with the default constructor.


Also, structures often have fields that are created by using the val keyword; classes can also have these fields. Structures and classes that have fields defined by using the val keyword can also be initialized in additional constructors by using record expressions, as shown in the following code.


[!code-fsharpMain]


For more information, see Explicit Fields: The val Keyword.





Executing Side Effects in Constructors


A primary constructor in a class can execute code in a do binding. However, what if you have to execute code in an additional constructor, without a do binding? To do this, you use the then keyword.


[!code-fsharpMain]


The side effects of the primary constructor still execute. Therefore, the output is as follows.


Created a person object.
Created a person object.
Created an invalid person object.









Self Identifiers in Constructors


In other members, you provide a name for the current object in the definition of each member. You can also put the self identifier on the first line of the class definition by using the as keyword immediately following the constructor parameters. The following example illustrates this syntax.


[!code-fsharpMain]


In additional constructors, you can also define a self identifier by putting the as clause right after the constructor parameters. The following example illustrates this syntax.


[!code-fsharpMain]


Problems can occur when you try to use an object before it is fully defined. Therefore, uses of the self identifier can cause the compiler to emit a warning and insert additional checks to ensure the members of an object are not accessed before the object is initialized. You should only use the self identifier in the do bindings of the primary constructor, or after the then keyword in additional constructors.


The name of the self identifier does not have to be this. It can be any valid identifier.





Assigning Values to Properties at Initialization


You can assign values to the properties of a class object in the initialization code by appending a list of assignments of the form property = value to the argument list for a constructor. This is shown in the following code example.


[!code-fsharpMain]


The following version of the previous code illustrates the combination of ordinary arguments, optional arguments, and property settings in one constructor call.


[!code-fsharpMain]





Constructors in inherited class


When inheriting from a base class that has a constructor, you must specify its arguments in the inherit clause. For more information, see Constructors and inheritance.





Static Constructors or Type Constructors


In addition to specifying code for creating objects, static let and do bindings can be authored in class types that execute before the type is first used to perform initialization at the type level. For more information, see let Bindings in Classes and do Bindings in Classes.





See Also


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/methods.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Methods (F#)
description: Methods (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 1febab3b-c922-49c6-889f-c22db107710c





Methods


A method is a function that is associated with a type. In object-oriented programming, methods are used to expose and implement the functionality and behavior of objects and types.



Syntax


// Instance method definition.
[ attributes ]
member [inline] self-identifier.method-nameparameter-list [ : return-type ]=
    method-body

// Static method definition.
[ attributes ]
static member [inline] method-nameparameter-list [ : return-type ]=
    method-body

// Abstract method declaration or virtual dispatch slot.
[ attributes ]
abstract member self-identifier.method-name : type-signature

// Virtual method declaration and default implementation.
[ attributes ]
abstract member [inline] self-identifier.method-name : type-signature
[ attributes ]
default member [inline] self-identifier.method-nameparameter-list[ : return-type ] =
    method-body

// Override of inherited virtual method.
[ attributes ]
override member [inline] self-identifier.method-nameparameter-list [ : return-type ]=
    method-body









Remarks


In the previous syntax, you can see the various forms of method declarations and definitions. In longer method bodies, a line break follows the equal sign (=), and the whole method body is indented.


Attributes can be applied to any method declaration. They precede the syntax for a method definition and are usually listed on a separate line. For more information, see Attributes.


Methods can be marked inline. For information about inline, see Inline Functions.


Non-inline methods can be used recursively within the type; there is no need to explicitly use the rec keyword.





Instance Methods


Instance methods are declared with the member keyword and a self-identifier, followed by a period (.) and the method name and parameters. As is the case for let bindings, the parameter-list can be a pattern. Typically, you enclose method parameters in parentheses in a tuple form, which is the way methods appear in F# when they are created in other .NET Framework languages. However, the curried form (parameters separated by spaces) is also common, and other patterns are supported also.


The following example illustrates the definition and use of a non-abstract instance method.


[!code-fsharpMain]


Within instance methods, do not use the self identifier to access fields defined by using let bindings. Use the self identifier when accessing other members and properties.





Static Methods


The keyword static is used to specify that a method can be called without an instance and is not associated with an object instance. Otherwise, methods are instance methods.


The example in the next section shows fields declared with the let keyword, property members declared with the member keyword, and a static method declared with the static keyword.


The following example illustrates the definition and use of static methods. Assume that these method definitions are in the SomeType class in the previous section.


[!code-fsharpMain]





Abstract and Virtual Methods


The keyword abstract indicates that a method has a virtual dispatch slot and might not have a definition in the class. A virtual dispatch slot is an entry in an internally maintained table of functions that is used at run time to look up virtual function calls in an object-oriented type. The virtual dispatch mechanism is the mechanism that implements polymorphism, an important feature of object-oriented programming. A class that has at least one abstract method without a definition is an abstract class, which means that no instances can be created of that class. For more information about abstract classes, see Abstract Classes.


Abstract method declarations do not include a method body. Instead, the name of the method is followed by a colon (:) and a type signature for the method. The type signature of a method is the same as that shown by IntelliSense when you pause the mouse pointer over a method name in the Visual Studio Code Editor, except without parameter names. Type signatures are also displayed by the interpreter, fsi.exe, when you are working interactively. The type signature of a method is formed by listing out the types of the parameters, followed by the return type, with appropriate separator symbols. Curried parameters are separated by -> and tuple parameters are separated by *. The return value is always separated from the arguments by a -> symbol. Parentheses can be used to group complex parameters, such as when a function type is a parameter, or to indicate when a tuple is treated as a single parameter rather than as two parameters.


You can also give abstract methods default definitions by adding the definition to the class and using the default keyword, as shown in the syntax block in this topic. An abstract method that has a definition in the same class is equivalent to a virtual method in other .NET Framework languages. Whether or not a definition exists, the abstract keyword creates a new dispatch slot in the virtual function table for the class.


Regardless of whether a base class implements its abstract methods, derived classes can provide implementations of abstract methods. To implement an abstract method in a derived class, define a method that has the same name and signature in the derived class, except use the override or default keyword, and provide the method body. The keywords override and default mean exactly the same thing. Use override if the new method overrides a base class implementation; use default when you create an implementation in the same class as the original abstract declaration. Do not use the abstract keyword on the method that implements the method that was declared abstract in the base class.


The following example illustrates an abstract method Rotate that has a default implementation, the equivalent of a .NET Framework virtual method.


[!code-fsharpMain]


The following example illustrates a derived class that overrides a base class method. In this case, the override changes the behavior so that the method does nothing.


[!code-fsharpMain]





Overloaded Methods


Overloaded methods are methods that have identical names in a given type but that have different arguments. In F#, optional arguments are usually used instead of overloaded methods. However, overloaded methods are permitted in the language, provided that the arguments are in tuple form, not curried form.





Example: Properties and Methods


The following example contains a type that has examples of fields, private functions, properties, and a static method.


[!code-fsharpMain]





See Also


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/package-framework.png
Asset
selection






fsharp/tutorials/type-providers/accessing-a-web-service.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Walkthrough - Accessing a Web Service by Using Type Providers (F#)
description: Walkthrough - Accessing a Web Service by Using Type Providers (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 63374fa9-8fb8-43ac-bcb9-ef2290d9f851





Walkthrough: Accessing a Web Service by Using Type Providers



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This walkthrough shows you how to use the Web Services Description Language (WSDL) type provider that is available in F# 3.0 to access a WSDL service. In other .NET languages, you generate the code to access the web service by calling svcutil.exe, or by adding a web reference in, for example, a C# project to get Visual Studio to call svcutil.exe for you. In F#, you have the additional option of using the WSDL type provider, so as soon as you write the code that creates the WsdlService type, the types are generated and become available. This process relies on the service being available when you are writing the code.


This walkthrough illustrates the following tasks. You must complete them in this order for the walkthrough to succeed:



		Creating the project




		Configuring the type provider




		Calling the web service, and processing the results








Creating the project


In the step, you create a project and add the appropriate references to use a WSDL type provider.



To create and set up an F# project



		Open a new F# Console Application project.




		In Solution Explorer, open the shortcut menu for the project’s Reference node, and then choose Add Reference.




		In the Assemblies area, choose Framework, and then, in the list of available assemblies, choose System.Runtime.Serialization and System.ServiceModel.




		In the Assemblies area, choose Extensions.




		In the list of available assemblies, choose FSharp.Data.TypeProviders, and then choose the OK button to add references to these assemblies.












Configuring the type provider


In this step, you use the WSDL type provider to generate types for the TerraServer web service.



To configure the type provider and generate types



		Add the following line of code to open the type provider namespace.







open System
open System.ServiceModel
open Microsoft.FSharp.Linq
open Microsoft.FSharp.Data.TypeProviders







		Add the following line of code to invoke the type provider with a web service. In this example, use the TerraServer web service.







type TerraService = WsdlService<" HYPERLINK "http://terraserver-usa.com/TerraService2.asmx?WSDL" http://msrmaps.com/TerraService2.asmx?WSDL">






A red squiggle appears under this line of code if the service URI is misspelled or if the service itself is down or isn’t performing. If you point to the code, an error message describes the problem. You can find the same information in the Error List window or in the Output Window after you build.

  There are two ways to specify configuration settings for a WSDL connection, by using the app.config file for the project, or by using the static type parameters in the type provider declaration. You can use svcutil.exe to generate appropriate configuration file elements. For more information about using svcutil.exe to generate configuration information for a web service, see ServiceModel Metadata Utility Tool 

(


Svcutil.exe)


 [https://msdn.microsoft.com/library/aa347733.aspx]. For a full description of the static type parameters for the WSDL type provider, see WsdlService Type Provider [https://msdn.microsoft.com/visualfsharpdocs/conceptual/wsdlservice-type-provider-%5bfsharp%5d].









Calling the web service, and processing the results


Each web service has its own set of types that are used as parameters for its method calls. In this step, you prepare these parameters, call a web method, and process the information that it returns.



To call the web service, and process the results



		The web service might time out or stop functioning, so you should include the web service call in an exception handling block. Write the following code to try to get data from the web service.







try
  let terraClient = TerraService.GetTerraServiceSoap ()
  let myPlace = new TerraService.ServiceTypes.msrmaps.com.Place(City = "Redmond", State = "Washington", Country = "United States")
  let myLocation = terraClient.ConvertPlaceToLonLatPt(myPlace)
  printfn "Redmond Latitude: %f Longitude: %f" (myLocation.Lat) (myLocation.Lon)
with
| :? ServerTooBusyException as exn ->
  let innerMessage =
    match (exn.InnerException) with
    | null -> ""
    | innerExn -> innerExn.Message
  printfn "An exception occurred:\n %s\n %s" exn.Message innerMessage
| exn -> printfn "An exception occurred: %s" exn.Message






Notice that you create the data types that are needed for the web service, such as Place and Location, as nested types under the WsdlService type TerraService.









See Also


WsdlService Type Provider [https://msdn.microsoft.com/visualfsharpdocs/conceptual/wsdlservice-type-provider-%5bfsharp%5d]


Type Providers








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/dotnet-test-discover.png
Test
Runner

Dotnet
o
!
»
‘
e

Run dome.test - prt

st ~gesgntimeportZ—]

| detnetes runver ssembhUnderTest

Testsession Terminate-

[ 2





fsharp/tutorials/type-providers/accessing-an-odata-service.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Walkthrough: Accessing an OData Service by Using Type Providers (F#)”
description: “Walkthrough: Accessing an OData Service by Using Type Providers (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 0adae84c-b0fa-455f-994b-274ecdc6df30





Walkthrough: Accessing an OData Service by Using Type Providers



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



OData, meaning Open Data Protocol, is a protocol for transferring data over the Internet. Many data providers expose access to their data by publishing an OData web service. You can access data from any OData source in F# 3.0 using data types that are automatically generated by the ODataService type provider. For more information about OData, see https://msdn.microsoft.com/library/da3380cc-f6da-4c6c-bdb2-bb86afa59d62.


This walkthrough shows you how to use the F# ODataService type provider to generate client types for an OData service and query data feeds that the service provides.


This walkthrough illustrates the following tasks, which you should perform in this order for the walkthrough to succeed:



		Configuring a client project for an OData service




		Accessing OData types




		Querying an OData service




		Verifying the OData requests








Configuring a client project for an OData service


In this step, you set up a project to use an OData type provider.



To configure a client project for an OData service



		Open an F# Console Application project, and then add a reference to the System.Data.Services.Client Framework assembly.




		Under Extensions, add a reference to the FSharp.Data.TypeProviders assembly.












Accessing OData types


In this step, you create a type provider that provides access to the types and data for an OData service.



To access OData types



		In the Code Editor, open an F# source file, and enter the following code.







open Microsoft.FSharp.Data.TypeProviders


type Northwind = ODataService<"http://services.odata.org/Northwind/Northwind.svc/">

let db = Northwind.GetDataContext()
let fullContext = Northwind.ServiceTypes.NorthwindEntities()






In this example, you have invoked the F# type provider and instructed it to create a set of types that are based on the OData URI that you specified. Two objects are available that contain information about the data; one is a simplified data context, db in the example. This object contains only the data types that are associated with the database, which include types for tables or feeds. The other object, fullContext in this example, is an instance of System.Data.Linq.DataContext and contains many additional properties, methods, and events.









Querying an OData service


In this step, you use F# query expressions to query the OData service.



To query an OData service



		Now that you’ve set up the type provider, you can query an OData service.

  OData supports only a subset of the available query operations. The following operations and their corresponding keywords are supported:








		projection (select)




		filtering (where, by using string and date operations)




		paging (skip, take)




		ordering (orderBy, thenBy)




		AddQueryOption and Expand, which are OData-specific operations







For more information, see LINQ Considerations 

(


WCF Data Services)


 [https://msdn.microsoft.com/library/ee622463.aspx].

  If you want all of the entries in a feed or table, use the simplest form of the query expression, as in the following code:




query {
  for customer in db.Customers do
  select customer
} |> Seq.iter (fun customer ->
                  printfn "ID: %s\nCompany: %s" customer.CustomerID customer.CompanyName
                  printfn "Contact: %s\nAddress: %s" customer.ContactName customer.Address
                  printfn "         %s, %s %s" customer.City customer.Region customer.PostalCode
                  printfn "%s\n" customer.Phone)







		Specify the fields or columns that you want by using a tuple after the select keyword.







  query { 
    for cat in db.Categories do
    select (cat.CategoryID, cat.CategoryName, cat.Description)
  } |> Seq.iter (fun (id, name, description) ->
                    printfn "ID: %d\nCategory: %s\nDescription: %s\n" id name description)







		Specify conditions by using a where clause.







query {
  for employee in db.Employees do
  where (employee.EmployeeID = 9)
  select employee
} |> Seq.iter (fun employee ->
                  printfn "Name: %s ID: %d" (employee.FirstName + " " + employee.LastName) (employee.EmployeeID))







		Specify a substring condition to the query by using the System.String.Contains(System.String) method. The following query returns all products that have “Chef” in their names. Also notice the use of System.Nullable<'T>.GetValueOrDefault(). The UnitPrice is a nullable value, so you must either get the value by using the Value property, or you must call System.Nullable<'T>.GetValueOrDefault().







query { 
  for product in db.Products do
  where (product.ProductName.Contains("Chef"))
  select product
} |> Seq.iter (fun product ->
                  printfn "ID: %d Product: %s" product.ProductID product.ProductName
                  printfn "Price: %M\n" (product.UnitPrice.GetValueOrDefault()))







		Use the System.String.EndsWith(System.String) method to specify that a string ends with a certain substring.







query {
  for product in db.Products do
  where (product.ProductName.EndsWith("u"))
  select product
} |> Seq.iter (fun product ->
                  printfn "ID: %d Product: %s" product.ProductID product.ProductName
                  printfn "Price: %M\n" (product.UnitPrice.GetValueOrDefault()))







		Combine conditions in a where clause by using the && operator.







// Open this module to use the nullable operators ?> and ?<.
open Microsoft.FSharp.Linq.NullableOperators

let salesIn1997 = query { 
  for sales in db.Category_Sales_for_1997 do
  where (sales.CategorySales ?> 50000.00M && sales.CategorySales ?< 60000.0M)
  select sales }

salesIn1997
|> Seq.iter (fun sales ->
                printfn "Category: %s Sales: %M" sales.CategoryName (sales.CategorySales.GetValueOrDefault()))






The operators ?> and ?< are nullable operators. You can use a full set of nullable equality and comparison operators. For more information, see Linq.NullableOperators Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.nullableoperators-module-%5bfsharp%5d].





		Use the sortBy query operator to specify ordering, and use thenBy to specify another level of ordering. Notice also the use of a tuple in the select part of the query. Therefore, the query has a tuple as an element type.







printfn "Freight for some orders: "

query { 
  for order in db.Orders do
  sortBy (order.OrderDate.Value)
  thenBy (order.OrderID)
  select (order.OrderDate, order.OrderID, order.Customer.CompanyName)
} |> Seq.iter (fun (orderDate, orderID, company) ->
                  printfn "OrderDate: %s" (orderDate.GetValueOrDefault().ToString())
                  printfn "OrderID: %d Company: %s\n" orderID company)







		Ignore a specified number of records by using the skip operator, and use the take operator to specify a number of records to return. In this way, you can implement paging on data feeds.







printfn "Get the first page of 2 employees."

query { 
  for employee in db.Employees do
  take 2
  select employee
} |> Seq.iter (fun employee ->
                  printfn "Name: %s ID: %d" (employee.FirstName + " " + employee.LastName) (employee.EmployeeID)) 

printfn "Get the next 2 employees."

query { 
  for employee in db.Employees do
  skip 2
  take 2
  select employee
} |> Seq.iter (fun employee ->
                  printfn "Name: %s ID: %d" (employee.FirstName + " " + employee.LastName) (employee.EmployeeID))











Verifying the OData request


Every OData query is translated into a specific OData request URI. You can verify that URI, perhaps for debugging purposes, by adding an event handler to the SendingRequest event on the full data context object.



To verify the OData request



		To verify the OData request URI, use the following code:







// The DataContext property returns the full data context.
db.DataContext.SendingRequest.Add (fun eventArgs -> printfn "Requesting %A" eventArgs.Request.RequestUri)






The output of the previous code is:

requesting http://services.odata.org/Northwind/Northwind.svc/Orders()?$orderby=ShippedDate&amp;$select=OrderID,ShippedDate







See Also


Query Expressions


LINQ Considerations (WCF Data Services) [https://msdn.microsoft.com/library/ee622463.aspx]


ODataService Type Provider (F#) [https://msdn.microsoft.com/visualfsharpdocs/conceptual/odataservice-type-provider-%5bfsharp%5d]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/debugging_debugicon.png





fsharp/tutorials/type-providers/troubleshooting-type-providers.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Troubleshooting Type Providers
description: Troubleshooting Type Providers
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 44533045-9862-43c5-81d9-3e05157e975a





Troubleshooting Type Providers


This topic describes and provides potential solutions for the problems that you are most likely to encounter when you use type providers.



Possible Problems with Type Providers


If you encounter a problem when you work with type providers, you can review the following table for the most common solutions.


|Problem|Suggested Actions|
|——-|—————–|
|Schema Changes. Type providers work best  when the data source schema is stable. If you add a data table or column or make another change to that schema, the type provider doesn’t automatically recognize these changes.|Clean or rebuild the project. To clean the project, choose Build, Clean ProjectName on the menu bar. To rebuild the project, choose Build, Rebuild ProjectName on the menu bar. These actions reset all type provider state and force the provider to reconnect to the data source and obtain updated schema information.|
|Connection Failure. The URL or connection string is incorrect, the network is down, or the data source or service is unavailable.|For a web service or OData service, you can try the URL in Internet Explorer to verify whether the URL is correct and the service is available. For a database connection string, you can use the data connection tools in Server Explorer to verify whether the connection string is valid and the database is available. After you restore your connection, you should then clean or rebuild the project so that the type provider will reconnect to the network.|
|Not Valid Credentials. You must have valid permissions for the data source or web service.|For a SQL connection, the username and the password that are specified in the connection string or configuration file must be valid for the database. If you are using Windows Authentication, you must have access to the database. The database administrator can identify what permissions you need for access to each database and each element within a database.

For a web service or a data service, you must have appropriate credentials. Most type providers provide a DataContext object, which contains a Credentials property that you can set with the appropriate username and access key.|
|Not Valid Path. A path to a file was not valid.|Verify whether the path is correct and the file exists. In addition, you must either quote any backlashes in the path appropriately or use a verbatim string or triple-quoted string.|





See Also


Type Providers








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/portability-solution-explorer.png
Run Code Analysis
Analyze Assembly Portability
Calculate Code Metrics

I

Build
Rebuild
Deploy
Clean

Scope to This
New Solution Explorer View
Show on Code Map

& Solution "HubApp1’ (3 projects)
4« HubApp1
pp1.Windows (Windows

lage.apprmanifest
onPage.xaml
p1.WindowsPhone (Wind
erties





fsharp/tutorials/type-providers/accessing-a-sql-database.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Walkthrough: Accessing a SQL Database by Using Type Providers (F#)”
description: “Walkthrough: Accessing a SQL Database by Using Type Providers (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 1c413eb0-16a5-4c1a-9a4e-ad6877e645d6





Walkthrough: Accessing a SQL Database by Using Type Providers



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This walkthrough explains how to use the SqlDataConnection (LINQ to SQL) type provider that is available in F# 3.0 to generate types for data in a SQL database when you have a live connection to a database. If you do not have a live connection to a database, but you do have a LINQ to SQL schema file (DBML file), see Walkthrough: Generating F# Types from a DBML File.


This walkthrough illustrates the following tasks. These tasks must be performed in this order for the walkthrough to succeed:



		Preparing a test database




		Creating the project




		Setting up a type provider




		Querying the data




		Working with nullable fields




		Calling a stored procedure




		Updating the database




		Executing Transact-SQL code




		Using the full data context




		Deleting data




		Create a test database (as needed)








Preparing a Test Database


On a server that’s running SQL Server, create a database for testing purposes. You can use the database create script at the bottom of this page in the section [MyDatabase Create Script]: #BKMK_MyDBCreateScript to do this.



To prepare a test database



		To run the MyDatabase Create Script, open the View menu, and then choose SQL Server Object Explorer or choose the Ctrl+, Ctrl+S keys. In SQL Server Object Explorer window, open the shortcut menu for the appropriate instance, choose New Query, copy the script at the bottom of this page, and then paste the script into the editor. To run the SQL script, choose the toolbar icon with the triangular symbol, or choose the Ctrl+Q keys. For more information about SQL Server Object Explorer, see Connected Database Development [http://go.microsoft.com/fwlink/?LinkId=237128].












Creating the project


Next, you create an F# application project.



To create and set up the project



		Create a new F# Application project.




		Add references to FSharp.Data.TypeProviders [https://msdn.microsoft.com/library/a858f859-047a-44ab-945b-8731d7a0e6e3], as well as System.Data, and System.Data.Linq.




		Open the appropriate namespaces by adding the following lines of code to the top of your F# code file Program.fs.







open System
open System.Data
open System.Data.Linq
open Microsoft.FSharp.Data.TypeProviders
open Microsoft.FSharp.Linq







		As with most F# programs, you can execute the code in this walkthrough as a compiled program, or you can run it interactively as a script. If you prefer to use scripts, open the shortcut menu for the project node, select Add New Item, add an F# script file, and add the code in each step to the script. You will need to add the following lines at the top of the file to load the assembly references.







#r "System.Data.dll"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Linq.dll"






You can then select each block of code as you add it and press Alt+Enter to run it in F# Interactive.









Setting up a type provider


In this step, you create a type provider for your database schema.



To set up the type provider from a direct database connection



		There are two critical lines of code that you need in order to create the types that you can use to query a SQL database using the type provider. First, you instantiate the type provider. To do this, create what looks like a type abbreviation for a SqlDataConnection with a static generic parameter. SqlDataConnection is a SQL type provider, and should not be confused with SqlConnection type that is used in ADO.NET programming. If you have a database that you want to connect to, and have a connection string, use the following code to invoke the type provider. Substitute your own connection string for the example string given. For example, if your server is MYSERVER and the database instance is INSTANCE, the database name is MyDatabase, and you want to use Windows Authentication to access the database, then the connection string would be as given in the following example code.







type dbSchema = SqlDataConnection<"Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;">
let db = dbSchema.GetDataContext()

// Enable the logging of database activity to the console.
db.DataContext.Log <- System.Console.Out






Now you have a type, dbSchema, which is a parent type that contains all the generated types that represent database tables. You also have an object, db, which has as its members all the tables in the database. The table names are properties, and the type of these properties is generated by the F# compiler. The types themselves appear as nested types under dbSchema.ServiceTypes. Therefore, any data retrieved for rows of these tables is an instance of the appropriate type that was generated for that table. The name of the type is ServiceTypes.Table1.

  To familiarize yourself with how the F# language interprets queries into SQL queries, review the line that sets the Log property on the data context.

  To further explore the types created by the type provider, add the following code.




let table1 = db.Table1






Hover over table1 to see its type. Its type isSystem.Data.Linq.Table<dbSchema.ServiceTypes.Table1> and the generic argument implies that the type of each row is the generated type, dbSchema.ServiceTypes.Table1. The compiler creates a similar type for each table in the database.









Querying the data


In this step, you write a query using F# query expressions.



To query the data



		Now create a query for that table in the database. Add the following code.







let query1 =
  query {
    for row in db.Table1 do
    select row
  }
query1 |> Seq.iter (fun row -> printfn "%s %d" row.Name row.TestData1)






The appearance of the word query indicates that this is a query expression, a type of computation expression that generates a collection of results similar of a typical database query. If you hover over query, you will see that it is an instance of Linq.QueryBuilder Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.querybuilder-class-%5bfsharp%5d], a type that defines the query computation expression. If you hover over query1, you will see that it is an instance of System.Linq.IQueryable. As the name suggests, System.Linq.IQueryable represents data that may be queried, not the result of a query. A query is subject to lazy evaluation, which means that the database is only queried when the query is evaluated. The final line passes the query through Seq.iter. Queries are enumerable and may be iterated like sequences. For more information, see Query Expressions.







		Now add a query operator to the query. There are a number of query operators available that you can use to construct more complex queries. This example also shows that you can eliminate the query variable and use a pipeline operator instead.







query {
  for row in db.Table1 do
  where (row.TestData1 > 2)
  select row
} |> Seq.iter (fun row -> printfn "%d %s" row.TestData1 row.Name)







		Add a more complex query with a join of two tables.







query {
  for row1 in db.Table1 do
  join row2 in db.Table2 on (row1.Id = row2.Id)
  select (row1, row2)
} |> Seq.iteri (fun index (row1, row2) ->
                if (index = 0) then printfn "Table1.Id TestData1 TestData2 Name Table2.Id TestData1 TestData2 Name"
printfn "%d %d %f %s %d %d %f %s" row1.Id row1.TestData1 row1.TestData2 row1.Name
row2.Id (row2.TestData1.GetValueOrDefault()) (row2.TestData2.GetValueOrDefault()) row2.Name)







		In real-world code, the parameters in your query are usually values or variables, not compile-time constants. Add the following code that wraps a query in a function that takes a parameter, and then calls that function with the value 10.







let findData param =
  query {
    for row in db.Table1 do
    where (row.TestData1 = param)
    select row
}

findData 10 |> Seq.iter (fun row -> printfn "Found row: %d %d %f %s" row.Id row.TestData1 row.TestData2 row.Name)











Working with nullable fields


In databases, fields often allow null values. In the .NET type system, you cannot use the ordinary numerical data types for data that allows nulls because those types do not have null as a possible value. Therefore, these values are represented by instances of System.Nullable type. Instead of accessing the value of such fields directly with the name of the field, you need to add some extra steps. You can use the System.Nullable.Value property to access the underlying value of a nullable type. The System.Nullable.Value property throws an exception if the object is null rather than having a value. You can use the System.Nullable.HasValue Boolean method to determine if a value exists, or use System.Nullable.GetValueOrDefault() to ensure that you have an actual value in all cases. If you use System.Nullable.GetValueOrDefault() and there is a null in the database, then it is replaced with a value such as an empty string for string types, 0 for integral types or 0.0 for floating point types.


When you need to perform equality tests or comparisons on nullable values in a where clause in a query, you can use the nullable operators found in the Linq.NullableOperators Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/linq.nullableoperators-module-%5bfsharp%5d]. These are like the regular comparison operators =, >, <=, and so on, except that a question mark appears on the left or right of the operator where the nullable values are. For example, the operator >? is a greater-than operator with a nullable value on the right. The way these operators work is that if either side of the expression is null, the expression evaluates to false. In a where clause, this generally means that the rows that contain null fields are not selected and not returned in the query results.



To work with nullable fields



		The following code shows working with nullable values; assume that TestData1 is an integer field that allows nulls.







query {
  for row in db.Table2 do
  where (row.TestData1.HasValue && row.TestData1.Value > 2)
  select row
} |> Seq.iter (fun row -> printfn "%d %s" row.TestData1.Value row.Name)

query {
  for row in db.Table2 do
  // Use a nullable operator ?>
  where (row.TestData1 ?> 2)
  select row
} |> Seq.iter (fun row -> printfn "%d %s" (row.TestData1.GetValueOrDefault()) row.Name)











Calling a stored procedure


Any stored procedures on the database can be called from F#. You must set the static parameter StoredProcedures to true in the type provider instantiation. The type provider SqlDataConnection contains several static methods that you can use to configure the types that are generated. For a complete description of these, see SqlDataConnection Type Provider [https://msdn.microsoft.com/visualfsharpdocs/conceptual/sqldataconnection-type-provider-%5bfsharp%5d]. A method on the data context type is generated for each stored procedure.



To call a stored procedure



		If the stored procedures takes parameters that are nullable, you need to pass an appropriate System.Nullable value. The return value of a stored procedure method that returns a scalar or a table is System.Data.Linq.ISingleResult, which contains properties that enable you to access the returned data. The type argument for System.Data.Linq.ISingleResult depends on the specific procedure and is also one of the types that the type provider generates. For a stored procedure named Procedure1, the type is Procedure1Result. The type Procedure1Result contains the names of the columns in a returned table, or, for a stored procedure that returns a scalar value, it represents the return value.

  The following code assumes that there is a procedure Procedure1 on the database that takes two nullable integers as parameters, runs a query that returns a column named TestData1, and returns an integer.







type schema = SqlDataConnection<"Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;", StoredProcedures = true>

let testdb = schema.GetDataContext()

let nullable value = new System.Nullable<_>(value)

let callProcedure1 a b =
  let results = testdb.Procedure1(nullable a, nullable b)
  for result in results do
    printfn "%d" (result.TestData1.GetValueOrDefault())
  results.ReturnValue :?> int

printfn "Return Value: %d" (callProcedure1 10 20)











Updating the database


The LINQ DataContext type contains methods that make it easier to perform transacted database updates in a fully typed fashion with the generated types.



To update the database



		In the following code, several rows are added to the database. If you are only adding a row, you can use System.Data.Linq.Table.InsertOnSubmit() to specify the new row to add. If you are inserting multiple rows, you should put them into a collection and call System.Data.Linq.Table.InsertAllOnSubmit(System.Collections.Generic.IEnumerable). When you call either of these methods, the database is not immediately changed. You must call System.Data.Linq.DataContext.SubmitChanges to actually commit the changes. By default, everything that you do before you call System.Data.Linq.DataContext.SubmitChanges is implicitly part of the same transaction.







let newRecord = new dbSchema.ServiceTypes.Table1(Id = 100,
                                                 TestData1 = 35, 
                                                 TestData2 = 2.0,
                                                 Name = "Testing123")

let newValues =
  [ for i in [1 .. 10] ->
    new dbSchema.ServiceTypes.Table3(Id = 700 + i,
      Name = "Testing" + i.ToString(),
      Data = i) ]

// Insert the new data into the database.
db.Table1.InsertOnSubmit(newRecord)
db.Table3.InsertAllOnSubmit(newValues)

try
  db.DataContext.SubmitChanges()
  printfn "Successfully inserted new rows."
with
| exn -> printfn "Exception:\n%s" exn.Message







		Now clean up the rows by calling a delete operation.







// Now delete what was added.
db.Table1.DeleteOnSubmit(newRecord)
db.Table3.DeleteAllOnSubmit(newValues)

try
  db.DataContext.SubmitChanges()
  printfn "Successfully deleted all pending rows."
with
| exn -> printfn "Exception:\n%s" exn.Message











Executing Transact-SQL code


You can also specify Transact-SQL directly by using the System.Data.Linq.DataContext.ExecuteCommand(System.String,System.Object[]) method on the DataContext class.



To execute custom SQL commands



		The following code shows how to send SQL commands to insert a record into a table and also to delete a record from a table.







try
  db.DataContext.ExecuteCommand("INSERT INTO Table3 (Id, Name, Data) VALUES (102, 'Testing', 55)") |> ignore
with
| exn -> printfn "Exception:\n%s" exn.Message

try //AND Name = 'Testing' AND Data = 55
  db.DataContext.ExecuteCommand("DELETE FROM Table3 WHERE Id = 102 ") |> ignore
with
| exn -> printfn "Exception:\n%s" exn.Message











Using the full data context


In the previous examples, the GetDataContext method was used to get what is called the simplified data context for the database schema. The simplified data context is easier to use when you are constructing queries because there are not as many members available. Therefore, when you browse the properties in IntelliSense, you can focus on the database structure, such as the tables and stored procedures. However, there is a limit to what you can do with the simplified data context. A full data context that provides the ability to perform other actions. is also available This is located in the ServiceTypes and has the name of the DataContext static parameter if you provided it. If you did not provide it, the name of the data context type is generated for you by SqlMetal.exe based on the other input. The full data context inherits from System.Data.Linq.DataContext and exposes the members of its base class, including references to ADO.NET data types such as the Connection object, methods such as System.Data.Linq.DataContext.ExecuteCommand(System.String,System.Object[]) and System.Data.Linq.DataContext.ExecuteQuery(System.String,System.Object[]) that you can use to write queries in SQL, and also a means to work with transactions explicitly.



To use the full data context



		The following code demonstrates getting a full data context object and using it to execute commands directly against the database. In this case, two commands are executed as part of the same transaction.







let dbConnection = testdb.Connection
let fullContext = new dbSchema.ServiceTypes.MyDatabase(dbConnection)

dbConnection.Open()

let transaction = dbConnection.BeginTransaction()
fullContext.Transaction <- transaction

try
  let result1 = fullContext.ExecuteCommand("INSERT INTO Table3 (Id, Name, Data) VALUES (102, 'A', 55)")
  printfn "ExecuteCommand Result: %d" result1
  let result2 = fullContext.ExecuteCommand("INSERT INTO Table3 (Id, Name, Data) VALUES (103, 'B', -2)")
  printfn "ExecuteCommand Result: %d" result2
  if (result1 <> 1 || result2 <> 1) then
    transaction.Rollback()
    printfn "Rolled back creation of two new rows."
  else
    transaction.Commit()
  printfn "Successfully committed two new rows."
with
| exn ->
  transaction.Rollback()
  printfn "Rolled back creation of two new rows due to exception:\n%s" exn.Message

dbConnection.Close()











Deleting data


This step shows you how to delete rows from a data table.



To delete rows from the database



		Now, clean up any added rows by writing a function that deletes rows from a specified table, an instance of the System.Data.Linq.Table class. Then write a query to find all the rows that you want to delete, and pipe the results of the query into the deleteRows function. This code takes advantage of the ability to provide partial application of function arguments.







let deleteRowsFrom (table:Table<_>) rows =
table.DeleteAllOnSubmit(rows)

query {
  for rows in db.Table3 do
  where (rows.Id > 10)
  select rows
} |> deleteRowsFrom db.Table3

db.DataContext.SubmitChanges()
printfn "Successfully deleted rows with Id greater than 10 in Table3."











Creating a test database


This section shows you how to set up the test database to use in this walkthrough.


Note that if you alter the database in some way, you will have to reset the type provider. To reset the type provider, rebuild or clean the project that contains the type provider.



To create the test database



		In Server Explorer, open the shortcut menu for the Data Connections node, and choose Add Connection. The Add Connection dialog box appears.




		In the Server name box, specify the name of an instance of SQL Server that you have administrative access to, or if you do not have access to a server, specify (localdb\v11.0). SQL Express LocalDB provides a lightweight database server for development and testing on your machine. A new node is created in Server Explorer under Data Connections. For more information about LocalDB, see Walkthrough: Creating a Local Database File in Visual Studio [https://msdn.microsoft.com/library/ms233763.aspx].




		Open the shortcut menu for the new connection node, and select New Query.








		Copy the following SQL script, paste it into the query editor, and then choose the Execute button on the toolbar or choose the Ctrl+Shift+E keys.







SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO

USE [master];
GO

IF EXISTS (SELECT * FROM sys.databases WHERE name = 'MyDatabase')
  DROP DATABASE MyDatabase;
GO

-- Create the MyDatabase database.
CREATE DATABASE MyDatabase;
GO

-- Specify a simple recovery model 
-- to keep the log growth to a minimum.
ALTER DATABASE MyDatabase 
SET RECOVERY SIMPLE;
GO

USE MyDatabase;
GO

-- Create the Table1 table.
CREATE TABLE [dbo].[Table1] (
  [Id]        INT        NOT NULL,
  [TestData1] INT        NOT NULL,
  [TestData2] FLOAT (53) NOT NULL,
  [Name]      NTEXT      NOT NULL,
  PRIMARY KEY CLUSTERED ([Id] ASC)
);

--Create Table2.
CREATE TABLE [dbo].[Table2] (
  [Id]        INT        NOT NULL,
  [TestData1] INT        NULL,
  [TestData2] FLOAT (53) NULL,
  [Name]      NTEXT      NOT NULL,
  PRIMARY KEY CLUSTERED ([Id] ASC)
);


--     Create Table3.
CREATE TABLE [dbo].[Table3] (
  [Id]   INT           NOT NULL,
  [Name] NVARCHAR (50) NOT NULL,
  [Data] INT           NOT NULL,
  PRIMARY KEY CLUSTERED ([Id] ASC)
  );
GO

CREATE PROCEDURE [dbo].[Procedure1]
  @param1 int = 0,
  @param2 int
AS
SELECT TestData1 FROM Table1
RETURN 0
GO

-- Insert data into the Table1 table.
USE MyDatabase

INSERT INTO Table1 (Id, TestData1, TestData2, Name)
  VALUES(1, 10, 5.5, 'Testing1');
INSERT INTO Table1 (Id, TestData1, TestData2, Name)
  VALUES(2, 20, -1.2, 'Testing2');

--Insert data into the Table2 table.
INSERT INTO Table2 (Id, TestData1, TestData2, Name)
  VALUES(1, 10, 5.5, 'Testing1');
INSERT INTO Table2 (Id, TestData1, TestData2, Name)
  VALUES(2, 20, -1.2, 'Testing2');
INSERT INTO Table2 (Id, TestData1, TestData2, Name)
  VALUES(3, NULL, NULL, 'Testing3');

INSERT INTO Table3 (Id, Name, Data)
  VALUES (1, 'Testing1', 10);
INSERT INTO Table3 (Id, Name, Data)
  VALUES (2, 'Testing2', 100);











See Also


Type Providers


SqlDataConnection Type Provider [https://msdn.microsoft.com/visualfsharpdocs/conceptual/sqldataconnection-type-provider-%5bfsharp%5d]


Walkthrough: Generating F# Types from a DBML File


Query Expressions


LINQ to SQL [https://msdn.microsoft.com/library/bb386976]


SqlMetal.exe 

(


Code Generation Tool)


 [https://msdn.microsoft.com/library/bb386987]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/corefx-platforms-loc.png
~ Lines of CoreFX C# Code

6% 4%

90%

= Shared = Windows ®=Unix = Linux = OSX

~ Lines of Platform-specific

CoreFX C# Code

35000

30000 28775

25000
20000 17538
15000
10000 I
5000
0 | -—

Windows Unix  Linux

= Windows = Unix = Linux = OSX





fsharp/tutorials/asynchronous-and-concurrent-programming/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  
Asynchronous and Concurrent Programming in F#



[!NOTE]
This is still in-progress.







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/new-project-dialog-class-library-portable.png
New Project
b Recent
4 Installed

4 Templates
4 Visual €2
b Windows
Web
Android
Cloud.
Extensibility
s
LightSwitch
Office/SharePoint
Silverlight
Test
wer
Workflow
b Other Languages
b Other Project Types

NET Framework 452 = Sort by: | Default

o
[ windows Forms Appiication
s
=] wer appiication

oo
Bl conole Appicsion

e
P aseeT web Appication
o
B sheredproject

- .

g Closs Library (Package)
Console Application (Package)

Class Library

Class Library (Portable)

ck here to go online and find templates.

§ B closs iy ool
Modeling Prjects
Samples o .
@ Silverlight Application
» Onie
Neme Clastibrery10
Location: \users\wesh!documentvisus stuio 015\ Projects
Soluion: Creste new soution

Solution name: ClassLibrary10

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

7 x
Search Instlled Templates (Ctief) -

Type: Visual C#

A project for creating a managed class
library (.l for Windows, Windows Phone
and Silverlight apps.

Create directory for solution
[] Add to source control

[ox J[coneer |





fsharp/tutorials/asynchronous-and-concurrent-programming/async.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Async Programming in F#
description: Async Programming in F#
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f9196bfc-b8a8-4d33-8b53-0dcbd58a69d8





Async Programming in F#



[!NOTE]
Some inaccuracies have been discovered in this article.  It is being rewritten.  See Issue #666 [https://github.com/dotnet/core-docs/issues/666] to learn about the changes.



Async programming in F# can be accomplished through a language-level programming model designed to be easy to use and natural to the language.


The core of async programming in F# is Async<'T>, a representation of work that can be triggered to run in the background, where 'T is either the type returned via the special return keyword or unit if the async workflow has no result to return.


The key concept to understand is that an async expression’s type is Async<'T>, which is merely a specification of work to be done in an asynchronous context. It is not executed until you explicitly start it with one of the starting functions (such as Async.RunSynchronously). Although this is a different way of thinking about doing work, it ends up being quite simple in practice.


For example, say you wanted to download the HTML from dotnetfoundation.org without blocking the main thread. You can accomplish it like this:


let fetchHtmlAsync url = async {
    let uri = new System.Uri(url)
    let webClient = new System.Net.WebClient()

    // Execution of fetchHtmlAsync won't continue until the result
    // of AsyncDownloadString is bound.
    let! html = webClient.AsyncDownloadString(uri)
    return html
}

let html = "http://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously
printfn "%s" html






And that’s it! Aside from the use of async, let!, and return, this is just normal F# code.


There are a few syntactical constructs which are worth noting:



		let! binds the result of an async expression (which runs on another context).


		use! works just like let!, but disposes its bound resources when it goes out of scope.


		do! will await an async workflow which doesn’t return anything.


		return simply returns a result from an async expression.


		return! executes another async workflow and returns its return value as a result.





Additionally, normal let, use, and do keywords can be used alongside the async versions just as they would in a normal function.



How to start Async Code in F#


As mentioned earlier, async code is a specification of work to be done in another context which needs to be explicitly started. Here are two primary ways to accomplish this:



		Async.RunSynchronously will start an async workflow on another thread and await its result.





let fetchHtmlAsync url = async {
    let uri = new System.Uri(url)
    let webClient = new System.Net.WebClient()
    let! html = webClient.AsyncDownloadString(uri)
    return html
}

// Execution will pause until fetchHtmlAsync finishes
let html = "http://dotnetfoundation.org" |> fetchHtmlAsync |> Async.RunSynchronously

// you actually have the result from fetchHtmlAsync now!
printfn "%s" html







		Async.Start will start an async workflow on another thread, and will not await its result.





let uploadDataAsync url data = async {
    let uri = new System.Uri(url)
    let webClient = new System.Net.WebClient()
    webClient.UploadStringAsync(uri, data)
}

let workflow = uploadDataAsync "http://url-to-upload-to.com" "hello, world!"

// Execution will continue after calling this!
Async.Run(workflow)

printfn "%s" "uploadDataAsync is running in the background..."






There are other ways to start an async workflow available for more specific scenarios. They are detailed in the Async reference [https://msdn.microsoft.com/library/ee370232.aspx].



A Note on Threads


The phrase “on another thread” is mentioned above, but it is important to know that this does not mean that async workflows are a facade for multithreading. The workflow actually “jumps” between threads, borrowing them for a small amount of time to do useful work. When an async workflow is effectively “waiting” (e.g. waiting for a network call to return something), any thread it was borrowing at the time is freed up to go do useful work on something else. This allows async workflows to utilize the system they run on as effectively as possible, and makes them especially strong for high-volume I/O scenarios.







How to Add Parallelism to Async Code


Sometimes you may need to perform multiple asynchronous jobs in parallel, collect their results, and interpret them in some way. Async.Parallel allows you to do this without needing to use the Task Parallel Library, which would involve needing to coerce Task<'T> and Async<'T> types.


The following example will use Async.Parallel to download the HTML from four popular sites in parallel, wait for those tasks to complete, and then print the HTML which was downloaded.


let urlList = [
    "http://www.microsoft.com"
    "http://www.google.com"
    "http://www.amazon.com"
    "http://www.facebook.com" ]

let fetchHtmlAsync url = async {
    let uri = new System.Uri(url)
    let webClient = new System.Net.WebClient()
    let! html = webClient.AsyncDownloadString(uri)
    return html
}

let getHtmlList =
    Seq.map fetchHtmlAsync    // Build an Async<'T> for each site
    >> Async.Parallel         // Returns an Async<'T []>
    >> Async.RunSynchronously // Wait for the result of the parallel work

let htmlList = urlList |> getHtmlList

// We now have the downloaded HTML for each site!
for html in htmlList do
    printfn "%s" html









Important Info and Advice



		Append “Async” to the end of any functions you’ll consume





Although this is just a naming convention, it does make things like API discoverability easier. Particularly if there are synchronous and asynchronous versions of the same routine, it’s a good idea to explicitly state which is asynchronous via the name.



		Listen to the compiler!





F#’s compiler is very strict, making it nearly impossible to do something troubling like run “async” code synchronously. If you come across a warning, that’s a sign that the code won’t execute how you think it will. If you can make the compiler happy, your code will most likely execute as expected.





For the C#/VB Programmer Looking Into F#


This section assumes you’re familiar with the async model in C#/VB. If you are not, Async Programming in C# is a starting point.


There is a fundamental difference between the C#/VB async model and the F# async model.


When you call a function which returns a Task or Task<'T>, that job has already begun execution. The handle returned represents an already-running asynchronous job. In contrast, when you call an async function in F#, the Async<'a> returned represents a job which will be generated at some point. Understanding this model is powerful, because it allows for asynchronous jobs in F# to be chained together easier, performed conditionally, and be started with a finer grain of control.


There are a few other similarities and differences worth noting.



Similarities



		let!, use!, and do! are analogous to await when calling an async job from within an async{ } block.





The three keywords can only be used within an async { } block, similar to how await can only be invoked inside an async method. In short, let! is for when you want to capture and use a result, use! is the same but for something whose resources should get cleaned after it’s used, and do! is for when you want to wait for an async workflow with no return value to finish before moving on.



		F# supports data-parallelism in a similar way.





Although it operates very differently, Async.Parallel corresponds to Task.WhenAll for the scenario of wanting the results of a set of async jobs when they all complete.





Differences



		Nested let! is not allowed, unlike nested await





Unlike await, which can be nested indefinitely, let! cannot and must have its result bound before using it inside of another let!, do!, or use!.



		Cancellation support is simpler in F# than in C#/VB.





Supporting cancellation of a task midway through its execution in C#/VB requires checking the IsCancellationRequested property or calling ThrowIfCancellationRequested() on a CancellationToken object that’s passed into the async method.


In contrast, F# async workflows are more naturally cancellable. Cancellation is a simple three-step process.



		Create a new CancellationTokenSource.


		Pass it into a starting function.


		Call Cancel on the token.





Example:


let uploadDataAsync url data = async {
    let uri = new System.Uri(url)
    let webClient = new System.Net.WebClient()
    webClient.UploadStringAsync(uri, data)
}

let workflow = uploadDataAsync "http://url-to-upload-to.com" "hello, world!"

let token = new CancellationTokenSource()
Async.Start (workflow, token)

// Immediately cancel uploadDataAsync after it's been started.
token.Cancel()






And that’s it!







Further resources:



		Async Workflows on MSDN [https://msdn.microsoft.com/library/dd233250.aspx]


		Asynchronous Sequences for F# [http://fsprojects.github.io/FSharp.Control.AsyncSeq/library/AsyncSeq.html]


		F# Data HTTP Utilities [https://fsharp.github.io/FSharp.Data/library/Http.html]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/portability-report.png
.NET Portability Report

Summary
Assembly Mono 45
HubAppl.Windows  94.84%

HubApp1.Windows

Missing assemblies

‘Windows, Version=255.255.255.255, Cuhure=neutral, PublicKeyToken=null

Target type o Recommenied
‘Windows.Foundation.Rect (]
get Width [x]
get Height [x]
o List
Y - [®0Erors | |4 0Warings | [@ 25 Messages
Code  Description Project File
“ 0 System.Runtime.InteropServices WindowsRuntime.WindowsRuntimeMarshal.A HubApp1.Windows. Appxaml.cs

ddEventHandler1(System.Func

{°0,System.Runtime InteropServices WindowsRuntime.EventRegistrationToken}
System.Action

{System Runtime InteropServices WindowsRuntime EventRegistrationToken), "0

Yo

System Runtime InteropServices WindowsRuntime WindowsRuntimeMarshal AddEventHandler™1(System. Func{ 0 System Runtime.InteropServices. WindowsRuntime EventRegistrationToken), System Action
{System RuntimeInteropServices WindowsRuntime.EventRegistrationToken), 0)
Not supported on Mono 4.5





fsharp/tutorials/type-providers/creating-a-type-provider.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Tutorial: Creating a Type Provider (F#)”
description: “Tutorial: Creating a Type Provider (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 82bec076-19d4-470c-979f-6c3a14b7c70a





Tutorial: Creating a Type Provider



[!NOTE]
This guide was written for F# 3.0 and will be updated.



The type provider mechanism in F# 3.0 is a significant part of its support for information rich programming. This tutorial explains how to create your own type providers by walking you through the development of several simple type providers to illustrate the basic concepts. For more information about the type provider mechanism in F#, see Type Providers.


F# 3.0 contains several built-in type providers for commonly used Internet and enterprise data services. These type providers give simple and regular access to SQL relational databases and network-based OData and WSDL services. These providers also support the use of F# LINQ queries against these data sources.


Where necessary, you can create custom type providers, or you can reference type providers that others have created. For example, your organization could have a data service that provides a large and growing number of named data sets, each with its own stable data schema. You can create a type provider that reads the schemas and presents the current data sets to the programmer in a strongly typed way.



Before You Start


The type provider mechanism is primarily designed for injecting stable data and service information spaces into the F# programming experience.


This mechanism isn’t designed for injecting information spaces whose schema changes during program execution in ways that are relevant to program logic. Also, the mechanism isn’t designed for intra-language meta-programming, even though that domain contains some valid uses. You should use this mechanism only where necessary and where the development of a type provider yields very high value.


You should avoid writing a type provider where a schema isn’t available. Likewise, you should avoid writing a type provider where an ordinary (or even an existing) .NET library would suffice.


Before you start, you might ask the following questions:



		Do you have a schema for your information source? If so, what’s the mapping into the F# and .NET type system?


		Can you use an existing (dynamically typed) API as a starting point for your implementation?


		Will you and your organization have enough uses of the type provider to make writing it worthwhile? Would a normal .NET library meet your needs?


		How much will your schema change?


		Will it change during coding?


		Will it change between coding sessions?


		Will it change during program execution?





Type providers are best suited to situations where the schema is stable at runtime and during the lifetime of compiled code.





A Simple Type Provider


This sample is Samples.HelloWorldTypeProvider in the SampleProviders\Providers directory of the F# 3.0 Sample Pack [http://go.microsoft.com/fwlink/?LinkId=236999] on the Codeplex website. The provider makes available a “type space” that contains 100 erased types, as the following code shows by using F# signature syntax and omitting the details for all except Type1. For more information about erased types, see Details About Erased Provided Types [https://msdn.microsoft.com/library/#BK_Erased] later in this topic.


namespace Samples.HelloWorldTypeProvider

type Type1 =
    /// This is a static property.
    static member StaticProperty : string

    /// This constructor takes no arguments.
    new : unit -> Type1

    /// This constructor takes one argument.
    new : data:string -> Type1

    /// This is an instance property.
    member InstanceProperty : int

    /// This is an instance method.
    member InstanceMethod : x:int -> char

    /// This is an instance property.
    nested type NestedType = 
        /// This is StaticProperty1 on NestedType.
        static member StaticProperty1 : string
        …
        /// This is StaticProperty100 on NestedType.
        static member StaticProperty100 : string

type Type2 =
…
…

type Type100 =
…






Note that the set of types and members provided is statically known. This example doesn’t leverage the ability of providers to provide types that depend on a schema. The implementation of the type provider is outlined in the following code, and the details are covered in later sections of this topic.



[!WARNING]
There may be some small naming differences between this code and the online samples.



namespace Samples.FSharp.HelloWorldTypeProvider

open System
open System.Reflection
open Samples.FSharp.ProvidedTypes
open Microsoft.FSharp.Core.CompilerServices
open Microsoft.FSharp.Quotations

// This type defines the type provider. When compiled to a DLL, it can be added
// as a reference to an F# command-line compilation, script, or project.
[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this = 

// Inheriting from this type provides implementations of ITypeProvider 
// in terms of the provided types below.
inherit TypeProviderForNamespaces()

let namespaceName = "Samples.HelloWorldTypeProvider"
let thisAssembly = Assembly.GetExecutingAssembly()

// Make one provided type, called TypeN.
let makeOneProvidedType (n:int) = 
…
// Now generate 100 types
let types = [ for i in 1 .. 100 -> makeOneProvidedType i ] 

// And add them to the namespace
do this.AddNamespace(namespaceName, types)

[<assembly:TypeProviderAssembly>] 
do()






To use this provider, open a separate instance of Visual Studio 2012, create an F# script, and then add a reference to the provider from your script by using #r as the following code shows:


#r @".\bin\Debug\Samples.HelloWorldTypeProvider.dll"

let obj1 = Samples.HelloWorldTypeProvider.Type1("some data")

let obj2 = Samples.HelloWorldTypeProvider.Type1("some other data")

obj1.InstanceProperty
obj2.InstanceProperty

[ for index in 0 .. obj1.InstanceProperty-1 -> obj1.InstanceMethod(index) ]
[ for index in 0 .. obj2.InstanceProperty-1 -> obj2.InstanceMethod(index) ]

let data1 = Samples.HelloWorldTypeProvider.Type1.NestedType.StaticProperty35






Then look for the types under the Samples.HelloWorldTypeProvider namespace that the type provider generated.


Before you recompile the provider, make sure that you have closed all instances of Visual Studio and F# Interactive that are using the provider DLL. Otherwise, a build error will occur because the output DLL will be locked.


To debug this provider by using print statements, make a script that exposes a problem with the provider, and then use the following code:


fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll script.fsx






To debug this provider by using Visual Studio, open the Visual Studio command prompt with administrative credentials, and run the following command:


devenv.exe /debugexe fsc.exe -r:bin\Debug\HelloWorldTypeProvider.dll script.fsx






As an alternative, open Visual Studio, open the Debug menu, choose Debug/Attach to process…, and attach to another devenv process where you’re editing your script. By using this method, you can more easily target particular logic in the type provider by interactively typing expressions into the second instance (with full IntelliSense and other features).


You can disable Just My Code debugging to better identify errors in generated code. For information about how to enable or disable this feature, see Navigating through Code with the Debugger [https://msdn.microsoft.com/library/y740d9d3.aspx]. Also, you can also set first-chance exception catching by opening the Debug menu and then choosing Exceptions or by choosing the Ctrl+Alt+E keys to open the Exceptions dialog box. In that dialog box, under Common Language Runtime Exceptions, select the Thrown check box.



Implementation of the Type Provider


This section walks you through the principal sections of the type provider implementation. First, you define the type for the custom type provider itself:


[<TypeProvider>]
type SampleTypeProvider(config: TypeProviderConfig) as this =






This type must be public, and you must mark it with the TypeProvider [https://msdn.microsoft.com/library/bdf7b036-7490-4ace-b79f-c5f1b1b37947] attribute so that the compiler will recognize the type provider when a separate F# project references the assembly that contains the type. The config parameter is optional, and, if present, contains contextual configuration information for the type provider instance that the F# compiler creates.


Next, you implement the ITypeProvider [https://msdn.microsoft.com/library/2c2b0571-843d-4a7d-95d4-0a7510ed5e2f] interface. In this case, you use the TypeProviderForNamespaces type from the ProvidedTypes API as a base type. This helper type can provide a finite collection of eagerly provided namespaces, each of which directly contains a finite number of fixed, eagerly provided types. In this context, the provider eagerly generates types even if they aren’t needed or used.


inherit TypeProviderForNamespaces()






Next, define local private values that specify the namespace for the provided types, and find the type provider assembly itself. This assembly is used later as the logical parent type of the erased types that are provided.


let namespaceName = "Samples.HelloWorldTypeProvider"
let thisAssembly = Assembly.GetExecutingAssembly()






Next, create a function to provide each of the types Type1…Type100. This function is explained in more detail later in this topic.


let makeOneProvidedType (n:int) = …






Next, generate the 100 provided types:


let types = [ for i in 1 .. 100 -> makeOneProvidedType i ]






Next, add the types as a provided namespace:


do this.AddNamespace(namespaceName, types)






Finally, add an assembly attribute that indicates that you are creating a type provider DLL:


[<assembly:TypeProviderAssembly>] 
do()









Providing One Type And Its Members


The makeOneProvidedType function does the real work of providing one of the types.


let makeOneProvidedType (n:int) = 
…






This step explains the implementation of this function. First, create the provided type (for example, Type1, when n = 1, or Type57, when n = 57).


// This is the provided type. It is an erased provided type and, in compiled code, 
// will appear as type 'obj'.
let t = ProvidedTypeDefinition(thisAssembly,namespaceName,
"Type" + string n,
baseType = Some typeof<obj>)






You should note the following points:



		This provided type is erased.  Because you indicate that the base type is obj, instances will appear as values of type obj [https://msdn.microsoft.com/library/dcf2430f-702b-40e5-a0a1-97518bf137f7] in compiled code.




		When you specify a non-nested type, you must specify the assembly and namespace. For erased types, the assembly should be the type provider assembly itself.







Next, add XML documentation to the type. This documentation is delayed, that is, computed on-demand if the host compiler needs it.


t.AddXmlDocDelayed (fun () -> sprintf "This provided type %s" ("Type" + string n))






Next you add a provided static property to the type:


let staticProp = ProvidedProperty(propertyName = "StaticProperty", 
propertyType = typeof<string>, 
IsStatic=true,
GetterCode= (fun args -> <@@ "Hello!" @@>))






Getting this property will always evaluate to the string “Hello!”. The GetterCode for the property uses an F# quotation, which represents the code that the host compiler generates for getting the property. For more information about quotations, see Code Quotations (F#) [https://msdn.microsoft.com/library/6f055397-a1f0-4f9a-927c-f0d7c6951155].


Add XML documentation to the property.


staticProp.AddXmlDocDelayed(fun () -> "This is a static property")






Now attach the provided property to the provided type. You must attach a provided member to one and only one type. Otherwise, the member will never be accessible.


t.AddMember staticProp






Now create a provided constructor that takes no parameters.


let ctor = ProvidedConstructor(parameters = [ ], 
InvokeCode= (fun args -> <@@ "The object data" :> obj @@>))






The InvokeCode for the constructor returns an F# quotation, which represents the code that the host compiler generates when the constructor is called. For example, you can use the following constructor:


new Type10()






An instance of the provided type will be created with underlying data “The object data”. The quoted code includes a conversion to obj [https://msdn.microsoft.com/library/dcf2430f-702b-40e5-a0a1-97518bf137f7] because that type is the erasure of this provided type (as you specified when you declared the provided type).


Add XML documentation to the constructor, and add the provided constructor to the provided type:


ctor.AddXmlDocDelayed(fun () -> "This is a constructor")

t.AddMember ctor






Create a second provided constructor that takes one parameter:


let ctor2 = 
ProvidedConstructor(parameters = [ ProvidedParameter("data",typeof<string>) ], 
InvokeCode= (fun args -> <@@ (%%(args.[0]) : string) :> obj @@>))






The InvokeCode for the constructor again returns an F# quotation, which represents the code that the host compiler generated for a call to the method. For example, you can use the following constructor:


new Type10("ten")






An instance of the provided type is created with underlying data “ten”. You may have already noticed that the InvokeCode function returns a quotation. The input to this function is a list of expressions, one per constructor parameter. In this case, an expression that represents the single parameter value is available in args.[0]. The code for a call to the constructor coerces the return value to the erased type obj. After you add the second provided constructor to the type, you create a provided instance property:


let instanceProp = 
ProvidedProperty(propertyName = "InstanceProperty", 
propertyType = typeof<int>, 
GetterCode= (fun args -> 
<@@ ((%%(args.[0]) : obj) :?> string).Length @@>))
instanceProp.AddXmlDocDelayed(fun () -> "This is an instance property")
t.AddMember instanceProp






Getting this property will return the length of the string, which is the representation object. The GetterCode property returns an F# quotation that specifies the code that the host compiler generates to get the property. Like InvokeCode, the GetterCode function returns a quotation. The host compiler calls this function with a list of arguments. In this case, the arguments include just the single expression that represents the instance upon which the getter is being called, which you can access by using args.[0].The implementation of GetterCode then splices into the result quotation at the erased type obj, and a cast is used to satisfy the compiler’s mechanism for checking types that the object is a string. The next part of makeOneProvidedType provides an instance method with one parameter.


let instanceMeth = 
ProvidedMethod(methodName = "InstanceMethod", 
parameters = [ProvidedParameter("x",typeof<int>)], 
returnType = typeof<char>, 
InvokeCode = (fun args -> 
<@@ ((%%(args.[0]) : obj) :?> string).Chars(%%(args.[1]) : int) @@>))

instanceMeth.AddXmlDocDelayed(fun () -> "This is an instance method")
// Add the instance method to the type.
t.AddMember instanceMeth






Finally, create a nested type that contains 100 nested properties. The creation of this nested type and its properties is delayed, that is, computed on-demand.


t.AddMembersDelayed(fun () -> 
let nestedType = ProvidedTypeDefinition("NestedType",
Some typeof<obj>

)

nestedType.AddMembersDelayed (fun () -> 
let staticPropsInNestedType = 
[ for i in 1 .. 100 do
let valueOfTheProperty = "I am string "  + string i

let p = ProvidedProperty(propertyName = "StaticProperty" + string i, 
propertyType = typeof<string>, 
IsStatic=true,
GetterCode= (fun args -> <@@ valueOfTheProperty @@>))

p.AddXmlDocDelayed(fun () -> 
sprintf "This is StaticProperty%d on NestedType" i)

yield p ]
staticPropsInNestedType)

[nestedType])

// The result of makeOneProvidedType is the type.
t









Details about Erased Provided Types


The example in this section provides only erased provided types, which are particularly useful in the following situations:



		When you are writing a provider for an information space that contains only data and methods.




		When you are writing a provider where accurate runtime-type semantics aren’t critical for practical use of the information space.




		When you are writing a provider for an information space that is so large and interconnected that it isn’t technically feasible to generate real .NET types for the information space.







In this example, each provided type is erased to type obj, and all uses of the type will appear as type obj in compiled code. In fact, the underlying objects in these examples are strings, but the type will appear as System.Object in .NET compiled code. As with all uses of type erasure, you can use explicit boxing, unboxing, and casting to subvert erased types. In this case, a cast exception that isn’t valid may result when the object is used. A provider runtime can define its own private representation type to help protect against false representations. You can’t define erased types in F# itself. Only provided types may be erased. You must understand the ramifications, both practical and semantic, of using either erased types for your type provider or a provider that provides erased types. An erased type has no real .NET type. Therefore, you cannot do accurate reflection over the type, and you might subvert erased types if you use runtime casts and other techniques that rely on exact runtime type semantics. Subversion of erased types frequently results in type cast exceptions at runtime.





Choosing Representations for Erased Provided Types


For some uses of erased provided types, no representation is required. For example, the erased provided type might contain only static properties and members and no constructors, and no methods or properties would return an instance of the type. If you can reach instances of an erased provided type, you must consider the following questions:



		What is the erasure of a provided type?


		The erasure of a provided type is how the type appears in compiled .NET code.




		The erasure of a provided erased class type is always the first non-erased base type in the inheritance chain of the type.




		The erasure of a provided erased interface type is always System.Object.










		What are the representations of a provided type?


		The set of possible objects for an erased provided type are called its representations. In the example in this document, the representations of all the erased provided types Type1..Type100 are always string objects.













All representations of a provided type must be compatible with the erasure of the provided type. (Otherwise, either the F# compiler will give an error for a use of the type provider, or unverifiable .NET code that isn’t valid will be generated. A type provider isn’t valid if it returns code that gives a  representation that isn’t valid.)


You can choose a representation for provided objects by using either of the following approaches, both of which are very common:



		If you’re simply providing a strongly typed wrapper over an existing .NET type, it often makes sense for your type to erase to that type, use instances of that type as representations, or both. This approach is appropriate when most of the existing methods on that type still make sense when using the strongly typed version.




		If you want to create an API that differs significantly from any existing .NET API, it makes sense to create runtime types that will be the type erasure and representations for the provided types.







The example in this document uses strings as representations of provided objects. Frequently, it may be appropriate to use other objects for representations. For example, you may use a dictionary as a property bag:


ProvidedConstructor(parameters = [], 
InvokeCode= (fun args -> <@@ (new Dictionary<string,obj>()) :> obj @@>))






As an alternative, you may define a type in your type provider that will be used at runtime to form the representation, along with one or more runtime operations:


type DataObject() =
let data = Dictionary<string,obj>()
member x.RuntimeOperation() = data.Count






Provided members can then construct instances of this object type:


ProvidedConstructor(parameters = [], 
InvokeCode= (fun args -> <@@ (new DataObject()) :> obj @@>))






In this case, you may (optionally) use this type as the type erasure by specifying this type as the baseType when constructing the ProvidedTypeDefinition:


ProvidedTypeDefinition(…, baseType = Some typeof<DataObject> )
…
ProvidedConstructor(…, InvokeCode = (fun args -> <@@ new DataObject() @@>), …)






Key Lessons


The previous section explained how to create a simple erasing type provider that provides a range of types, properties, and methods. This section also explained the concept of type erasure, including some of the advantages and disadvantages of providing erased types from a type provider, and discussed representations of erased types.







A Type Provider That Uses Static Parameters


The ability to parameterize type providers by static data enables many interesting scenarios, even in cases when the provider doesn’t need to access any local or remote data. In this section, you’ll learn some basic techniques for putting together such a provider.



Type Checked Regex Provider


Imagine that you want to implement a type provider for regular expressions that wraps the .NET System.Text.RegularExpressions.Regex libraries in an interface that provides the following compile-time guarantees:



		Verifying whether a regular expression is valid.




		Providing named properties on matches that are based on any group names in the regular expression.







This section shows you how to use type providers to create a RegExProviderType type that the regular expression pattern parameterizes to provide these benefits. The compiler will report an error if the supplied pattern isn’t valid, and the type provider can extract the groups from the pattern so that you can access them by using named properties on matches. When you design a type provider, you should consider how its exposed API should look to end users and how this design will translate to .NET code. The following example shows how to use such an API to get the components of the area code:


type T = RegexTyped< @"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)">
let reg = T()
let result = T.IsMatch("425-555-2345")
let r = reg.Match("425-555-2345").Group_AreaCode.Value //r equals "425"






The following example shows how the type provider translates these calls:


let reg = new Regex(@"(?<AreaCode>^\d{3})-(?<PhoneNumber>\d{3}-\d{4}$)")
let result = reg.IsMatch("425-123-2345")
let r = reg.Match("425-123-2345").Groups.["AreaCode"].Value //r equals "425"






Note the following points:



		The standard Regex type represents the parameterized RegexTyped type.




		The RegexTyped constructor results in a call to the Regex constructor, passing in the static type argument for the pattern.




		The results of the Match method are represented by the standard System.Text.RegularExpressions.Match type.




		Each named group results in a provided property, and accessing the property results in a use of an indexer on a match’s Groups collection.







The following code is the core of the logic to implement such a provider, and this example omits the addition of all members to the provided type. For information about each added member, see the appropriate section later in this topic. For the full code, download the sample from the F# 3.0 Sample Pack [http://go.microsoft.com/fwlink/?LinkId=236999] on the Codeplex website.


namespace Samples.FSharp.RegexTypeProvider

open System.Reflection
open Microsoft.FSharp.Core.CompilerServices
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions

[<TypeProvider>]
type public CheckedRegexProvider() as this =
inherit TypeProviderForNamespaces()

// Get the assembly and namespace used to house the provided types
let thisAssembly = Assembly.GetExecutingAssembly()
let rootNamespace = "Samples.FSharp.RegexTypeProvider"
let baseTy = typeof<obj>
let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)]

let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, "RegexTyped", Some baseTy)

do regexTy.DefineStaticParameters(
parameters=staticParams, 
instantiationFunction=(fun typeName parameterValues ->

match parameterValues with 
| [| :? string as pattern|] -> 
// Create an instance of the regular expression. 
//
// This will fail with System.ArgumentException if the regular expression is not valid. 
// The exception will escape the type provider and be reported in client code.
let r = System.Text.RegularExpressions.Regex(pattern)            

// Declare the typed regex provided type.
// The type erasure of this type is 'obj', even though the representation will always be a Regex
// This, combined with hiding the object methods, makes the IntelliSense experience simpler.
let ty = ProvidedTypeDefinition(
thisAssembly, 
rootNamespace, 
typeName, 
baseType = Some baseTy)

...

ty
| _ -> failwith "unexpected parameter values")) 

do this.AddNamespace(rootNamespace, [regexTy])

[<TypeProviderAssembly>]
do ()






Note the following points:



		The type provider takes two static parameters: the pattern, which is mandatory, and the options, which are optional (because a default value is provided).




		After the static arguments are supplied, you create an instance of the regular expression. This instance will throw an exception if the Regex is malformed, and this error will be reported to users.




		Within the DefineStaticParameters callback, you define the type that will be returned after the arguments are supplied.




		This code sets HideObjectMethods to true so that the IntelliSense experience will remain streamlined. This attribute causes the Equals, GetHashCode, Finalize, and GetType members to be suppressed from IntelliSense lists for a provided object.




		You use obj as the base type of the method, but you’ll use a Regex object as the runtime representation of this type, as the next example shows.




		The call to the Regex constructor throws a System.ArgumentException when a regular expression isn’t valid. The compiler catches this exception and reports an error message to the user at compile time or in the Visual Studio editor. This exception enables regular expressions to be validated without running an application.







The type defined above isn’t useful yet because it doesn’t contain any meaningful methods or properties. First, add a static IsMatch method:


let isMatch = ProvidedMethod(
methodName = "IsMatch", 
parameters = [ProvidedParameter("input", typeof<string>)], 
returnType = typeof<bool>, 
IsStaticMethod = true,
InvokeCode = fun args -> <@@ Regex.IsMatch(%%args.[0], pattern) @@>) 

isMatch.AddXmlDoc "Indicates whether the regular expression finds a match in the specified input string." 
ty.AddMember isMatch






The previous code defines a method IsMatch, which takes a string as input and returns a bool. The only tricky part is the use of the args argument within the InvokeCode definition. In this example, args is a list of quotations that represents the arguments to this method. If the method is an instance method, the first argument represents the this argument. However, for a static method, the arguments are all just the explicit arguments to the method. Note that the type of the quoted value should match the specified return type (in this case, bool). Also note that this code uses the AddXmlDoc method to make sure that the provided method also has useful documentation, which you can supply through IntelliSense.


Next, add an instance Match method. However, this method should return a value of a provided Match type so that the groups can be accessed in a strongly typed fashion. Thus, you first declare the Match type. Because this type depends on the pattern that was supplied as a static argument, this type must be nested within the parameterized type definition:


let matchTy = ProvidedTypeDefinition(
"MatchType", 
baseType = Some baseTy, 
HideObjectMethods = true)

ty.AddMember matchTy






You then add one property to the Match type for each group. At runtime, a match is represented as a System.Text.RegularExpressions.Match value, so the quotation that defines the property must use the System.Text.RegularExpressions.Match.Groups indexed property to get the relevant group.


for group in r.GetGroupNames() do
// Ignore the group named 0, which represents all input.
if group <> "0" then
let prop = ProvidedProperty(
propertyName = group, 
propertyType = typeof<Group>, 
GetterCode = fun args -> <@@ ((%%args.[0]:obj) :?> Match).Groups.[group] @@>)
prop.AddXmlDoc(sprintf @"Gets the ""%s"" group from this match" group)
matchTy.AddMember prop






Again, note that you’re adding XML documentation to the provided property. Also note that a property can be read if a GetterCode function is provided, and the property can be written if a SetterCode function is provided, so the resulting property is read only.


Now you can create an instance method that returns a value of this Match type:


let matchMethod = 
ProvidedMethod(
methodName = "Match", 
parameters = [ProvidedParameter("input", typeof<string>)], 
returnType = matchTy, 
InvokeCode = fun args -> <@@ ((%%args.[0]:obj) :?> Regex).Match(%%args.[1]) :> obj @@>)
matchMeth.AddXmlDoc "Searches the specified input string for the first occurrence of this regular expression" 

ty.AddMember matchMeth






Because you are creating an instance method, args.[0] represents the RegexTyped instance on which the method is being called, and args.[1] is the input argument.


Finally, provide a constructor so that instances of the provided type can be created.


let ctor = ProvidedConstructor(
parameters = [], 
InvokeCode = fun args -> <@@ Regex(pattern, options) :> obj @@>)
ctor.AddXmlDoc("Initializes a regular expression instance.")

ty.AddMember ctor






The constructor merely erases to the creation of a standard .NET Regex instance, which is again boxed to an object because obj is the erasure of the provided type. With that change, the sample API usage that specified earlier in the topic works as expected. The following code is complete and final:


namespace Samples.FSharp.RegexTypeProvider

open System.Reflection
open Microsoft.FSharp.Core.CompilerServices
open Samples.FSharp.ProvidedTypes
open System.Text.RegularExpressions

[<TypeProvider>]
type public CheckedRegexProvider() as this =
inherit TypeProviderForNamespaces()

// Get the assembly and namespace used to house the provided types.
let thisAssembly = Assembly.GetExecutingAssembly()
let rootNamespace = "Samples.FSharp.RegexTypeProvider"
let baseTy = typeof<obj>
let staticParams = [ProvidedStaticParameter("pattern", typeof<string>)]

let regexTy = ProvidedTypeDefinition(thisAssembly, rootNamespace, "RegexTyped", Some baseTy)

do regexTy.DefineStaticParameters(
parameters=staticParams, 
instantiationFunction=(fun typeName parameterValues ->

match parameterValues with 
| [| :? string as pattern|] -> 
// Create an instance of the regular expression. 




let r = System.Text.RegularExpressions.Regex(pattern)            

// Declare the typed regex provided type.



let ty = ProvidedTypeDefinition(
thisAssembly, 
rootNamespace, 
typeName, 
baseType = Some baseTy)

ty.AddXmlDoc "A strongly typed interface to the regular expression '%s'"

// Provide strongly typed version of Regex.IsMatch static method.
let isMatch = ProvidedMethod(
methodName = "IsMatch", 
parameters = [ProvidedParameter("input", typeof<string>)], 
returnType = typeof<bool>, 
IsStaticMethod = true,
InvokeCode = fun args -> <@@ Regex.IsMatch(%%args.[0], pattern) @@>) 

isMatch.AddXmlDoc "Indicates whether the regular expression finds a match in the specified input string"

ty.AddMember isMatch

// Provided type for matches
// Again, erase to obj even though the representation will always be a Match
let matchTy = ProvidedTypeDefinition(
"MatchType", 
baseType = Some baseTy, 
HideObjectMethods = true)

// Nest the match type within parameterized Regex type.
ty.AddMember matchTy

// Add group properties to match type
for group in r.GetGroupNames() do
// Ignore the group named 0, which represents all input.
if group <> "0" then
let prop = ProvidedProperty(
propertyName = group, 
propertyType = typeof<Group>, 
GetterCode = fun args -> <@@ ((%%args.[0]:obj) :?> Match).Groups.[group] @@>)
prop.AddXmlDoc(sprintf @"Gets the ""%s"" group from this match" group)
matchTy.AddMember(prop)

// Provide strongly typed version of Regex.Match instance method.
let matchMeth = ProvidedMethod(
methodName = "Match", 
parameters = [ProvidedParameter("input", typeof<string>)], 
returnType = matchTy, 
InvokeCode = fun args -> <@@ ((%%args.[0]:obj) :?> Regex).Match(%%args.[1]) :> obj @@>)
matchMeth.AddXmlDoc "Searches the specified input string for the first occurence of this regular expression"

ty.AddMember matchMeth

// Declare a constructor.
let ctor = ProvidedConstructor(
parameters = [], 
InvokeCode = fun args -> <@@ Regex(pattern) :> obj @@>)

// Add documentation to the constructor.
ctor.AddXmlDoc "Initializes a regular expression instance"

ty.AddMember ctor

ty
| _ -> failwith "unexpected parameter values")) 

do this.AddNamespace(rootNamespace, [regexTy])

[<TypeProviderAssembly>]
do ()






Key Lessons


This section explained how to create a type provider that operates on its static parameters. The provider checks the static parameter and provides operations based on its value.







A Type Provider That Is Backed By Local Data


Frequently you might want type providers to present APIs based on not only static parameters but also information from local or remote systems. This section discusses type providers that are based on local data, such as local data files.



Simple CSV File Provider


As a simple example, consider a type provider for accessing scientific data in Comma Separated Value (CSV) format. This section assumes that the CSV files contain a header row followed by floating point data, as the following table illustrates:


|Distance (meter)|Time (second)|
|—————-|————-|
|50.0|3.7|
|100.0|5.2|
|150.0|6.4|
This section shows how to provide a type that you can use to get rows with a Distance property of type float<meter> and a Time property of type float<second>. For simplicity, the following assumptions are made:



		Header names are either unit-less or have the form “Name (unit)” and don’t contain commas.




		Units are all Systeme International (SI) units as the Microsoft.FSharp.Data.UnitSystems.SI.UnitNames Module (F#) [https://msdn.microsoft.com/library/3cb43485-11f5-4aa7-a779-558f19d4013b] module defines.




		Units are all simple (for example, meter) rather than compound (for example, meter/second).




		All columns contain floating point data.







A more complete provider would loosen these restrictions.


Again the first step is to consider how the API should look. Given an info.csv file with the contents from the previous table (in comma-separated format), users of the provider should be able to write code that resembles the following example:


let info = new MiniCsv<"info.csv">()
for row in info.Data do
let time = row.Time
printfn "%f" (float time)






In this case, the compiler should convert these calls into something like the following example:


let info = new MiniCsvFile("info.csv")
for row in info.Data do
let (time:float) = row.[1]
printfn "%f" (float time)






The optimal translation will require the type provider to define a real CsvFile type in the type provider’s assembly. Type providers often rely on a few helper types and methods to wrap important logic. Because measures are erased at runtime, you can use a float[] as the erased type for a row. The compiler will treat different columns as having different measure types. For example, the first column in our example has type float<meter>, and the second has float<second>. However, the erased representation can remain quite simple.


The following code shows the core of the implementation.


// Simple type wrapping CSV data
type CsvFile(filename) =
// Cache the sequence of all data lines (all lines but the first)
let data = 
seq { for line in File.ReadAllLines(filename) |> Seq.skip 1 do
yield line.Split(',') |> Array.map float }
|> Seq.cache
member __.Data = data

[<TypeProvider>]
type public MiniCsvProvider(cfg:TypeProviderConfig) as this =
inherit TypeProviderForNamespaces()

// Get the assembly and namespace used to house the provided types.
let asm = System.Reflection.Assembly.GetExecutingAssembly()
let ns = "Samples.FSharp.MiniCsvProvider"

// Create the main provided type.
let csvTy = ProvidedTypeDefinition(asm, ns, "MiniCsv", Some(typeof<obj>))

// Parameterize the type by the file to use as a template.
let filename = ProvidedStaticParameter("filename", typeof<string>)
do csvTy.DefineStaticParameters([filename], fun tyName [| :? string as filename |] ->

// Resolve the filename relative to the resolution folder.
let resolvedFilename = Path.Combine(cfg.ResolutionFolder, filename)

// Get the first line from the file.
let headerLine = File.ReadLines(resolvedFilename) |> Seq.head

// Define a provided type for each row, erasing to a float[].
let rowTy = ProvidedTypeDefinition("Row", Some(typeof<float[]>))

// Extract header names from the file, splitting on commas.
// use Regex matching to get the position in the row at which the field occurs
let headers = Regex.Matches(headerLine, "[^,]+")

// Add one property per CSV field.
for i in 0 .. headers.Count - 1 do
let headerText = headers.[i].Value

// Try to decompose this header into a name and unit.
let fieldName, fieldTy =
let m = Regex.Match(headerText, @"(?<field>.+) \((?<unit>.+)\)")
if m.Success then


let unitName = m.Groups.["unit"].Value
let units = ProvidedMeasureBuilder.Default.SI unitName
m.Groups.["field"].Value, ProvidedMeasureBuilder.Default.AnnotateType(typeof<float>,[units])


else
// no units, just treat it as a normal float
headerText, typeof<float>

let prop = ProvidedProperty(fieldName, fieldTy, 
GetterCode = fun [row] -> <@@ (%%row:float[]).[i] @@>)

// Add metadata that defines the property's location in the referenced file.
prop.AddDefinitionLocation(1, headers.[i].Index + 1, filename)
rowTy.AddMember(prop) 

// Define the provided type, erasing to CsvFile.
let ty = ProvidedTypeDefinition(asm, ns, tyName, Some(typeof<CsvFile>))

// Add a parameterless constructor that loads the file that was used to define the schema.
let ctor0 = ProvidedConstructor([], 
InvokeCode = fun [] -> <@@ CsvFile(resolvedFilename) @@>)
ty.AddMember ctor0

// Add a constructor that takes the file name to load.
let ctor1 = ProvidedConstructor([ProvidedParameter("filename", typeof<string>)], 
InvokeCode = fun [filename] -> <@@ CsvFile(%%filename) @@>)
ty.AddMember ctor1

// Add a more strongly typed Data property, which uses the existing property at runtime.
let prop = ProvidedProperty("Data", typedefof<seq<_>>.MakeGenericType(rowTy), 
GetterCode = fun [csvFile] -> <@@ (%%csvFile:CsvFile).Data @@>)
ty.AddMember prop

// Add the row type as a nested type.
ty.AddMember rowTy
ty)

// Add the type to the namespace.
do this.AddNamespace(ns, [csvTy])






Note the following points about the implementation:



		Overloaded constructors allow either the original file or one that has an identical schema to be read. This pattern is common when you write a type provider for local or remote data sources, and this pattern allows a local file to be used as the template for remote data.

  You can use the TypeProviderConfig [https://msdn.microsoft.com/library/1cda7b9a-3d07-475d-9315-d65e1c97eb44] value that’s passed in to the type provider constructor to resolve relative file names.




		You can use the AddDefinitionLocation method to define the location of the provided properties. Therefore, if you use Go To Definition on a provided property, the CSV file will open in Visual Studio.




		You can use the ProvidedMeasureBuilder type to look up the SI units and to generate the relevant float<_> types.







Key Lessons


This section explained how to create a type provider for a local data source with a simple schema that’s contained in the data source itself.







Going Further


The following sections include suggestions for further study.



A Look at the Compiled Code for Erased Types


To give you some idea of how the use of the type provider corresponds to the code that’s emitted, look at the following function by using the HelloWorldTypeProvider that’s used earlier in this topic.


let function1 () = 
let obj1 = Samples.HelloWorldTypeProvider.Type1("some data")
obj1.InstanceProperty






Here’s an image of the resulting code decompiled by using ildasm.exe:


.class public abstract auto ansi sealed Module1
extends [mscorlib]System.Object
{
.custom instance void [FSharp.Core]Microsoft.FSharp.Core.CompilationMappingAtt
ribute::.ctor(valuetype [FSharp.Core]Microsoft.FSharp.Core.SourceConstructFlags)
= ( 01 00 07 00 00 00 00 00 )
.method public static int32  function1() cil managed
{
// Code size       24 (0x18)
.maxstack  3
.locals init ([0] object obj1)
IL_0000:  nop
IL_0001:  ldstr      "some data"
IL_0006:  unbox.any  [mscorlib]System.Object
IL_000b:  stloc.0
IL_000c:  ldloc.0
IL_000d:  call       !!0 [FSharp.Core_2]Microsoft.FSharp.Core.LanguagePrimit
ives/IntrinsicFunctions::UnboxGeneric<string>(object)
IL_0012:  callvirt   instance int32 [mscorlib_3]System.String::get_Length()
IL_0017:  ret
} // end of method Module1::function1

} // end of class Module1






As the example shows, all mentions of the type Type1 and the InstanceProperty property have been erased, leaving only operations on the runtime types involved.





Design and Naming Conventions for Type Providers


Observe the following conventions when authoring type providers.



		Providers for Connectivity Protocols

  In general, names of most provider DLLs for data and service connectivity protocols, such as OData or SQL connections, should end in TypeProvider or TypeProviders. For example, use a DLL name that resembles the following string:







  Fabrikam.Management.BasicTypeProviders.dll






Ensure that your provided types are members of the corresponding namespace, and indicate the connectivity protocol that you implemented:




  Fabrikam.Management.BasicTypeProviders.WmiConnection<…>
  Fabrikam.Management.BasicTypeProviders.DataProtocolConnection<…>







		Utility Providers for General Coding

  For a utility type provider such as that for regular expressions, the type provider may be part of a base library, as the following example shows:







  #r "Fabrikam.Core.Text.Utilities.dll"






In this case, the provided type would appear at an appropriate point according to normal .NET design conventions:




  open Fabrikam.Core.Text.RegexTyped
  
  let regex = new RegexTyped<"a+b+a+b+">()







		Singleton Data Sources

  Some type providers connect to a single dedicated data source and provide only data. In this case, you should drop the TypeProvider suffix and use normal conventions for .NET naming:







  #r "Fabrikam.Data.Freebase.dll"
  
  let data = Fabrikam.Data.Freebase.Astronomy.Asteroids






For more information, see the GetConnection design convention that’s described later in this topic.







Design Patterns for Type Providers


The following sections describe design patterns you can use when authoring type providers.



The GetConnection Design Pattern


Most type providers should be written to use the GetConnection pattern that’s used by the type providers in FSharp.Data.TypeProviders.dll, as the following example shows:


#r "Fabrikam.Data.WebDataStore.dll"

type Service = Fabrikam.Data.WebDataStore<…static connection parameters…>

let connection = Service.GetConnection(…dynamic connection parameters…)

let data = connection.Astronomy.Asteroids









Type Providers Backed By Remote Data and Services


Before you create a type provider that’s backed by remote data and services, you must consider a range of issues that are inherent in connected programming. These issues include the following considerations:



		schema mapping




		liveness and invalidation in the presence of schema change




		schema caching




		asynchronous implementations of data access operations




		supporting queries, including LINQ queries




		credentials and authentication







This topic doesn’t explore these issues further.







Additional Authoring Techniques


When you write your own type providers, you might want to use the following additional techniques.



		Creating Types and Members On-Demand

  The ProvidedType API has delayed versions of AddMember.







  type ProvidedType =
  member AddMemberDelayed  : (unit -> MemberInfo)      -> unit
  member AddMembersDelayed : (unit -> MemberInfo list) -> unit






These versions are used to create on-demand spaces of types.





		Providing Array, ByRef, and Pointer types

  You make provided members (whose signatures include array types, byref types, and instantiations of generic types) by using the normal MakeArrayType, MakePointerType, and MakeGenericType on any instance of System.Type, including ProvidedTypeDefinitions.




		Providing Unit of Measure Annotations

  The ProvidedTypes API provides helpers for providing measure annotations. For example, to provide the type float<kg>, use the following code:







  let measures = ProvidedMeasureBuilder.Default
  let kg = measures.SI "kilogram"
  let m = measures.SI "meter"
  let float_kg = measures.AnnotateType(typeof<float>,[kg])






To provide the type Nullable<decimal<kg/m^2>>, use the following code:




  let kgpm2 = measures.Ratio(kg, measures.Square m)
  let dkgpm2 = measures.AnnotateType(typeof<decimal>,[kgpm2])
  let nullableDecimal_kgpm2 = typedefof<System.Nullable<_>>.MakeGenericType [|dkgpm2 |]







		Accessing Project-Local or Script-Local Resources

  Each instance of a type provider can be given a TypeProviderConfig value during construction. This value contains the “resolution folder” for the provider (that is, the project folder for the compilation or the directory that contains a script), the list of referenced assemblies, and other information.




		Invalidation

  Providers can raise invalidation signals to notify the F# language service that the schema assumptions may have changed. When invalidation occurs, a typecheck is redone if the provider is being hosted in Visual Studio. This signal will be ignored when the provider is hosted in F# Interactive or by the F# Compiler (fsc.exe).




		Caching Schema Information

  Providers must often cache access to schema information. The cached data should be stored by using a file name that’s given as a static parameter or as user data. An example of schema caching is the LocalSchemaFile parameter in the type providers in the FSharp.Data.TypeProviders assembly. In the implementation of these providers, this static parameter directs the type provider to use the schema information in the specified local file instead of accessing the data source over the network. To use cached schema information, you must also set the static parameter ForceUpdate to false. You could use a similar technique to enable online and offline data access.




		Backing Assembly

  When you compile a .dll or .exe file, the backing .dll file for generated types is statically linked into the resulting assembly. This link is created by copying the Intermediate Language (IL) type definitions and any managed resources from the backing assembly into the final assembly. When you use F# Interactive, the backing .dll file isn’t copied and is instead loaded directly into the F# Interactive process.




		Exceptions and Diagnostics from Type Providers

  All uses of all members from provided types may throw exceptions. In all cases, if a type provider throws an exception, the host compiler attributes the error to a specific type provider.


		Type provider exceptions should never result in internal compiler errors.




		Type providers can’t report warnings.




		When a type provider is hosted in the F# compiler, an F# development environment, or F# Interactive, all exceptions from that provider are caught. The Message property is always the error text, and no stack trace appears. If you’re going to throw an exception, you can throw the following examples:


		System.NotSupportedException




		System.IO.IOException




		System.Exception




















Providing Generated Types


So far, this document has explained how provide erased types. You can also use the type provider mechanism in F# to provide generated types, which are added as real .NET type definitions into the users’ program. You must refer to generated provided types by using a type definition.


open Microsoft.FSharp.TypeProviders 

type Service = ODataService<" http://services.odata.org/Northwind/Northwind.svc/">






The ProvidedTypes-0.2 helper code that is part of the F# 3.0 release has only limited support for providing generated types. The following statements must be true for a generated type definition:



		IsErased must be set to false.




		The provider must have an assembly that has an actual backing .NET .dll file with a matching .dll file on disk.







You must also call ConvertToGenerated on a root provided type whose nested types form a closed set of generated types. This call emits the given provided type definition and its nested type definitions into an assembly and adjusts the Assembly property of all provided type definitions to return that assembly. The assembly is emitted only when the Assembly property on the root type is accessed for the first time. The host F# compiler does access this property when it processes a generative type declaration for the type.









Rules and Limitations


When you write type providers, keep the following rules and limitations in mind.



		Provided types must be reachable.

  All provided types should be reachable from the non-nested types. The non-nested types are given in the call to the TypeProviderForNamespaces constructor or a call to AddNamespace. For example, if the provider provides a type StaticClass.P : T, you must ensure that T is either a non-nested type or nested under one.

  For example, some providers have a static class such as DataTypes that contain these T1, T2, T3, ... types. Otherwise, the error says that a reference to type T in assembly A was found, but the type couldn’t be found in that assembly. If this error appears, verify that all your subtypes can be reached from the provider types. Note: These T1, T2, T3... types are referred to as the on-the-fly types. Remember to put them in an accessible namespace or a parent type.




		Limitations of the Type Provider Mechanism

  The type provider mechanism in F# has the following limitations:


		The underlying infrastructure for type providers in F# doesn’t support provided generic types or provided generic methods.




		The mechanism doesn’t support nested types with static parameters.










		Limitations of the ProvidedTypes Support Code

  The ProvidedTypes support code has the following rules and limitations:


		Provided properties with indexed getters and setters aren’t implemented.




		Provided events aren’t implemented.




		The provided types and information objects should be used only for the type provider mechanism in F#. They aren’t more generally usable as System.Type objects.




		The constructs that you can use in quotations that define method implementations have several limitations. You can refer to the source code for ProvidedTypes-Version to see which constructs are supported in quotations.










		Type providers must generate output assemblies that are .dll files, not .exe files.










Development Tips


You might find the following tips helpful during the development process.



		Run Two Instances of Visual Studio. You can develop the type provider in one instance and test the provider in the other because the test IDE will take a lock on the .dll file that prevents the type provider from being rebuilt. Thus, you must close the second instance of Visual Studio while the provider is built in the first instance, and then you must reopen the second instance after the provider is built.







		Debug type providers by using invocations of fsc.exe. You can invoke type providers by using the following tools:





		fsc.exe (The F# command line compiler)




		fsi.exe (The F# Interactive compiler)




		devenv.exe (Visual Studio)







You can often debug type providers most easily by using fsc.exe on a test script file (for example, script.fsx). You can launch a debugger from a command prompt.










  devenv /debugexe fsc.exe script.fsx






You can use print-to-stdout logging.







See Also


Type Providers








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/portability-screenshot.png
Options

‘Search Options (Ctri+E)

Startup
Synchronized Settings
Tabs and Windows
Task List
Web Browser

Projects and Solutions.

Source Control

Text Editor

Debugging

InteliTrace.

Performance Tools

NET Portability Analyzer

Database Tools

F# Tools

Graphics Diagnostics

HTML Designer

NuGet Package Manager

Target Platforms
NET Framework

D11 20 O30 C3s (40 45
ASPNET 5

Mono
Clas

Silverlight
20 30 40

Windows Phone Silverlight

More information s available at http://ao.microsoft.cor

oK

Cancel





fsharp/tutorials/type-providers/generating-fsharp-types-from-dbml.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Walkthrough: Generating F# Types from a DBML File (F#)”
description: “Walkthrough: Generating F# Types from a DBML File (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 6fbb6ccc-248f-4226-95e9-f6f99541dbe4





Walkthrough: Generating F# Types from a DBML File



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This walkthrough for F# 3.0 describes how to create types for data from a database when you have schema information encoded in a .dbml file. LINQ to SQL uses this file format to represent database schema. You can generate a LINQ to SQL schema file in Visual Studio by using the Object Relational (O/R) Designer. For more information, see O/R Designer Overview [https://msdn.microsoft.com/library/bb384511.aspx] and Code Generation in LINQ to SQL.


The Database Markup Language (DBML) type provider allows you to write code that uses types based on a database schema without requiring you to specify a static connection string at compile time. That can be useful if you need to allow for the possibility that the final application will use a different database, different credentials, or a different connection string than the one you use to develop the application. If you have a direct database connection that you can use at compile time and this is the same database and credentials that you will eventually use in your built application, you can also use the SQLDataConnection type provider. For more information, see Walkthrough: Accessing a SQL Database by Using Type Providers.


This walkthrough illustrates the following tasks. They should be completed in this order for the walkthrough to succeed:



		Creating a .dbml file




		Creating and setting up an F# project




		Configuring the type provider and generating the types




		Querying the database








Prerequisites





Creating a .dbml file


If you do not have a database to test on, create one by following the instructions at the bottom of Walkthrough: Accessing a SQL Database by Using Type Providers. If you follow these instructions, you will create a database called MyDatabase that contains a few simple tables and stored procedures on your SQL Server.


If you already have a .dbml file, you can skip to the section, Create and Set Up an F# Project. Otherwise, you can create a .dbml file given an existing SQL database and by using the command-line tool SqlMetal.exe.



To create a .dbml file by using SqlMetal.exe



		Open a Developer Command Prompt.




		Ensure that you have access to SqlMetal.exe by entering SqlMetal.exe /? at the command prompt. SqlMetal.exe is typically installed under the Microsoft SDKs folder in Program Files or Program Files (x86).




		Run SqlMetal.exe with the following command-line options. Substitute an appropriate path in place of c:\destpath to create the .dbml file, and insert appropriate values for the database server, instance name, and database name.







  SqlMetal.exe /sprocs /dbml:C:\destpath\MyDatabase.dbml /server:SERVER\INSTANCE /database:MyDatabase







[!NOTE]
If SqlMetal.exe has trouble creating the file due to permissions issues, change the current directory to a folder that you have write access to.




		You can also look at the other available command-line options. For example, there are options you can use if you want views and SQL functions included in the generated types. For more information, see SqlMetal.exe (


Code Generation Tool)


 [https://msdn.microsoft.com/library/bb386987].












Creating and setting up an F# project


In this step, you create a project and add appropriate references to use the DBML type provider.



To create and set up an F# project



		Add a new F# Console Application project to your solution.




		In Solution Explorer, open the shortcut menu for References, and then choose Add Reference.




		In the Assemblies area, choose the Framework node, and then, in the list of available assemblies, choose the System.Data and System.Data.Linq assemblies.




		In the Assemblies area, choose Extensions, and then, in the list of available assemblies, choose FSharp.Data.TypeProviders.




		Choose the OK button to add references to these assemblies to your project.




		(Optional). Copy the .dbml file that you created in the previous step, and paste the file in the main folder for your project. This folder contains the project file (.fsproj) and code files. On the menu bar, choose Project, Add Existing Item, and then specify the .dbml file to add it to your project. If you complete these steps, you can omit the ResolutionFolder static parameter in the next step.












Configuring the type provider


In this section, you create a type provider and generate types from the schema that’s described in the .dbml file.



To configure the type provider and generate the types



		Add code that opens the TypeProviders namespace and instantiates the type provider for the .dbml file that you want to use. If you added the .dbml file to your project, you can omit the ResolutionFolder static parameter.







open Microsoft.FSharp.Data.TypeProviders


type dbml = DbmlFile<"MyDatabase.dbml", ResolutionFolder = @"<path-to-folder-that-contains-.dbml-file>>

// This connection string can be specified at run time.
let connectionString = "Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;"
let dataContext = new dbml.Mydatabase(connectionString)






The DataContext type provides access to all the generated types and inherits from System.Data.Linq.DataContext. The DbmlFile type provider has various static parameters that you can set. For example, you can use a different name for the DataContext type by specifying DataContext=MyDataContext. In that case, your code resembles the following example:




open Microsoft.FSharp.Data.TypeProviders


type dbml = DbmlFile<"MyDatabase.dbml", ContextTypeName = "MyDataContext">

// This connection string can be specified at run time.
let connectionString = "Data Source=MYSERVER\INSTANCE;Initial Catalog=MyDatabase;Integrated Security=SSPI;"
let db = new dbml.MyDataContext(connectionString)











Querying the database


In this section, you use F# query expressions to query the database.



To query the data



		Add code to query the database.







  query {
    for row in db.Table1 do
    where (row.TestData1 > 2)
    select row
  } |> Seq.iter (fun row -> printfn "%d %s" row.TestData1 row.Name)











Next Steps


You can proceed to use other query expressions, or get a database connection from the data context and perform normal ADO.NET data operations. For additional steps, see the sections after “Query the Data” in Walkthrough: Accessing a SQL Database by Using Type Providers.





See Also


DbmlFile Type Provider [https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/dbmlfile-type-provider-%5bfsharp%5d]


Type Providers


Walkthrough: Accessing a SQL Database by Using Type Providers


SqlMetal.exe 

(


Code Generation Tool)


 [https://msdn.microsoft.com/library/bb386987]


Query Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/project.png
Car.csproj
packages.config
- Wheel.cs

src Car

Car.Tests. csproj
packages.config

-WheelTest.cs
tests  Car.Tests





fsharp/tutorials/type-providers/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Type Providers
description: Type Providers
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 25697ef6-465e-4248-9de5-1d199d4a8b59





Type Providers



[!NOTE]
This guide was written from F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.



An F# type provider is a component that provides types, properties, and methods for use in your program. Type providers are a significant part of F# 3.0 support for information-rich programming. The key to information-rich programming is to eliminate barriers to working with diverse information sources found on the Internet and in modern enterprise environments. One significant barrier to including a source of information into a program is the need to represent that information as types, properties, and methods for use in a programming language environment. Writing these types manually is very time-consuming and difficult to maintain. A common alternative is to use a code generator which adds files to your project; however, the conventional types of code generation do not integrate well into exploratory modes of programming supported by F# because the generated code must be replaced each time a service reference is adjusted.


The types provided by F# type providers are usually based on external information sources. For example, an F# type provider for SQL will provide the types, properties, and methods you need to work directly with the tables of any SQL database you have access to. Similarly, a type provider for WSDL web services will provide the types, properties, and methods you need to work directly with any WSDL web service.


The set of types, properties, and methods provided by an F# type provider can depend on parameters given in program code. For example, a type provider can provide different types depending on a connection string or a service URL. In this way, the information space available by means of a connection string or URL is directly integrated into your program. A type provider can also ensure that groups of types are only expanded on demand; that is, they are expanded if the types are actually referenced by your program. This allows for the direct, on-demand integration of large-scale information spaces such as online data markets in a strongly typed way.


F# contains several built-in type providers for commonly used Internet and enterprise data services. These type providers give simple and regular access to SQL relational databases and network-based OData and WSDL services and support the use of F# LINQ queries against these data sources.


Where necessary, you can create your own custom type providers, or reference type providers that have been created by others. For example, assume your organization has a data service providing a large and growing number of named data sets, each with its own stable data schema. You may choose to create a type provider that reads the schemas and presents the latest available data sets to the programmer in a strongly typed way.



Related Topics


|Title|Description|
|—–|———–|
|Walkthrough: Accessing a SQL Database by Using Type Providers|Explains how to use the SqlDataConnection type provider to access the tables and stored procedures of a SQL database based on a connection string for a direct connection to a database. The access uses a LINQ to SQL mapping.|
|Walkthrough: Accessing a SQL Database by Using Type Providers and Entities|Explains how to use the SqlEntityConnection type provider to access the tables and stored procedures of a SQL database, based on a connection string for a direct connection to a database. The access uses a LINQ to Entities mapping. This method works with any database but the example demonstrated is SQL Server.|
|Walkthrough: Accessing an OData Service by Using Type Providers|Explains how to use the ODataService type provider to access an OData service in a strongly typed way based on a service URL.|
|Walkthrough: Accessing a Web Service by Using Type Providers|Explains how to use the WsdlService type provider to access a WSDL web service in a strongly typed way based on a service URL.|
|Walkthrough: Generating F

#


 Types from a DBML File|Explains how to use the DbmlFile type provider to access the tables and stored procedures of a SQLdatabase, based on a DBML file giving a Linq to SQL database schema specification.|
|Walkthrough: Generating F#


 Types from an EDMX Schema File|Explains how to use the EdmxFile type provider to access the tables and stored procedures of a SQL database, based on an EDMX file giving an Entity Framework schema specification.|
|Tutorial: Creating a Type Provider|Provides information on writing your own custom type providers.|
|Type Provider Security|Provides information about security considerations when developing type providers.|
|Troubleshooting Type Providers|Provides information about common problems that can arise when working with type providers and includes suggestions for solutions.|





See Also


F# Language Reference


Visual F#








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/project.xproj.different.png
src|

tests|

Car.NetdS.

Car.Tests

Car.Tests.NetdS.

Car.xproj
projectjson
-~Wheel.cs

Car.csproj
packages.config

Each *csprof

Car.Tests.xproj references existing
ject source code inthe

profactison original director

- WheelTest.cs e i

CarTests.csproj
packages.config





fsharp/tutorials/type-providers/type-provider-security.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Type Provider Security
description: Type Provider Security
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 9c5a8a1f-5a31-490d-83c0-8beabda75c78





Type Provider Security


Type providers are assemblies (DLLs) referenced by your F# project or script that contain code to connect to external data sources and surface this type information to the F# type environment. Typically, code in referenced assemblies is only run when you compile and then execute the code (or in the case of a script, send the code to F# Interactive). However, a type provider assembly will run inside Visual Studio when the code is merely browsed in the editor. This happens because type providers need to run to add extra information to the editor, such as Quick Info tooltips, IntelliSense completions, and so on. As a result, there are extra security considerations for type provider assemblies, since they run automatically inside the Visual Studio process.



Security Warning Dialog


When using a particular type provider assembly for the first time, Visual Studio displays a security dialog that warns you that the type provider is about to run. Before Visual Studio loads the type provider, it gives you the opportunity to decide if you trust this particular provider. If you trust the source of the type provider, then select “I trust this type provider.” If you do not trust the source of the type provider, then select “I do not trust this type provider.” Trusting the provider enables it to run inside Visual Studio and provide IntelliSense and build features. But if the type provider itself is malicious, running its code could compromise your machine.


If your project contains code that references type providers that you chose in the dialog not to trust, then at compile time, the compiler will report an error that indicates that the type provider is untrusted. Any types that are dependent on the untrusted type provider are indicated by red squiggles. It is safe to browse the code in the editor.


If you decide to change the trust setting directly in Visual Studio, perform the following steps.



To change the trust settings for type providers



		On the Tools menu, select Options, and expand the F# Tools node.




		Select Type Providers, and in the list of type providers, select the check box for type providers you trust, and clear the check box for those you don’t trust.












See Also


Type Providers








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

_images/plinq-diagram.png
All Facebook
Users

Users are
paritioned over
N threads

Likesare
accumulated
per-thread

Likesare
accumulated
from result of
each thread

Total is transformed into result type

Facebook has {total] likes!





fsharp/tutorials/type-providers/accessing-a-sql-database-entities.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Walkthrough: Accessing a SQL Database by Using Type Providers and Entities (F#)”
description: “Walkthrough: Accessing a SQL Database by Using Type Providers and Entities (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: dc82a932-5401-4d19-9fb3-92c50d8db514





Walkthrough: Accessing a SQL Database by Using Type Providers and Entities



[!NOTE]
This guide was written for F# 3.0 and will be updated.  See FSharp.Data [http://fsharp.github.io/FSharp.Data/] for up-to-date, cross-platform type providers.




[!NOTE]
The API reference links will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This walkthrough for F# 3.0 shows you how to access typed data for a SQL database based on the ADO.NET Entity Data Model. This walkthrough shows you how to set up the F# SqlEntityConnection type provider for use with a SQL database, how to write queries against the data, how to call stored procedures on the database, as well as how to use some of the ADO.NET Entity Framework types and methods to update the database.


This walkthrough illustrates the following tasks, which you should perform in this order for the walkthrough to succeed:



		Create the School database




		Create and configure an F# project




		Configure the type provider and connect to the Entity Data Model




		Query the database




		Updating the database








Prerequisites


You must have access to a server that’s running SQL Server where you can create a database to complete these steps.





Create the School database


You can create the School database on any server that’s running SQL Server to which you have administrative access, or you can use LocalDB.



To create the School database



		In Server Explorer, open the shortcut menu for the Data Connections node, and then choose Add Connection.

  The Add Connection dialog box appears.




		In the Server name box, specify the name of an instance of SQL Server to which you have administrative access, or specify (localdb\v11.0) if you don’t have access to a server.

  SQL Server Express LocalDB provides a lightweight database server for development and testing on your machine. For more information about LocalDB, see Walkthrough: Creating a Local Database File in Visual Studio [https://msdn.microsoft.com/library/ms233763.aspx].

  A new node is created in Server Explorer under Data Connections.




		Open the shortcut menu for the new connection node, and then choose New Query.




		Open Creating the School Sample Database [http://go.microsoft.com/fwlink/?LinkID=237278] on the Microsoft website, and then copy and paste the database script that creates the Student database into the editor window.












[bookmark: BKMK_CreateConfigFSProj] 





Create and configure an F# project


In this step, you create a project and set it up to use a type provider.



To create and configure an F# project



		Close the previous project, create another project, and name it SchoolEDM.




		In Solution Explorer, open the shortcut menu for References, and then choose Add Reference.




		Choose the Framework node, and then, in the Framework list, choose System.Data, System.Data.Entity,  and System.Data.Linq.




		Choose the Extensions node, add a reference to the FSharp.Data.TypeProviders [https://msdn.microsoft.com/library/a858f859-047a-44ab-945b-8731d7a0e6e3] assembly, and then choose the OK button to dismiss the dialog box.




		Add the following code to define an internal module and open appropriate namespaces. The type provider can inject types only into a private or internal namespace.







module internal SchoolEDM

open System.Data.Linq
open System.Data.Entity
open Microsoft.FSharp.Data.TypeProviders







		To run the code in this walkthrough interactively as a script instead of as a compiled program, open the shortcut menu for the project node, choose Add New Item, add an F# script file, and then add the code in each step to the script. To load the assembly references, add the following lines.







#r "System.Data.Entity.dll"
#r "FSharp.Data.TypeProviders.dll"
#r "System.Data.Linq.dll"







		Highlight each block of code as you add it, and choose the Alt + Enter keys to run it in F# Interactive.












Configure the type provider, and connect to the Entity Data Model


In this step, you set up a type provider with a data connection and obtain a data context that allows you to work with data.



To configure the type provider, and connect to the Entity Data Model



		Enter the following code to configure the SqlEntityConnection type provider that generates F# types based on the Entity Data Model that you created previously. Instead of the full EDMX connection string, use only the SQL connection string.







type private EntityConnection = SqlEntityConnection<ConnectionString="Server=SERVER\InstanceName;Initial Catalog=School;Integrated Security=SSPI;MultipleActiveResultSets=true",Pluralize = true>






This action sets up a type provider with the database connection that you created earlier. The property MultipleActiveResultSets is needed when you use the ADO.NET Entity Framework because this property allows multiple commands to execute asynchronously on the database in one connection, which can occur frequently in ADO.NET Entity Framework code. For more information, see Multiple Active Result Sets (MARS) [http://go.microsoft.com/fwlink/?LinkId=236929].





		Get the data context, which is an object that contains the database tables as properties and the database stored procedures and functions as methods.







let context = EntityConnection.GetDataContext()











Querying the database


In this step, you use F# query expressions to execute various queries on the database.



To query the data



		Enter the following code to query the data from the entity data model. Note the effect of Pluralize = true, which changes the database table Course to Courses and Person to People.







query { 
  for course in context.Courses do
  select course
} |> Seq.iter (fun course -> printfn "%s" course.Title)

query { 
  for person in context.People do
  select person 
} |> Seq.iter (fun person -> printfn "%s %s" person.FirstName person.LastName)

// Add a where clause to filter results.
query {
  for course in context.Courses do
  where (course.DepartmentID = 1)
  select course
} |> Seq.iter (fun course -> printfn "%s" course.Title)

// Join two tables.
query { 
  for course in context.Courses do
  join dept in context.Departments on (course.DepartmentID = dept.DepartmentID)
  select (course, dept.Name) 
} |> Seq.iter (fun (course, deptName) -> printfn "%s %s" course.Title deptName)











Updating the database


To update the database, you use the Entity Framework classes and methods. You can use two types of data context with the SQLEntityConnection type provider. First, ServiceTypes.SimpleDataContextTypes.EntityContainer is the simplified data context, which includes only the provided properties that represent database tables and columns. Second, the full data context is an instance of the Entity Framework class System.Data.Objects.ObjectContext, which contains the method System.Data.Objects.ObjectContext.AddObject(System.String,System.Object) to add rows to the database. The Entity Framework recognizes the tables and the relationships between them, so it enforces database consistency.



To update the database



		Add the following code to your program. In this example, you add two objects with a relationship between them, and you add an instructor and an office assignment. The table OfficeAssignments contains the InstructorID column, which references the PersonID column in the Person table.







// The full data context
let fullContext = context.DataContext

// A helper function.
let nullable value = new System.Nullable<_>(value)

let addInstructor(lastName, firstName, hireDate, office) =
let hireDate = DateTime.Parse(hireDate)
let newPerson = new EntityConnection.ServiceTypes.Person(LastName = lastName,
                                                         FirstName = firstName,
                                                         HireDate = nullable hireDate)
fullContext.AddObject("People", newPerson)

let newOffice = new EntityConnection.ServiceTypes.OfficeAssignment(Location = office)

fullContext.AddObject("OfficeAssignments", newOffice)
fullContext.CommandTimeout <- nullable 1000
fullContext.SaveChanges() |> printfn "Saved changes: %d object(s) modified."

addInstructor("Parker", "Darren", "1/1/1998", "41/3720")






Nothing is changed in the database until you call System.Data.Objects.ObjectContext.SaveChanges.





		Now restore the database to its earlier state by deleting the objects that you added.







let deleteInstructor(lastName, firstName) =
query {
  for person in context.People do
  where (person.FirstName = firstName &&
  person.LastName = lastName)
  select person
} |> Seq.iter (fun person->
                  query {
                    for officeAssignment in context.OfficeAssignments do
                    where (officeAssignment.Person.PersonID = person.PersonID)
                    select officeAssignment
                  } |> Seq.iter (fun officeAssignment -> fullContext.DeleteObject(officeAssignment))

fullContext.DeleteObject(person))

// The call to SaveChanges should be outside of any iteration on the queries.
fullContext.SaveChanges() |> printfn "Saved changed: %d object(s) modified."

deleteInstructor("Parker", "Darren")







[!WARNING]
When you use a query expression, you must remember that the query is subject to lazy evaluation. Therefore, the database is still open for reading during any chained evaluations, such as in the lambda expression blocks after each query expression. Any database operation that explicitly or implicitly uses a transaction must occur after the read operations have completed.








Next Steps


Explore other query options by reviewing the query operators available in Query Expressions, and also review the ADO.NET Entity Framework [https://msdn.microsoft.com/library/bb399572] to understand what functionality is available to you when you use this type provider.





See Also


Type Providers


SqlEntityConnection Type Provider [https://msdn.microsoft.com/en-us/visualfsharpdocs/conceptual/sqlentityconnection-type-provider-%5bfsharp%5d]


Walkthrough: Generating F# Types from an EDMX Schema File


ADO.NET Entity Framework [https://msdn.microsoft.com/library/bb399572]


.edmx File Overview [https://msdn.microsoft.com/library/f4c8e7ce-1db6-417e-9759-15f8b55155d4]


EDM Generator 

(


EdmGen.exe)


 [https://msdn.microsoft.com/library/bb387165]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/properties.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Properties (F#)
description: Properties (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 98b363a5-ee6a-4b7b-b8ae-b244f2a0b316





Properties


Properties are members that represent values associated with an object.



Syntax


// Property that has both get and set defined.
[ attributes ]
[ static ] member [accessibility-modifier] [self-identifier.]PropertyName
with [accessibility-modifier] get() =
    get-function-body
and [accessibility-modifier] set parameter =
    set-function-body

// Alternative syntax for a property that has get and set.
[ attributes-for-get ]
[ static ] member [accessibility-modifier-for-get] [self-identifier.]PropertyName =
    get-function-body
[ attributes-for-set ]
[ static ] member [accessibility-modifier-for-set] [self-identifier.]PropertyName
with set parameter =
    set-function-body

// Property that has get only.
[ attributes ]
[ static ] member [accessibility-modifier] [self-identifier.]PropertyName =
    get-function-body

// Alternative syntax for property that has get only.
[ attributes ]
[ static ] member [accessibility-modifier] [self-identifier.]PropertyName
with get() =
    get-function-body

// Property that has set only.
[ attributes ]
[ static ] member [accessibility-modifier] [self-identifier.]PropertyName
with set parameter =
    set-function-body

// Automatically implemented properties.
[ attributes ]
[ static ] member val [accessibility-modifier] PropertyName = initialization-expression [ with get, set ]









Remarks


Properties represent the “has a” relationship in object-oriented programming, representing data that is associated with object instances or, for static properties, with the type.


You can declare properties in two ways, depending on whether you want to explicitly specify the underlying value (also called the backing store) for the property, or if you want to allow the compiler to automatically generate the backing store for you. Generally, you should use the more explicit way if the property has a non-trivial implementation and the automatic way when the property is just a simple wrapper for a value or variable. To declare a property explicitly, use the member keyword. This declarative syntax is followed by the syntax that specifies the get and set methods, also named accessors. The various forms of the explicit syntax shown in the syntax section are used for read/write, read-only, and write-only properties. For read-only properties, you define only a get method; for write-only properties, define only a set method. Note that when a property has both get and set accessors, the alternative syntax enables you to specify attributes and accessibility modifiers that are different for each accessor, as is shown in the following code.


[!code-fsharpMain]


For read/write properties, which have both a get and set method, the order of get and set can be reversed. Alternatively, you can provide the syntax shown for get only and the syntax shown for set only instead of using the combined syntax. Doing this makes it easier to comment out the individual get or set method, if that is something you might need to do. This alternative to using the combined syntax is shown in the following code.


[!code-fsharpMain]


Private values that hold the data for properties are called backing stores. To have the compiler create the backing store automatically, use the keywords member val, omit the self-identifier, then provide an expression to initialize the property. If the property is to be mutable, include with get, set. For example, the following class type includes two automatically implemented properties. Property1 is read-only and is initialized to the argument provided to the primary constructor, and Property2 is a settable property initialized to an empty string:


type MyClass(property1 : int) =
member val Property1 = property1
member val Property2 = "" with get, set






Automatically implemented properties are part of the initialization of a type, so they must be included before any other member definitions, just like let bindings and do bindings in a type definition. Note that the expression that initializes an automatically implemented property is only evaluated upon initialization, and not every time the property is accessed. This behavior is in contrast to the behavior of an explicitly implemented property. What this effectively means is that the code to initialize these properties is added to the constructor of a class. Consider the following code that shows this difference:


type MyClass() =
    let random  = new System.Random()
    member val AutoProperty = random.Next() with get, set
    member this.ExplicitProperty = random.Next()

let class1 = new MyClass()

printfn "class1.AutoProperty = %d" class1.AutoProperty
printfn "class1.AutoProperty = %d" class1.AutoProperty
printfn "class1.ExplicitProperty = %d" class1.ExplicitProperty
printfn "class1.ExplicitProperty = %d" class1.ExplicitProperty






Output


class1.AutoProperty = 1853799794
class1.AutoProperty = 1853799794
class1.ExplicitProperty = 978922705
class1.ExplicitProperty = 1131210765






The output of the preceding code shows that the value of AutoProperty is unchanged when called repeatedly, whereas the ExplicitProperty changes each time it is called. This demonstrates that the expression for an automatically implemented property is not evaluated each time, as is the getter method for the explicit property.



[!WARNING]
There are some libraries, such as the Entity Framework (System.Data.Entity) that perform custom operations in base class constructors that don’t work well with the initialization of automatically implemented properties. In those cases, try using explicit properties.



Properties can be members of classes, structures, discriminated unions, records, interfaces, and type extensions and can also be defined in object expressions.


Attributes can be applied to properties. To apply an attribute to a property, write the attribute on a separate line before the property. For more information, see Attributes.


By default, properties are public. Accessibility modifiers can also be applied to properties. To apply an accessibility modifier, add it immediately before the name of the property if it is meant to apply to both the get and set methods; add it before the get and set keywords if different accessibility is required for each accessor. The accessibility-modifier can be one of the following: public, private, internal. For more information, see Access Control.


Property implementations are executed each time a property is accessed.





Static and Instance Properties


Properties can be static or instance properties. Static properties can be invoked without an instance and are used for values associated with the type, not with individual objects. For static properties, omit the self-identifier. The self-identifier is required for instance properties.


The following static property definition is based on a scenario in which you have a static field myStaticValue that is the backing store for the property.


[!code-fsharpMain]


Properties can also be array-like, in which case they are called indexed properties. For more information, see Indexed Properties.





Type Annotation for Properties


In many cases, the compiler has enough information to infer the type of a property from the type of the backing store, but you can set the type explicitly by adding a type annotation.


[!code-fsharpMain]





Using Property set Accessors


You can set properties that provide set accessors by using the <- operator.


[!code-fsharpMain]


The output is 20.





Abstract Properties


Properties can be abstract. As with methods, abstract just means that there is a virtual dispatch associated with the property. Abstract properties can be truly abstract, that is, without a definition in the same class. The class that contains such a property is therefore an abstract class. Alternatively, abstract can just mean that a property is virtual, and in that case, a definition must be present in the same class. Note that abstract properties must not be private, and if one accessor is abstract, the other must also be abstract. For more information about abstract classes, see Abstract Classes.


[!code-fsharpMain]





See Also


Members


Methods








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/members/events.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Events (F#)
description: Events (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 28b588f2-0c9e-4c0d-babf-901ed934638a





Events



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



Events enable you to associate function calls with user actions and are important in GUI programming. Events can also be triggered by your applications or by the operating system.



Handling Events


When you use a GUI library like Windows Forms or Windows Presentation Foundation (WPF), much of the code in your application runs in response to events that are predefined by the library. These predefined events are members of GUI classes such as forms and controls. You can add custom behavior to a preexisting event, such as a button click, by referencing the specific named event of interest (for example, the Click event of the Form class) and invoking the Add method, as shown in the following code. If you run this from F# Interactive, omit the call to System.Windows.Forms.Application.Run(System.Windows.Forms.Form).


[!code-fsharpMain]


The type of the Add method is ('a -> unit) -> unit. Therefore, the event handler method takes one parameter, typically the event arguments, and returns unit. The previous example shows the event handler as a lambda expression. The event handler can also be a function value, as in the following code example. The following code example also shows the use of the event handler parameters, which provide information specific to the type of event. For a MouseMove event, the system passes a System.Windows.Forms.MouseEventArgs object, which contains the X and Y position of the pointer.


[!code-fsharpMain]





Creating Custom Events


F# events are represented by the F# Event [https://msdn.microsoft.com/library/f3b47c8a-4ee5-4ce8-9a72-ad305a17c4b9] class, which implements the IEvent [https://msdn.microsoft.com/library/8dbca0df-f8a1-40bd-8d50-aa26f6a8b862] interface. IEvent is itself an interface that combines the functionality of two other interfaces, System.IObservable<'T> and IDelegateEvent [https://msdn.microsoft.com/library/3d849465-6b8e-4fc5-b36c-2941d734268a]. Therefore, Events have the equivalent functionality of delegates in other languages, plus the additional functionality from IObservable, which means that F# events support event filtering and using F# first-class functions and lambda expressions as event handlers. This functionality is provided in the Event module [https://msdn.microsoft.com/library/8b883baa-a460-4840-9baa-de8260351bc7].


To create an event on a class that acts just like any other .NET Framework event, add to the class a let binding that defines an Event as a field in a class. You can specify the desired event argument type as the type argument, or leave it blank and have the compiler infer the appropriate type. You also must define an event member that exposes the event as a CLI event. This member should have the CLIEvent [https://msdn.microsoft.com/library/d359f1dd-ffa5-42fb-8808-b4c8131a0333] attribute. It is declared like a property and its implementation is just a call to the Publish [https://msdn.microsoft.com/library/b0fdaad5-25e5-43d0-9c0c-ce37c4aeb68e] property of the event. Users of your class can use the Add method of the published event to add a handler. The argument for the Add method can be a lambda expression. You can use the Trigger property of the event to raise the event, passing the arguments to the handler function. The following code example illustrates this. In this example, the inferred type argument for the event is a tuple, which represents the arguments for the lambda expression.


[!code-fsharpMain]


The output is as follows.


Event1 occurred! Object data: Hello World!






The additional functionality provided by the Event module is illustrated here. The following code example illustrates the basic use of Event.create to create an event and a trigger method, add two event handlers in the form of lambda expressions, and then trigger the event to execute both lambda expressions.


[!code-fsharpMain]


The output of the previous code is as follows.


Event occurred.
Given a value: Event occurred.









Processing Event Streams


Instead of just adding an event handler for an event by using the Event.add [https://msdn.microsoft.com/library/10670d3b-8d47-4f6e-b8df-ebc6f64ef4fd] function, you can use the functions in the Event module to process streams of events in highly customized ways. To do this, you use the forward pipe (|>) together with the event as the first value in a series of function calls, and the Event module functions as subsequent function calls.


The following code example shows how to set up an event for which the handler is only called under certain conditions.


[!code-fsharpMain]


The Observable module [https://msdn.microsoft.com/library/16b8610b-b30a-4df7-aa99-d9d352276227] contains similar functions that operate on observable objects. Observable objects are similar to events but only actively subscribe to events if they themselves are being subscribed to.





Implementing an Interface Event


As you develop UI components, you often start by creating a new form or a new control that inherits from an existing form or control. Events are frequently defined on an interface, and, in that case, you must implement the interface to implement the event. The System.ComponentModel.INotifyPropertyChanged interface defines a single System.ComponentModel.INotifyPropertyChanged.PropertyChanged event. The following code illustrates how to implement the event that this inherited interface defined:


module CustomForm

open System.Windows.Forms
open System.ComponentModel

type AppForm() as this =
    inherit Form()

    // Define the propertyChanged event.
    let propertyChanged = Event<PropertyChangedEventHandler, PropertyChangedEventArgs>()
    let mutable underlyingValue = "text0"

    // Set up a click event to change the properties.
    do
        this.Click |> Event.add(fun evArgs -> this.Property1 <- "text2"
        this.Property2 <- "text3")

    // This property does not have the property-changed event set.
    member val Property1 : string = "text" with get, set

    // This property has the property-changed event set.
    member this.Property2
        with get() = underlyingValue
        and set(newValue) =
            underlyingValue <- newValue
            propertyChanged.Trigger(this, new PropertyChangedEventArgs("Property2"))

    // Expose the PropertyChanged event as a first class .NET event.
    [<CLIEvent>]
    member this.PropertyChanged = propertyChanged.Publish


    // Define the add and remove methods to implement this interface.
    interface INotifyPropertyChanged with
        member this.add_PropertyChanged(handler) = propertyChanged.Publish.AddHandler(handler)
        member this.remove_PropertyChanged(handler) = propertyChanged.Publish.RemoveHandler(handler)

    // This is the event-handler method.
    member this.OnPropertyChanged(args : PropertyChangedEventArgs) =
        let newProperty = this.GetType().GetProperty(args.PropertyName)
        let newValue = newProperty.GetValue(this :> obj) :?> string
        printfn "Property %s changed its value to %s" args.PropertyName newValue

// Create a form, hook up the event handler, and start the application.
let appForm = new AppForm()
let inpc = appForm :> INotifyPropertyChanged
inpc.PropertyChanged.Add(appForm.OnPropertyChanged)
Application.Run(appForm)






If you want to hook up the event in the constructor, the code is a bit more complicated because the event hookup must be in a then block in an additional constructor, as in the following example:


module CustomForm

open System.Windows.Forms
open System.ComponentModel

// Create a private constructor with a dummy argument so that the public
// constructor can have no arguments.
type AppForm private (dummy) as this =
    inherit Form()

    // Define the propertyChanged event.
    let propertyChanged = Event<PropertyChangedEventHandler, PropertyChangedEventArgs>()
    let mutable underlyingValue = "text0"

    // Set up a click event to change the properties.
    do
        this.Click |> Event.add(fun evArgs -> this.Property1 <- "text2"
        this.Property2 <- "text3")


    // This property does not have the property changed event set.
    member val Property1 : string = "text" with get, set

    // This property has the property changed event set.
    member this.Property2
        with get() = underlyingValue
        and set(newValue) =
            underlyingValue <- newValue
            propertyChanged.Trigger(this, new PropertyChangedEventArgs("Property2"))

    [<CLIEvent>]
    member this.PropertyChanged = propertyChanged.Publish

    // Define the add and remove methods to implement this interface.
    interface INotifyPropertyChanged with
        member this.add_PropertyChanged(handler) = this.PropertyChanged.AddHandler(handler)
        member this.remove_PropertyChanged(handler) = this.PropertyChanged.RemoveHandler(handler)

    // This is the event handler method.
    member this.OnPropertyChanged(args : PropertyChangedEventArgs) =
        let newProperty = this.GetType().GetProperty(args.PropertyName)
        let newValue = newProperty.GetValue(this :> obj) :?> string
        printfn "Property %s changed its value to %s" args.PropertyName newValue

    new() as this =
        new AppForm(0)
        then
            let inpc = this :> INotifyPropertyChanged
            inpc.PropertyChanged.Add(this.OnPropertyChanged)


// Create a form, hook up the event handler, and start the application.
let appForm = new AppForm()
Application.Run(appForm)









See Also


Members


Handling and Raising Events [https://msdn.microsoft.com/library/edzehd2t.aspx]


Lambda Expressions: The fun Keyword


Control.Event Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event-module-%5bfsharp%5d]


Control.Event

&lt;


‘T&gt;


 Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event%5b%27t%5d-class-%5bfsharp%5d]


Control.Event

&lt;


‘Delegate,’Args&gt;


 Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.event%5b%27delegate%2c%27args%5d-class-%5bfsharp%5d]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/exception-handling/the-try-finally-expression.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Exceptions: The try...finally Expression (F#)”
description: “Exceptions: The try...finally Expression (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: af06b20c-8d87-4496-a0aa-6fdfe8b3a786





Exceptions: The try...finally Expression


The try...finally expression enables you to execute clean-up code even if a block of code throws an exception.



Syntax


try
    expression1
finally
    expression2









Remarks


The try...finally expression can be used to execute the code in expression2 in the preceding syntax regardless of whether an exception is generated during the execution of expression1.


The type of expression2 does not contribute to the value of the whole expression; the type returned when an exception does not occur is the last value in expression1. When an exception does occur, no value is returned and the flow of control transfers to the next matching exception handler up the call stack. If no exception handler is found, the program terminates. Before the code in a matching handler is executed or the program terminates, the code in the finally branch is executed.


The following code demonstrates the use of the try...finally expression.


[!code-fsharpMain]


The output to the console is as follows.


Closing stream
Exception handled.






As you can see from the output, the stream was closed before the outer exception was handled, and the file test.txt contains the text test1, which indicates that the buffers were flushed and written to disk even though the exception transferred control to the outer exception handler.


Note that the try...with construct is a separate construct from the try...finally construct. Therefore, if your code requires both a with block and a finally block, you have to nest the two constructs, as in the following code example.


[!code-fsharpMain]


In the context of computation expressions, including sequence expressions and asynchronous workflows, try...finally expressions can have a custom implementation. For more information, see Computation Expressions.





See Also


Exception Handling


Exceptions: The try...with Expression








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/match-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Match Expressions (F#)
description: Match Expressions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 8854b713-255a-408d-942a-e80ab52fd2a4





Match Expressions


The match expression provides branching control that is based on the comparison of an expression with a set of patterns.



Syntax


// Match expression.
match test-expression with
| pattern1 [ when condition ] -> result-expression1
| pattern2 [ when condition ] -> result-expression2
| ...

// Pattern matching function.
function
| pattern1 [ when condition ] -> result-expression1
| pattern2 [ when condition ] -> result-expression2
| ...









Remarks


The pattern matching expressions allow for complex branching based on the comparison of a test expression with a set of patterns. In the match expression, the test-expression is compared with each pattern in turn, and when a match is found, the corresponding result-expression is evaluated and the resulting value is returned as the value of the match expression.


The pattern matching function shown in the previous syntax is a lambda expression in which pattern matching is performed immediately on the argument. The pattern matching function shown in the previous syntax is equivalent to the following.


fun arg ->
    match arg with
    | pattern1 [ when condition ] -> result-expression1
    | pattern2 [ when condition ] -> result-expression2
    | ...






For more information about lambda expressions, see Lambda Expressions: The fun Keyword.


The whole set of patterns should cover all the possible matches of the input variable. Frequently, you use the wildcard pattern (_) as the last pattern to match any previously unmatched input values.


The following code illustrates some of the ways in which the match expression is used. For a reference and examples of all the possible patterns that can be used, see Pattern Matching.


[!code-fsharpMain]





Guards on Patterns


You can use a when clause to specify an additional condition that the variable must satisfy to match a pattern. Such a clause is referred to as a guard. The expression following the when keyword is not evaluated unless a match is made to the pattern associated with that guard.


The following example illustrates the use of a guard to specify a numeric range for a variable pattern. Note that multiple conditions are combined by using Boolean operators.


[!code-fsharpMain]


Note that because values other than literals cannot be used in the pattern, you must use a when clause if you have to compare some part of the input against a value. This is shown in the following code.


[!code-fsharpMain]





See Also


F# Language Reference


Active Patterns


Pattern Matching








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/copy-and-update-record-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Copy and Update Record Expressions (F#)
description: Copy and Update Record Expressions (F#)
keywords: visual f#, f#, functional programming
author: ChrSteinert
manager: danielfe
ms.date: 06/04/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: b5fc4ef0-64eb-4272-96a7-bb4dffbb634a





Copy and Update Record Expressions


A copy and update record expression is an expression that copies an existing record, updates specified fields, and returns the updated record.



Syntax


{ record-name with
    updated-member-definitions }









Remarks


Records are immutable by default, so that there is no update to an existing record possible. To create an updated record all the fields of a record would have to be specified again. To simplify this task a copy and update record expression can be used. This expression takes an existing record, creates a new one of the same type by using specified fields from the expression and the missing field specified by the expression.
This can be useful when you have to copy an existing record, and possibly change some of the field values.


Take for instance a newly created record.


[!code-fsharpMain]


If you were to update only on field of that record you could use the copy and update record expression like the following:


[!code-fsharpMain]





See Also


Records


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/pattern-matching.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Pattern Matching (F#)
description: Pattern Matching (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 5562ee98-e2f1-4dcd-8e2f-16ae27baaade





Pattern Matching


Patterns are rules for transforming input data. They are used throughout the F# language to compare data with a logical structure or structures, decompose data into constituent parts, or extract information from data in various ways.



Remarks


Patterns are used in many language constructs, such as the match expression. They are used when you are processing arguments for functions in let bindings, lambda expressions, and in the exception handlers associated with the try...with expression. For more information, see Match Expressions, let Bindings, Lambda Expressions: The fun Keyword, and Exceptions: The try...with Expression.


For example, in the match expression, the pattern is what follows the pipe symbol.


match expression with
| pattern [ when condition ] -> result-expression
...






Each pattern acts as a rule for transforming input in some way. In the match expression, each pattern is examined in turn to see if the input data is compatible with the pattern. If a match is found, the result expression is executed. If a match is not found, the next pattern rule is tested. The optional when condition part is explained in Match Expressions.


Supported patterns are shown in the following table. At run time, the input is tested against each of the following patterns in the order listed in the table, and patterns are applied recursively, from first to last as they appear in your code, and from left to right for the patterns on each line.


|Name|Description|Example|
|—-|———–|——-|
|Constant pattern|Any numeric, character, or string literal, an enumeration constant, or a defined literal identifier|1.0, "test", 30, Color.Red|
|Identifier pattern|A case value of a discriminated union, an exception label, or an active pattern case|Some(x)

Failure(msg)|
|Variable pattern|identifier|a|
|as pattern|pattern as identifier|(a, b) as tuple1|
|OR pattern|pattern1 

|


 pattern2|([h] |


 [h; ])|
|AND pattern|pattern1 &amp;


 pattern2|(a, b) & (_, "test")|
|Cons pattern|identifier :: list-identifier|h :: t|
|List pattern|[ pattern_1; ... ; pattern_n ]|[ a; b; c ]|
|Array pattern|[|


 pattern_1; ..; pattern_n |


]|[|


 a; b; c |


]|
|Parenthesized pattern|( pattern )|( a )|
|Tuple pattern|( pattern_1, ... , pattern_n )|( a, b )|
|Record pattern|{ identifier1 = pattern_1; ... ; identifier_n = pattern_n }|{ Name = name; }|
|Wildcard pattern||_|
|Pattern together with type annotation|pattern : type|a : int|
|Type test pattern|:? type [ as identifier ]|:? System.DateTime as dt|
|Null pattern|null|null|





Constant Patterns


Constant patterns are numeric, character, and string literals, enumeration constants (with the enumeration type name included). A match expression that has only constant patterns can be compared to a case statement in other languages. The input is compared with the literal value and the pattern matches if the values are equal. The type of the literal must be compatible with the type of the input.


The following example demonstrates the use of literal patterns, and also uses a variable pattern and an OR pattern.


[!code-fsharpMain]


Another example of a literal pattern is a pattern based on enumeration constants. You must specify the enumeration type name when you use enumeration constants.


[!code-fsharpMain]





Identifier Patterns


If the pattern is a string of characters that forms a valid identifier, the form of the identifier determines how the pattern is matched. If the identifier is longer than a single character and starts with an uppercase character, the compiler tries to make a match to the identifier pattern. The identifier for this pattern could be a value marked with the Literal attribute, a discriminated union case, an exception identifier, or an active pattern case. If no matching identifier is found, the match fails and the next pattern rule, the variable pattern, is compared to the input.


Discriminated union patterns can be simple named cases or they can have a value, or a tuple containing multiple values. If there is a value, you must specify an identifier for the value. In the case of a tuple, you must supply a tuple pattern with an identifier for each element of the tuple or an identifier with a field name for one or more named union fields. See the code examples in this section for examples.


The option type is a discriminated union that has two cases, Some and None. One case (Some) has a value, but the other (None) is just a named case. Therefore, Some needs to have a variable for the value associated with the Some case, but None must appear by itself. In the following code, the variable var1 is given the value that is obtained by matching to the Some case.


[!code-fsharpMain]


In the following example, the PersonName discriminated union contains a mixture of strings and characters that represent possible forms of names. The cases of the discriminated union are FirstOnly, LastOnly, and FirstLast.


[!code-fsharpMain]


For discriminated unions that have named fields, you use the equals sign (=) to extract the value of a named field. For example, consider a discriminated union with a declaration like the following.


type Shape =
    | Rectangle of height : float * width : float
    | Circle of radius : float






You can use the named fields in a pattern matching expression as follows.


let matchShape shape =
    match shape with
    | Rectangle(height = h) -> printfn "Rectangle with length %f" h
    | Circle(r) -> printfn "Circle with radius %f" r






The use of the named field is optional, so in the previous example, both Circle(r) and Circle(radius = r) have the same effect.


When you specify multiple fields, use the semicolon (;) as a separator.


match shape with
| Rectangle(height = h; width = w) -> printfn "Rectangle with height %f and width %f" h w
| _ -> ()






Active patterns enable you to define more complex custom pattern matching. For more information about active patterns, see Active Patterns.


The case in which the identifier is an exception is used in pattern matching in the context of exception handlers. For information about pattern matching in exception handling, see Exceptions: The try...with Expression.





Variable Patterns


The variable pattern assigns the value being matched to a variable name, which is then available for use in the execution expression to the right of the -> symbol. A variable pattern alone matches any input, but variable patterns often appear within other patterns, therefore enabling more complex structures such as tuples and arrays to be decomposed into variables.


The following example demonstrates a variable pattern within a tuple pattern.


[!code-fsharpMain]





as Pattern


The as pattern is a pattern that has an as clause appended to it. The as clause binds the matched value to a name that can be used in the execution expression of a match expression, or, in the case where this pattern is used in a let binding, the name is added as a binding to the local scope.


The following example uses an as pattern.


[!code-fsharpMain]





OR Pattern


The OR pattern is used when input data can match multiple patterns, and you want to execute the same code as a result. The types of both sides of the OR pattern must be compatible.


The following example demonstrates the OR pattern.


[!code-fsharpMain]





AND Pattern


The AND pattern requires that the input match two patterns. The types of both sides of the AND pattern must be compatible.


The following example is like detectZeroTuple shown in the Tuple Pattern [https://msdn.microsoft.com/library/#tuple] section later in this topic, but here both var1 and var2 are obtained as values by using the AND pattern.


[!code-fsharpMain]





Cons Pattern


The cons pattern is used to decompose a list into the first element, the head, and a list that contains the remaining elements, the tail.


[!code-fsharpMain]





List Pattern


The list pattern enables lists to be decomposed into a number of elements. The list pattern itself can match only lists of a specific number of elements.


[!code-fsharpMain]





Array Pattern


The array pattern resembles the list pattern and can be used to decompose arrays of a specific length.


[!code-fsharpMain]





Parenthesized Pattern


Parentheses can be grouped around patterns to achieve the desired associativity. In the following example, parentheses are used to control associativity between an AND pattern and a cons pattern.


[!code-fsharpMain]





Tuple Pattern


The tuple pattern matches input in tuple form and enables the tuple to be decomposed into its constituent elements by using pattern matching variables for each position in the tuple.


The following example demonstrates the tuple pattern and also uses literal patterns, variable patterns, and the wildcard pattern.


[!code-fsharpMain]





Record Pattern


The record pattern is used to decompose records to extract the values of fields. The pattern does not have to reference all fields of the record; any omitted fields just do not participate in matching and are not extracted.


[!code-fsharpMain]





Wildcard Pattern


The wildcard pattern is represented by the underscore (_) character and matches any input, just like the variable pattern, except that the input is discarded instead of assigned to a variable. The wildcard pattern is often used within other patterns as a placeholder for values that are not needed in the expression to the right of the -> symbol. The wildcard pattern is also frequently used at the end of a list of patterns to match any unmatched input. The wildcard pattern is demonstrated in many code examples in this topic. See the preceding code for one example.





Patterns That Have Type Annotations


Patterns can have type annotations. These behave like other type annotations and guide inference like other type annotations. Parentheses are required around type annotations in patterns. The following code shows a pattern that has a type annotation.


[!code-fsharpMain]





Type Test Pattern


The type test pattern is used to match the input against a type. If the input type is a match to (or a derived type of) the type specified in the pattern, the match succeeds.


The following example demonstrates the type test pattern.


[!code-fsharpMain]





Null Pattern


The null pattern matches the null value that can appear when you are working with types that allow a null value. Null patterns are frequently used when interoperating with .NET Framework code. For example, the return value of a .NET API might be the input to a match expression. You can control program flow based on whether the return value is null, and also on other characteristics of the returned value. You can use the null pattern to prevent null values from propagating to the rest of your program.


The following example uses the null pattern and the variable pattern.


[!code-fsharpMain]





See Also


Match Expressions


Active Patterns


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/flexible-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Flexible Types (F#)
description: Flexible Types (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c8b510f2-3405-4cc9-b55b-e47b35e2b15b





Flexible Types


A flexible type annotation indicates that a parameter, variable, or value has a type that is compatible with a specifed type, where compatibility is determined by position in an object-oriented hierarchy of classes or interfaces. Flexible types are useful specifically when the automatic conversion to types higher in the type hierarchy does not occur but you still want to enable your functionality to work with any type in the hierarchy or any type that implements an interface.



Syntax


#type









Remarks


In the previous syntax, type represents a base type or an interface.


A flexible type is equivalent to a generic type that has a constraint that limits the allowed types to types that are compatible with the base or interface type. That is, the following two lines of code are equivalent.


#SomeType

'T when 'T :> SomeType






Flexible types are useful in several types of situations. For example, when you have a higher order function (a function that takes a function as an argument), it is often useful to have the function return a flexible type. In the following example, the use of a flexible type with a sequence argument in iterate2 enables the higher order function to work with functions that generate sequences, arrays, lists, and any other enumerable type.


Consider the following two functions, one of which returns a sequence, the other of which returns a flexible type.


[!code-fsharpMain]


As another example, consider the Seq.concat [https://msdn.microsoft.com/library/2eeb69a9-fc2f-4b7d-8dee-101fa2b00712] library function:


val concat: sequences:seq<#seq<'T>> -> seq<'T>






You can pass any of the following enumerable sequences to this function:



		A list of lists


		A list of arrays


		An array of lists


		An array of sequences


		Any other combination of enumerable sequences





The following code uses Seq.concat to demonstrate the scenarios that you can support by using flexible types.


[!code-fsharpMain]


The output is as follows.


seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]
seq [1; 2; 3; 4; ...]






In F#, as in other object-oriented languages, there are contexts in which derived types or types that implement interfaces are automatically converted to a base type or interface type. These automatic conversions occur in direct arguments, but not when the type is in a subordinate position, as part of a more complex type such as a return type of a function type, or as a type argument. Thus, the flexible type notation is primarily useful when the type you are applying it to is part of a more complex type.





See Also


F# Language Reference


Generics








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/attributes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Attributes (F#)
description: Attributes (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 95c001e6-3708-4d04-a850-d855f78eb51e





Attributes


Attributes enable metadata to be applied to a programming construct.



Syntax


[<target:attribute-name(arguments)>]









Remarks


In the previous syntax, the target is optional and, if present, specifies the kind of program entity that the attribute applies to. Valid values for target are shown in the table that appears later in this document.


The attribute-name refers to the name (possibly qualified with namespaces) of a valid attribute type, with or without the suffix Attribute that is usually used in attribute type names. For example, the type ObsoleteAttribute can be shortened to just Obsolete in this context.


The arguments are the arguments to the constructor for the attribute type. If an attribute has a default constructor, the argument list and parentheses can be omitted. Attributes support both positional arguments and named arguments. Positional arguments are arguments that are used in the order in which they appear. Named arguments can be used if the attribute has public properties. You can set these by using the following syntax in the argument list.


*property-name* = *property-value*






Such property initializations can be in any order, but they must follow any positional arguments. Following is an example of an attribute that uses positional arguments and property initializations.


[!code-fsharpMain]


In this example, the attribute is DllImportAttribute, here used in shortened form. The first argument is a positional parameter and the second is a property.


Attributes are a .NET programming construct that enables an object known as an attribute to be associated with a type or other program element. The program element to which an attribute is applied is known as the attribute target. The attribute usually contains metadata about its target. In this context, metadata could be any data about the type other than its fields and members.


Attributes in F# can be applied to the following programming constructs: functions, methods, assemblies, modules, types (classes, records, structures, interfaces, delegates, enumerations, unions, and so on), constructors, properties, fields, parameters, type parameters, and return values. Attributes are not allowed on let bindings inside classes, expressions, or workflow expressions.


Typically, the attribute declaration appears directly before the declaration of the attribute target. Multiple attribute declarations can be used together, as follows.


[!code-fsharpMain]


You can query attributes at run time by using .NET reflection.


You can declare multiple attributes individually, as in the previous code example, or you can declare them in one set of brackets if you use a semicolon to separate the individual attributes and constructors, as shown here.


[!code-fsharpMain]


Typically encountered attributes include the Obsolete attribute, attributes for security considerations, attributes for COM support, attributes that relate to ownership of code, and attributes indicating whether a type can be serialized. The following example demonstrates the use of the Obsolete attribute.


[!code-fsharpMain]


For the attribute targets assembly and module, you apply the attributes to a top-level do binding in your assembly. You can include the word assembly or module in the attribute declaration, as follows.


[!code-fsharpMain]


If you omit the attribute target for an attribute applied to a do binding, the F# compiler attempts to determine the attribute target that makes sense for that attribute. Many attribute classes have an attribute of type System.AttributeUsageAttribute that includes information about the possible targets supported for that attribute. If the System.AttributeUsageAttribute indicates that the attribute supports functions as targets, the attribute is taken to apply to the main entry point of the program. If the System.AttributeUsageAttribute indicates that the attribute supports assemblies as targets, the compiler takes the attribute to apply to the assembly. Most attributes do not apply to both functions and assemblies, but in cases where they do, the attribute is taken to apply to the program’s main function. If the attribute target is specified explicitly, the attribute is applied to the specified target.


Although you do not usually need to specify the attribute target explicitly, valid values for target in an attribute are shown in the following table, along with examples of usage.



  
    		Attribute target
    		Example 
  


  
    		assembly
    		`[]` 
  


  
    		return
    		`let function1 x : [] int = x + 1` 
  


  
    		field
    		`[] val mutable x: int` 
  


  
    		property
    		`[] this.MyProperty = x` 
  


  
    		param
    		`member this.MyMethod([] x : ref) = x := 10` 
  


  
    		type
    		
        ```
        [] 
        type MyStruct = 
        struct 
        x : byte
        y : int
        end
        ```
     
  







See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/code-formatting-guidelines.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Code Formatting Guidelines (F#)
description: Code Formatting Guidelines (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3f79717c-f84e-448d-9ce4-90e40a644ba1





Code Formatting Guidelines


This topic summarizes code indentation guidelines for F#. Because the F# language is sensitive to line breaks and indentation, it is not just a readability issue, aesthetic issue, or coding standardization issue to format your code correctly. You must format your code correctly for it to compile correctly.



General Rules for Indentation


When indentation is required, you must use spaces, not tabs. At least one space is required. Your organization can create coding standards to specify the number of spaces to use for indentation; three or four spaces of indentation at each level where indentation occurs is typical. You can configure Visual Studio to match your organization’s indentation standards by changing the options in the Options dialog box, which is available from the Tools menu. In the Text Editor node, expand F# and then click Tabs. For a description of the available options, see Options, Text Editor, All Languages, Tabs [https://msdn.microsoft.com/library/7sffa753.aspx].


In general, when the compiler parses your code, it maintains an internal stack that indicates the current level of nesting. When code is indented, a new level of nesting is created, or pushed onto this internal stack. When a construct ends, the level is popped. Indentation is one way to signal the end of a level and pop the internal stack, but certain tokens also cause the level to be popped, such as the end keyword, or a closing brace or parenthesis.


Code in a multiline construct, such as a type definition, function definition, try...with construct, and looping constructs, must be indented relative to the opening line of the construct. The first indented line establishes a column position for subsequent code in the same construct. The indentation level is called a context. The column position sets a minimum column, referred to as an offside line, for subsequent lines of code that are in the same context. When a line of code is encountered that is indented less than this established column position, the compiler assumes that the context has ended and that you are now coding at the next level up, in the previous context. The term offside is used to describe the condition in which a line of code triggers the end of a construct because it is not indented far enough. In other words, code to the left of an offside line is offside. In correctly indented code, you take advantage of the offside rule in order to delineate the end of constructs. If you use indentation improperly, an offside condition can cause the compiler to issue a warning or can lead to the incorrect interpretation of your code.


Offside lines are determined as follows.



		An = token associated with a let introduces an offside line at the column of the first token after the = sign.






		In an if...then...else expression, the column position of the first token after the then keyword or the else keyword introduces an offside line.






		In a try...with expression, the first token after try introduces an offside line.






		In a match expression, the first token after with and the first token after each -> introduce offside lines.






		The first token after with in a type extension introduces an offside line.






		The first token after an opening brace or parenthesis, or after the begin keyword, introduces an offside line.






		The first character in the keywords let, if, and module introduce offside lines.





The following code examples illustrate the indentation rules. Here, the print statements rely on indentation to associate them with the appropriate context. Every time the indentation shifts, the context is popped and returns to the previous context. Therefore, a space is printed at the end of each iteration; “Done!” is only printed one time because the offside indentation establishes that it is not part of the loop. The printing of the string “Top-level context” is not part of the function. Therefore, it is printed first, during the static initialization, before the function is called.


[!code-fsharpMain]


The output is as follows.


Top-level context

(Negative number) Zero 1 2 3 Done!






When you break long lines, the continuation of the line must be indented farther than the enclosing construct. For example, function arguments must be indented farther than the first character of the function name, as shown in the following code.


[!code-fsharpMain]


There are exceptions to these rules, as described in the next section.





Indentation in Modules


Code in a local module must be indented relative to the module, but code in a top-level module does not have to be indented. Namespace elements do not have to be indented.


The following code examples illustrate this.


[!code-fsharpMain]
[!code-fsharpMain]


For more information, see Modules.





Exceptions to the Basic Indentation Rules


The general rule, as described in the previous section, is that code in multiline constructs must be indented relative to the indentation of the first line of the construct, and that the end of the construct is determined by when the first offside line occurs. An exception to the rule about when contexts end is that some constructs, such as the try...with expression, the if...then...else expression, and the use of and syntax for declaring mutually recursive functions or types, have multiple parts. You indent the later parts, such as then and else in an if...then...else expression, at the same level as the token that starts the expression, but instead of indicating an end to the context, it represents the next part of the same context. Therefore, an if...then...else expression can be written as in the following code example.


[!code-fsharpMain]


The exception to the offside rule applies only to the then and else keywords. Therefore, although it is not an error to indent the then and else further, failing to indent the lines of code in a then block produces a warning. This is illustrated in the following lines of code.


[!code-fsharpMain]
[!code-fsharpMain]


For code in an else block, an additional special rule applies. The warning in the previous example occurs only on the code in the then block, not on the code in the else block. This allows you to write code that checks for various conditions at the beginning of a function without forcing the rest of the code for the function, which might be in an else block, to be indented. Thus, you can write the following without producing a warning.


[!code-fsharpMain]


Another exception to the rule that contexts end when a line is not indented as far as a previous line is for infix operators, such as + and |&gt;. Lines that start with infix operators are permitted to begin (1 + oplength) columns before the normal position without triggering an end to the context, where oplength is the number of characters that make up the operator. This causes the first token after the operator to align with the previous line.


For example, in the following code, the + symbol is permitted to be indented two columns less than the previous line.


[!code-fsharpMain]


Although indentation usually increases as the level of nesting becomes higher, there are several constructs in which the compiler allows you to reset the indentation to a lower column position.


The constructs that permit a reset of column position are as follows:



		Bodies of anonymous functions. In the following code, the print expression starts at a column position that is farther to the left than the fun keyword. However, the line must not start at a column to the left of the start of the previous indentation level (that is, to the left of the L in List).
[!code-fsharpMain]


		Constructs enclosed by parentheses or by begin and end in a then or else block of an if...then...else expression, provided the indentation is no less than the column position of the if keyword. This exception allows for a coding style in which an opening parenthesis or begin is used at the end of a line after then or else.






		Bodies of modules, classes, interfaces, and structures delimited by begin...end, {...}, class...end, or interface...end. This allows for a style in which the opening keyword of a type definition can be on the same line as the type name without forcing the whole body to be indented farther than the opening keyword.
[!code-fsharpMain]








See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/arrays.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Arrays (F#)
description: Arrays (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 61fa9084-abdc-4cf5-8213-91ec1211866b





Arrays



[!NOTE]
The API reference link will take you to MSDN.  The docs.microsoft.com API reference is not complete.



Arrays are fixed-size, zero-based, mutable collections of consecutive data elements that are all of the same type.



Creating Arrays


You can create arrays in several ways. You can create a small array by listing consecutive values between [| and |] and separated by semicolons, as shown in the following examples.


[!code-fsharpMain]


You can also put each element on a separate line, in which case the semicolon separator is optional.


[!code-fsharpMain]


The type of the array elements is inferred from the literals used and must be consistent. The following code causes an error because 1.0 is a float and 2 and 3 are integers.


// Causes an error.
// let array2 = [| 1.0; 2; 3 |]






You can also use sequence expressions to create arrays. Following is an example that creates an array of squares of integers from 1 to 10.


[!code-fsharpMain]


To create an array in which all the elements are initialized to zero, use Array.zeroCreate.


[!code-fsharpMain]





Accessing Elements


You can access array elements by using a dot operator (.) and brackets ([ and ]).


[!code-fsharpMain]


Array indexes start at 0.


You can also access array elements by using slice notation, which enables you to specify a subrange of the array. Examples of slice notation follow.


[!code-fsharpMain]


When slice notation is used, a new copy of the array is created.





Array Types and Modules


The type of all F# arrays is the .NET Framework type System.Array [https://msdn.microsoft.com/library/system.array.aspx]. Therefore, F# arrays support all the functionality available in System.Array [https://msdn.microsoft.com/library/system.array.aspx].


The library module Microsoft.FSharp.Collections.Array [https://msdn.microsoft.com/library/0cda8040-9396-40dd-8dcd-cf48542165a1] supports operations on one-dimensional arrays. The modules Array2D, Array3D, and Array4D contain functions that support operations on arrays of two, three, and four dimensions, respectively. You can create arrays of rank greater than four by using System.Array [https://msdn.microsoft.com/library/system.array.aspx].



Simple Functions


Array.get [https://msdn.microsoft.com/library/dd93e85d-7e80-4d76-8de0-b6d45bcf07bc] gets an element. Array.length [https://msdn.microsoft.com/library/0d775b6a-4a8f-4bd1-83e5-843b3251725f] gives the length of an array. Array.set [https://msdn.microsoft.com/library/847edc0d-4dc5-4a39-98c7-d4320c60e790] sets an element to a specified value. The following code example illustrates the use of these functions.


[!code-fsharpMain]


The output is as follows.


0 1 2 3 4 5 6 7 8 9









Functions That Create Arrays


Several functions create arrays without requiring an existing array. Array.empty [https://msdn.microsoft.com/library/c3694b92-1c16-4c54-9bf2-fe398fadce32] creates a new array that does not contain any elements. Array.create [https://msdn.microsoft.com/library/e848c8d6-1142-4080-9727-8dacc26066be] creates an array of a specified size and sets all the elements to provided values. Array.init [https://msdn.microsoft.com/library/ee898089-63b0-40aa-910c-5ae7e32f6665] creates an array, given a dimension and a function to generate the elements. Array.zeroCreate [https://msdn.microsoft.com/library/fa5b8e7a-1b5b-411c-8622-b58d7a14d3b2] creates an array in which all the elements are initialized to the zero value for the array’s type. The following code demonstrates these functions.


[!code-fsharpMain]


The output is as follows.


Length of empty array: 0
Area of floats set to 5.0: [|5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0; 5.0|]
Array of squares: [|0; 1; 4; 9; 16; 25; 36; 49; 64; 81|]






Array.copy [https://msdn.microsoft.com/library/9d0202f1-1ea0-475e-9d66-4f8ccc3c5b5f] creates a new array that contains elements that are copied from an existing array. Note that the copy is a shallow copy, which means that if the element type is a reference type, only the reference is copied, not the underlying object. The following code example illustrates this.


[!code-fsharpMain]


The output of the preceding code is as follows:


[|Test1; Test2; |]
[|; Test2; |]






The string Test1 appears only in the first array because the operation of creating a new element overwrites the reference in firstArray but does not affect the original reference to an empty string that is still present in secondArray. The string Test2 appears in both arrays because the Insert operation on the System.Text.StringBuilder [https://msdn.microsoft.com/library/system.text.stringbuilder.aspx] type affects the underlying System.Text.StringBuilder [https://msdn.microsoft.com/library/system.text.stringbuilder.aspx] object, which is referenced in both arrays.


Array.sub [https://msdn.microsoft.com/library/40fb12ba-41d7-4ef0-b33a-56727deeef9d] generates a new array from a subrange of an array. You specify the subrange by providing the starting index and the length. The following code demonstrates the use of Array.sub.


[!code-fsharpMain]


The output shows that the subarray starts at element 5 and contains 10 elements.


[|5; 6; 7; 8; 9; 10; 11; 12; 13; 14|]






Array.append [https://msdn.microsoft.com/library/08836310-5036-4474-b9a2-2c73e2293911] creates a new array by combining two existing arrays.


The following code demonstrates Array.append.


[!code-fsharpMain]


The output of the preceding code is as follows.


[|1; 2; 3; 4; 5; 6|]






Array.choose [https://msdn.microsoft.com/library/f5c8a5e2-637f-44d4-b35c-be96a6618b09] selects elements of an array to include in a new array. The following code demonstrates Array.choose. Note that the element type of the array does not have to match the type of the value returned in the option type. In this example, the element type is int and the option is the result of a polynomial function, elem*elem - 1, as a floating point number.


[!code-fsharpMain]


The output of the preceding code is as follows.


[|3.0; 15.0; 35.0; 63.0; 99.0|]






Array.collect [https://msdn.microsoft.com/library/c3b60c3b-9455-48c9-bc2b-e88f0434342a] runs a specified function on each array element of an existing array and then collects the elements generated by the function and combines them into a new array. The following code demonstrates Array.collect.


[!code-fsharpMain]


The output of the preceding code is as follows.


[|0; 1; 0; 1; 2; 3; 4; 5; 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10|]






Array.concat [https://msdn.microsoft.com/library/f7219b79-1ec8-4a25-96b1-edbedb358302] takes a sequence of arrays and combines them into a single array. The following code demonstrates Array.concat.


[!code-fsharpMain]


The output of the preceding code is as follows.


[|(1, 1, 1); (1, 2, 2); (1, 3, 3); (2, 1, 2); (2, 2, 4); (2, 3, 6); (3, 1, 3);
(3, 2, 6); (3, 3, 9)|]






Array.filter [https://msdn.microsoft.com/library/b885b214-47fc-4639-9664-b8c183a39ede] takes a Boolean condition function and generates a new array that contains only those elements from the input array for which the condition is true. The following code demonstrates Array.filter.


[!code-fsharpMain]


The output of the preceding code is as follows.


[|2; 4; 6; 8; 10|]






Array.rev [https://msdn.microsoft.com/library/1bbf822c-763b-4794-af21-97d2e48ef709] generates a new array by reversing the order of an existing array. The following code demonstrates Array.rev.


[!code-fsharpMain]


The output of the preceding code is as follows.


"Hello world!"






You can easily combine functions in the array module that transform arrays by using the pipeline operator (|>), as shown in the following example.


[!code-fsharpMain]


The output is


[|100; 36; 16; 4|]









Multidimensional Arrays


A multidimensional array can be created, but there is no syntax for writing a multidimensional array literal. Use the operator array2D [https://msdn.microsoft.com/library/1d52503d-2990-49fc-8fd3-6b0e508aa236] to create an array from a sequence of sequences of array elements. The sequences can be array or list literals. For example, the following code creates a two-dimensional array.


[!code-fsharpMain]


You can also use the function Array2D.init [https://msdn.microsoft.com/library/9de07e95-bc21-4927-b5b4-08fdec882c7b] to initialize arrays of two dimensions, and similar functions are available for arrays of three and four dimensions. These functions take a function that is used to create the elements. To create a two-dimensional array that contains elements set to an initial value instead of specifying a function, use the Array2D.create [https://msdn.microsoft.com/library/36c9d980-b241-4a20-bc64-bcfa0205d804] function, which is also available for arrays up to four dimensions. The following code example first shows how to create an array of arrays that contain the desired elements, and then uses Array2D.init to generate the desired two-dimensional array.


[!code-fsharpMain]


Array indexing and slicing syntax is supported for arrays up to rank 4. When you specify an index in multiple dimensions, you use commas to separate the indexes, as illustrated in the following code example.


[!code-fsharpMain]


The type of a two-dimensional array is written out as <type>[,] (for example, int[,], double[,]), and the type of a three-dimensional array is written as <type>[,,], and so on for arrays of higher dimensions.


Only a subset of the functions available for one-dimensional arrays is also available for multidimensional arrays. For more information, see Collections.Array Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array-module-%5bfsharp%5d], Collections.Array2D Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array2d-module-%5bfsharp%5d], Collections.Array3D Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array3d-module-%5bfsharp%5d], and Collections.Array4D Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.array4d-module-%5bfsharp%5d].





Array Slicing and Multidimensional Arrays


In a two-dimensional array (a matrix), you can extract a sub-matrix by specifying ranges and using a wildcard (*) character to specify whole rows or columns.


/ Get rows 1 to N from an NxM matrix (returns a matrix):
matrix.[1.., *]

// Get rows 1 to 3 from a matrix (returns a matrix):
matrix.[1..3, *]

// Get columns 1 to 3 from a matrix (returns a matrix):
matrix.[*, 1..3]

// Get a 3x3 submatrix:
matrix.[1..3, 1..3]






As of F# 3.1, you can decompose a multidimensional array into subarrays of the same or lower dimension. For example, you can obtain a vector from a matrix by specifying a single row or column.


// Get row 3 from a matrix as a vector:
matrix.[3, *]

// Get column 3 from a matrix as a vector:
matrix.[*, 3]






You can use this slicing syntax for types that implement the element access operators and overloaded GetSlice methods. For example, the following code creates a Matrix type that wraps the F# 2D array, implements an Item property to provide support for array indexing, and implements three versions of GetSlice. If you can use this code as a template for your matrix types, you can use all the slicing operations that this section describes.


type Matrix<'T>(N: int, M: int) =
    let internalArray = Array2D.zeroCreate<'T> N M

    member this.Item
        with get(a: int, b: int) = internalArray.[a, b]
        and set(a: int, b: int) (value:'T) = internalArray.[a, b] <- value

    member this.GetSlice(rowStart: int option, rowFinish : int option, colStart: int option, colFinish : int option) =
        let rowStart = 
            match rowStart with
            | Some(v) -> v
            | None -> 0
        let rowFinish =
            match rowFinish with
            | Some(v) -> v
            | None -> internalArray.GetLength(0) - 1
        let colStart = 
            match colStart with
            | Some(v) -> v
            | None -> 0
        let colFinish = 
            match colFinish with
            | Some(v) -> v
            | None -> internalArray.GetLength(1) - 1
        internalArray.[rowStart..rowFinish, colStart..colFinish]

    member this.GetSlice(row: int, colStart: int option, colFinish: int option) =
        let colStart = 
            match colStart with
            | Some(v) -> v
            | None -> 0
        let colFinish = 
            match colFinish with
            | Some(v) -> v
            | None -> internalArray.GetLength(1) - 1
        internalArray.[row, colStart..colFinish]

    member this.GetSlice(rowStart: int option, rowFinish: int option, col: int) =
        let rowStart = 
            match rowStart with
            | Some(v) -> v
            | None -> 0
        let rowFinish = 
            match rowFinish with
            | Some(v) -> v
            | None -> internalArray.GetLength(0) - 1
        internalArray.[rowStart..rowFinish, col]

module test =
    let generateTestMatrix x y =
        let matrix = new Matrix<float>(3, 3)
        for i in 0..2 do
            for j in 0..2 do
                matrix.[i, j] <- float(i) * x - float(j) * y
        matrix

    let test1 = generateTestMatrix 2.3 1.1
    let submatrix = test1.[0..1, 0..1]
    printfn "%A" submatrix

    let firstRow = test1.[0,*]
    let secondRow = test1.[1,*]
    let firstCol = test1.[*,0]
    printfn "%A" firstCol









Boolean Functions on Arrays


The functions Array.exists [https://msdn.microsoft.com/library/8e47ad6c-c065-4876-8cb4-ec960ec3e5c9] and Array.exists2 [https://msdn.microsoft.com/library/2e384a6a-f99d-4e23-b677-250ffbc1dd8e] test elements in either one or two arrays, respectively. These functions take a test function and return true if there is an element (or element pair for Array.exists2) that satisfies the condition.


The following code demonstrates the use of Array.exists and Array.exists2. In these examples, new functions are created by applying only one of the arguments, in these cases, the function argument.


[!code-fsharpMain]


The output of the preceding code is as follows.


true
false
false
true






Similarly, the function Array.forall [https://msdn.microsoft.com/library/d88f2cd0-fa7f-45cf-ac15-31eae9086cc4] tests an array to determine whether every element satisfies a Boolean condition. The variation Array.forall2 [https://msdn.microsoft.com/library/c68f61a1-030c-4024-b705-c4768b6c96b9] does the same thing by using a Boolean function that involves elements of two arrays of equal length. The following code illustrates the use of these functions.


[!code-fsharpMain]


The output for these examples is as follows.


false
true
true
false









Searching Arrays


Array.find [https://msdn.microsoft.com/library/db6d920a-de19-4520-85a4-d83de77c1b33] takes a Boolean function and returns the first element for which the function returns true, or raises a System.Collections.Generic.KeyNotFoundException [https://msdn.microsoft.com/library/system.collections.generic.keynotfoundexception.aspx] if no element that satisfies the condition is found. Array.findIndex [https://msdn.microsoft.com/library/5ae3a8f9-7b8f-44ea-a740-d5700f4d899f] is like Array.find, except that it returns the index of the element instead of the element itself.


The following code uses Array.find and Array.findIndex to locate a number that is both a perfect square and perfect cube.


[!code-fsharpMain]


The output is as follows.


The first element that is both a square and a cube is 64 and its index is 62.






Array.tryFind [https://msdn.microsoft.com/library/7bd65f6c-df77-454c-ac3a-6f7baecec9d9] is like Array.find, except that its result is an option type, and it returns None if no element is found. Array.tryFind should be used instead of Array.find when you do not know whether a matching element is in the array. Similarly, Array.tryFindIndex [https://msdn.microsoft.com/library/da82f7fe-95e9-4fd5-a924-cd3c9d10618a] is like Array.findIndex [https://msdn.microsoft.com/library/5ae3a8f9-7b8f-44ea-a740-d5700f4d899f] except that the option type is the return value. If no element is found, the option is None.


The following code demonstrates the use of Array.tryFind. This code depends on the previous code.


[!code-fsharpMain]


The output is as follows.


Found an element: 1
Found an element: 729






Use Array.tryPick [https://msdn.microsoft.com/library/72d45f85-037b-43a9-97fd-17239f72713e] when you need to transform an element in addition to finding it. The result is the first element for which the function returns the transformed element as an option value, or None if no such element is found.


The following code shows the use of Array.tryPick. In this case, instead of a lambda expression, several local helper functions are defined to simplify the code.


[!code-fsharpMain]


The output is as follows.


Found an element 1 with square root 1 and cube root 1.
Found an element 64 with square root 8 and cube root 4.
Found an element 729 with square root 27 and cube root 9.
Found an element 4096 with square root 64 and cube root 16.









Performing Computations on Arrays


The Array.average [https://msdn.microsoft.com/library/7029f2b9-91ea-41cb-be1b-466a5a0db20e] function returns the average of each element in an array. It is limited to element types that support exact division by an integer, which includes floating point types but not integral types. The Array.averageBy [https://msdn.microsoft.com/library/e9d64609-06a3-48f0-bc07-226ab0f85c54] function returns the average of the results of calling a function on each element. For an array of integral type, you can use Array.averageBy and have the function convert each element to a floating point type for the computation.


Use Array.max [https://msdn.microsoft.com/library/f03fbda0-fce6-40e2-a85d-79c9d81f710b] or Array.min [https://msdn.microsoft.com/library/d6b3da5f-bac0-4355-9846-4b72d95bc3fd] to get the maximum or minimum element, if the element type supports it. Similarly, Array.maxBy [https://msdn.microsoft.com/library/18dbe7c5-482e-4766-8e01-12a76f847045] and Array.minBy [https://msdn.microsoft.com/library/24091583-be78-4cc9-9fab-de6d7506af4f] allow a function to be executed first, perhaps to transform to a type that supports comparison.


Array.sum [https://msdn.microsoft.com/library/4ffdb8c8-cd94-4b0b-9e5c-a7c9c17963c2] adds the elements of an array, and Array.sumBy [https://msdn.microsoft.com/library/41698ba6-1adc-4169-8cc5-7a0e3f8de56b] calls a function on each element and adds the results together.


To execute a function on each element in an array without storing the return values, use Array.iter [https://msdn.microsoft.com/library/94eba0f1-ecd7-459f-b89f-ed2a2923e516]. For a function involving two arrays of equal length, use Array.iter2 [https://msdn.microsoft.com/library/018aa9b9-f186-4142-be8a-a62462794fdc]. If you also need to keep an array of the results of the function, use Array.map [https://msdn.microsoft.com/library/38cbe824-0480-47be-85fd-df3afdd97a45] or Array.map2 [https://msdn.microsoft.com/library/bb7aafe8-4a1f-45b9-92fc-1af9eafbea5c], which operates on two arrays at a time.


The variations Array.iteri [https://msdn.microsoft.com/library/8bbe2ed4-ada7-4906-ac3e-cb09f9db6486] and Array.iteri2 [https://msdn.microsoft.com/library/c041b91f-6080-45b7-867b-2ed983a90405] allow the index of the element to be involved in the computation; the same is true for Array.mapi [https://msdn.microsoft.com/library/f7e45994-b0a1-49e6-8fb5-5641cea8fde4] and Array.mapi2 [https://msdn.microsoft.com/library/5edb33d2-47da-44e1-9290-40c00c47d5b0].


The functions Array.fold [https://msdn.microsoft.com/library/5ed9dd3b-3694-4567-94d0-fd9a24474e09], Array.foldBack [https://msdn.microsoft.com/library/1121a453-dead-4711-a0ca-cc147752989c], Array.reduce [https://msdn.microsoft.com/library/fd62a985-89fe-4f49-a9d4-0c808ac6749d], Array.reduceBack [https://msdn.microsoft.com/library/4fdd4cbe-2238-4c5c-b286-597a7e9036f9], Array.scan [https://msdn.microsoft.com/library/f6893608-9146-450d-9ebb-a0016803fbb0], and Array.scanBack [https://msdn.microsoft.com/library/7610f406-7a5c-41db-a0ca-8e2a2a4826ad] execute algorithms that involve all the elements of an array. Similarly, the variations Array.fold2 [https://msdn.microsoft.com/library/5c845087-d041-476e-8cc4-53ae6849ef79] and Array.foldBack2 [https://msdn.microsoft.com/library/aa51b405-df20-4c51-9998-a6530f7db862] perform computations on two arrays.


These functions for performing computations correspond to the functions of the same name in the List module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788]. For usage examples, see Lists.





Modifying Arrays


Array.set [https://msdn.microsoft.com/library/847edc0d-4dc5-4a39-98c7-d4320c60e790] sets an element to a specified value. Array.fill [https://msdn.microsoft.com/library/c83c9886-81d9-44f9-a195-61c7b87f7df2] sets a range of elements in an array to a specified value. The following code provides an example of Array.fill.


[!code-fsharpMain]


The output is as follows.


[|1; 2; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 23; 24; 25|]






You can use Array.blit [https://msdn.microsoft.com/library/675e13e4-7fb9-4e0d-a5be-a112830de667] to copy a subsection of one array to another array.





Converting to and from Other Types


Array.ofList [https://msdn.microsoft.com/library/e7225239-f561-45a4-b0b5-69a1cdcae78b] creates an array from a list. Array.ofSeq [https://msdn.microsoft.com/library/6bedf5e0-4b22-46da-b09c-6aa09eff220c] creates an array from a sequence. Array.toList [https://msdn.microsoft.com/library/4deff724-0be4-4688-92e7-9d67a1097786] and Array.toSeq [https://msdn.microsoft.com/library/ac28dbab-406c-4fe0-ab08-c1ce5e247af4] convert to these other collection types from the array type.





Sorting Arrays


Use Array.sort [https://msdn.microsoft.com/library/c6679075-e7eb-463c-9be5-c89be140c312] to sort an array by using the generic comparison function. Use Array.sortBy [https://msdn.microsoft.com/library/144498dc-091d-4575-a229-c0bcbd61426b] to specify a function that generates a value, referred to as a key, to sort by using the generic comparison function on the key. Use Array.sortWith [https://msdn.microsoft.com/library/699d3638-4244-4f42-8496-45f53d43ce95] if you want to provide a custom comparison function. Array.sort, Array.sortBy, and Array.sortWith all return the sorted array as a new array. The variations Array.sortInPlace [https://msdn.microsoft.com/library/36f39947-8a88-4823-9e9b-e9d838d292e0], Array.sortInPlaceBy [https://msdn.microsoft.com/library/7fb9d2dd-d461-4c67-8b43-b5c59fc12c3f], and Array.sortInPlaceWith [https://msdn.microsoft.com/library/454f9e11-972d-47a6-a854-8031cb0c7b0b] modify the existing array instead of returning a new one.





Arrays and Tuples


The functions Array.zip [https://msdn.microsoft.com/library/23e086b8-b266-4db2-8b68-e88e6a8e2187] and Array.unzip [https://msdn.microsoft.com/library/a529b47c-2e2b-4f79-ad44-c578432d2f48] convert arrays of tuple pairs to tuples of arrays and vice versa. Array.zip3 [https://msdn.microsoft.com/library/1745744a-d2ca-4c3e-b825-3f15d9f4000d] and Array.unzip3 [https://msdn.microsoft.com/library/bc3e6db0-f334-444f-8c30-813942880677] are similar except that they work with tuples of three elements or tuples of three arrays.







Parallel Computations on Arrays


The module Array.Parallel [https://msdn.microsoft.com/library/60f30b77-5af4-4050-9a5c-bcdb3f5cbb09] contains functions for performing parallel computations on arrays. This module is not available in applications that target versions of the .NET Framework prior to version 4.





See Also


F# Language Reference


F#; Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/sequences.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Sequences (F#)
description: Sequences (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 23dc7d75-cd26-4df2-9be3-9d1aba5c4443





Sequences



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



A sequence is a logical series of elements all of one type. Sequences are particularly useful when you have a large, ordered collection of data but do not necessarily expect to use all the elements. Individual sequence elements are computed only as required, so a sequence can provide better performance than a list in situations in which not all the elements are used. Sequences are represented by the seq<'T> type, which is an alias for System.Collections.Generic.IEnumerable. Therefore, any .NET Framework type that implements System.IEnumerable can be used as a sequence. The Seq module [https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684] provides support for manipulations involving sequences.



Sequence Expressions


A sequence expression is an expression that evaluates to a sequence. Sequence expressions can take a number of forms. The simplest form specifies a range. For example, seq { 1 .. 5 } creates a sequence that contains five elements, including the endpoints 1 and 5. You can also specify an increment (or decrement) between two double periods. For example, the following code creates the sequence of multiples of 10.


[!code-fsharpMain]


Sequence expressions are made up of F# expressions that produce values of the sequence. They can use the yield keyword to produce values that become part of the sequence.


Following is an example.


[!code-fsharpMain]


You can use the -> operator instead of yield, in which case you can omit the do keyword, as shown in the following example.


[!code-fsharpMain]


The following code generates a list of coordinate pairs along with an index into an array that represents the grid.


[!code-fsharpMain]


An if expression used in a sequence is a filter. For example, to generate a sequence of only prime numbers, assuming that you have a function isprime of type int -> bool, construct the sequence as follows.


[!code-fsharpMain]


When you use yield or -> in an iteration, each iteration is expected to generate a single element of the sequence. If each iteration produces a sequence of elements, use yield!. In that case, the elements generated on each iteration are concatenated to produce the final sequence.


You can combine multiple expressions together in a sequence expression. The elements generated by each expression are concatenated together. For an example, see the “Examples” section of this topic.





Examples


The first example uses a sequence expression that contains an iteration, a filter, and a yield to generate an array. This code prints a sequence of prime numbers between 1 and 100 to the console.


[!code-fsharpMain]


The following code uses yield to create a multiplication table that consists of tuples of three elements, each consisting of two factors and the product.


[!code-fsharpMain]


The following example demonstrates the use of yield! to combine individual sequences into a single final sequence. In this case, the sequences for each subtree in a binary tree are concatenated in a recursive function to produce the final sequence.


[!code-fsharpMain]





Using Sequences


Sequences support many of the same functions as lists. Sequences also support operations such as grouping and counting by using key-generating functions. Sequences also support more diverse functions for extracting subsequences.


Many data types, such as lists, arrays, sets, and maps are implicitly sequences because they are enumerable collections. A function that takes a sequence as an argument works with any of the common F# data types, in addition to any .NET Framework data type that implements System.Collections.Generic.IEnumerable<'T>. Contrast this to a function that takes a list as an argument, which can only take lists. The type seq<'T> is a type abbreviation for IEnumerable<'T>. This means that any type that implements the generic System.Collections.Generic.IEnumerable<'T>, which includes arrays, lists, sets, and maps in F#, and also most .NET Framework collection types, is compatible with the seq type and can be used wherever a sequence is expected.





Module Functions


The Seq module [https://msdn.microsoft.com/library/54e8f059-ca52-4632-9ae9-49685ee9b684] in the Microsoft.FSharp.Collections namespace [https://msdn.microsoft.com/library/24f64e5f-5030-47d0-9759-8d3e398ed13f] contains functions for working with sequences. These functions work with lists, arrays, maps, and sets as well, because all of those types are enumerable, and therefore can be treated as sequences.





Creating Sequences


You can create sequences by using sequence expressions, as described previously, or by using certain functions.


You can create an empty sequence by using Seq.empty [https://msdn.microsoft.com/library/3c7f1c69-6117-4782-b2da-0e04d6854f59], or you can create a sequence of just one specified element by using Seq.singleton [https://msdn.microsoft.com/library/9b8cc460-a282-4ec5-b29a-630ab17e9de7].


[!code-fsharpMain]


You can use Seq.init [https://msdn.microsoft.com/library/059de69d-812c-4f8e-be86-88aa72101576] to create a sequence for which the elements are created by using a function that you provide. You also provide a size for the sequence. This function is just like List.init [https://msdn.microsoft.com/library/dd38c096-0ea8-4858-be6b-794b90418b83], except that the elements are not created until you iterate through the sequence. The following code illustrates the use of Seq.init.


[!code-fsharpMain]


The output is


0 10 20 30 40






By using Seq.ofArray [https://msdn.microsoft.com/library/299cd4d9-be72-4511-aac8-089e1ddaac99] and Seq.ofList

&lt;


‘T&gt;


 Function [https://msdn.microsoft.com/visualfsharpdocs/conceptual/seq.oflist%5b%27t%5d-function-%5bfsharp%5d], you can create sequences from arrays and lists. However, you can also convert arrays and lists to sequences by using a cast operator. Both techniques are shown in the following code.


[!code-fsharpMain]


By using Seq.cast [https://msdn.microsoft.com/library/1d087db3-a8b2-41dd-8ddc-227544529334], you can create a sequence from a weakly typed collection, such as those defined in System.Collections. Such weakly typed collections have the element type System.Object and are enumerated by using the non-generic System.Collections.Generic.IEnumerable&#96;1 type. The following code illustrates the use of Seq.cast to convert an System.Collections.ArrayList into a sequence.


[!code-fsharpMain]


You can define infinite sequences by using the Seq.initInfinite [https://msdn.microsoft.com/library/d1804e53-da92-48ec-8d6e-57eaf4c62bef] function. For such a sequence, you provide a function that generates each element from the index of the element. Infinite sequences are possible because of lazy evaluation; elements are created as needed by calling the function that you specify. The following code example produces an infinite sequence of floating point numbers, in this case the alternating series of reciprocals of squares of successive integers.


[!code-fsharpMain]


Seq.unfold [https://msdn.microsoft.com/library/7d9232fc-742e-42bc-bdf7-6f130f0eff21] generates a sequence from a computation function that takes a state and transforms it to produce each subsequent element in the sequence. The state is just a value that is used to compute each element, and can change as each element is computed. The second argument to Seq.unfold is the initial value that is used to start the sequence. Seq.unfold uses an option type for the state, which enables you to terminate the sequence by returning the None value. The following code shows two examples of sequences, seq1 and fib, that are generated by an unfold operation. The first, seq1, is just a simple sequence with numbers up to 100. The second, fib, uses unfold to compute the Fibonacci sequence. Because each element in the Fibonacci sequence is the sum of the previous two Fibonacci numbers, the state value is a tuple that consists of the previous two numbers in the sequence. The initial value is (1,1), the first two numbers in the sequence.


[!code-fsharpMain]


The output is as follows:


The sequence seq1 contains numbers from 0 to 20.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The sequence fib contains Fibonacci numbers.

2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597






The following code is an example that uses many of the sequence module functions described here to generate and compute the values of infinite sequences. The code might take a few minutes to run.


[!code-fsharpMain]





Searching and Finding Elements


Sequences support functionality available with lists: Seq.exists [https://msdn.microsoft.com/library/428c97bf-599d-4c39-a5b9-f8717c198ad1], Seq.exists2 [https://msdn.microsoft.com/library/efdf14a4-27f7-4dc1-9281-52639e66d565], Seq.find [https://msdn.microsoft.com/library/02c21ecd-97e5-4e99-a4c1-b4d0b730b7d8], Seq.findIndex [https://msdn.microsoft.com/library/96dfe86b-df15-4d92-8316-7cd6055e09f3], Seq.pick [https://msdn.microsoft.com/library/a87bc771-55f7-43f9-94f9-33d8f9bf325d], Seq.tryFind [https://msdn.microsoft.com/library/ac43c6f5-4dc7-4e9a-a222-00b5736aee47], and Seq.tryFindIndex [https://msdn.microsoft.com/library/c357b221-edf6-4f68-bf40-82a3156d945a]. The versions of these functions that are available for sequences evaluate the sequence only up to the element that is being searched for. For examples, see Lists [https://msdn.microsoft.com/library/83102799-f251-42e1-93ef-64232e8c5b1d].





Obtaining Subsequences


Seq.filter [https://msdn.microsoft.com/library/7f2e9850-a660-460c-9831-3bbff5613770] and Seq.choose [https://msdn.microsoft.com/library/63b83b06-4b24-4239-bf69-a2c12d891395] are like the corresponding functions that are available for lists, except that the filtering and choosing does not occur until the sequence elements are evaluated.


Seq.truncate [https://msdn.microsoft.com/library/1892dfeb-308e-45e2-857a-3c3405d02244] creates a sequence from another sequence, but limits the sequence to a specified number of elements. Seq.take [https://msdn.microsoft.com/library/6e75f701-640b-4c4a-9d63-4313fc090596] creates a new sequence that contains only a specified number of elements from the start of a sequence. If there are fewer elements in the sequence than you specify to take, Seq.take throws a System.InvalidOperationException. The difference between Seq.take and Seq.truncate is that Seq.truncate does not produce an error if the number of elements is fewer than the number you specify.


The following code shows the behavior of and differences between Seq.truncate and Seq.take.


[!code-fsharpMain]


The output, before the error occurs, is as follows.


1 4 9 16 25 
1 4 9 16 25 36 49 64 81 100 
1 4 9 16 25 
1 4 9 16 25 36 49 64 81 100






By using Seq.takeWhile [https://msdn.microsoft.com/library/19eea4ce-66e0-4353-b015-72eb03421d92], you can specify a predicate function (a Boolean function) and create a sequence from another sequence made up of those elements of the original sequence for which the predicate is true, but stop before the first element for which the predicate returns false. Seq.skip [https://msdn.microsoft.com/library/b4eb3f08-8594-4d17-8180-852c6c688bf1] returns a sequence that skips a specified number of the first elements of another sequence and returns the remaining elements. Seq.skipWhile [https://msdn.microsoft.com/library/fb729021-2a3c-430f-83c3-0b37526f1a16] returns a sequence that skips the first elements of another sequence as long as the predicate returns true, and then returns the remaining elements, starting with the first element for which the predicate returns false.


The following code example illustrates the behavior of and differences between Seq.takeWhile, Seq.skip, and Seq.skipWhile.


[!code-fsharpMain]


The output is as follows.


1 4 9 
36 49 64 81 100 
16 25 36 49 64 81 100









Transforming Sequences


Seq.pairwise [https://msdn.microsoft.com/library/210dcf26-4e24-4d83-af6d-a8288b2ae4b1] creates a new sequence in which successive elements of the input sequence are grouped into tuples.


[!code-fsharpMain]


Seq.windowed [https://msdn.microsoft.com/library/8b565b8f-d645-4dba-be22-099075fe4744] is like Seq.pairwise, except that instead of producing a sequence of tuples, it produces a sequence of arrays that contain copies of adjacent elements (a window) from the sequence. You specify the number of adjacent elements you want in each array.


The following code example demonstrates the use of Seq.windowed. In this case the number of elements in the window is 3. The example uses printSeq, which is defined in the previous code example.


[!code-fsharpMain]


The output is as follows.


Initial sequence:


1.0 1.5 2.0 1.5 1.0 1.5 

Windows of length 3: 
[|1.0; 1.5; 2.0|] [|1.5; 2.0; 1.5|] [|2.0; 1.5; 1.0|] [|1.5; 1.0; 1.5|] 

Moving average: 
1.5 1.666666667 1.5 1.333333333









Operations with Multiple Sequences


Seq.zip [https://msdn.microsoft.com/library/0a5df8bf-0d48-44ce-bff4-e8ef1df5bca4] and Seq.zip3 [https://msdn.microsoft.com/library/ef13bebb-22ae-4eb9-873b-87dd29154d16] take two or three sequences and produce a sequence of tuples. These functions are like the corresponding functions available for lists [https://msdn.microsoft.com/library/83102799-f251-42e1-93ef-64232e8c5b1d]. There is no corresponding functionality to separate one sequence into two or more sequences. If you need this functionality for a sequence, convert the sequence to a list and use List.unzip [https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21].





Sorting, Comparing, and Grouping


The sorting functions supported for lists also work with sequences. This includes Seq.sort [https://msdn.microsoft.com/library/327ea595-e77c-4529-b61e-8c6cbf5ec92e] and Seq.sortBy [https://msdn.microsoft.com/library/4f8b4fb9-bf20-49d9-b4ee-dcc906c8208f]. These functions iterate through the whole sequence.


You compare two sequences by using the Seq.compareWith [https://msdn.microsoft.com/library/5a740135-0b3a-4545-816f-8f91cc31290f] function. The function compares successive elements in turn, and stops when it encounters the first unequal pair. Any additional elements do not contribute to the comparison.


The following code shows the use of Seq.compareWith.


[!code-fsharpMain]


In the previous code, only the first element is computed and examined, and the result is -1.


Seq.countBy [https://msdn.microsoft.com/library/721702a5-150e-4fe8-81cd-ffbf8476cc1f] takes a function that generates a value called a key for each element. A key is generated for each element by calling this function on each element. Seq.countBy then returns a sequence that contains the key values, and a count of the number of elements that generated each value of the key.


[!code-fsharpMain]


The output is as follows.


(1, 34) (2, 33) (0, 33)






The previous output shows that there were 34 elements of the original sequence that produced the key 1, 33 values that produced the key 2, and 33 values that produced the key 0.


You can group elements of a sequence by calling Seq.groupBy [https://msdn.microsoft.com/library/d46a04df-1a42-40cc-a368-058c9c5806fd]. Seq.groupBy takes a sequence and a function that generates a key from an element. The function is executed on each element of the sequence. Seq.groupBy returns a sequence of tuples, where the first element of each tuple is the key and the second is a sequence of elements that produce that key.


The following code example shows the use of Seq.groupBy to partition the sequence of numbers from 1 to 100 into three groups that have the distinct key values 0, 1, and 2.


[!code-fsharpMain]


The output is as follows.


(1, seq [1; 4; 7; 10; ...]) (2, seq [2; 5; 8; 11; ...]) (0, seq [3; 6; 9; 12; ...])






You can create a sequence that eliminates duplicate elements by calling Seq.distinct [https://msdn.microsoft.com/library/99d01014-7e0e-4e7b-9d0a-41a61d93f401]. Or you can use Seq.distinctBy [https://msdn.microsoft.com/library/9293293b-9420-49c8-848f-401a9cd49b75], which takes a key-generating function to be called on each element. The resulting sequence contains elements of the original sequence that have unique keys; later elements that produce a duplicate key to an earlier element are discarded.


The following code example illustrates the use of Seq.distinct. Seq.distinct is demonstrated by generating sequences that represent binary numbers, and then showing that the only distinct elements are 0 and 1.


[!code-fsharpMain]


The following code demonstrates Seq.distinctBy by starting with a sequence that contains negative and positive numbers and using the absolute value function as the key-generating function. The resulting sequence is missing all the positive numbers that correspond to the negative numbers in the sequence, because the negative numbers appear earlier in the sequence and therefore are selected instead of the positive numbers that have the same absolute value, or key.


[!code-fsharpMain]





Readonly and Cached Sequences


Seq.readonly [https://msdn.microsoft.com/library/88059cb4-3bb0-4126-9448-fbcd48fe13a7] creates a read-only copy of a sequence. Seq.readonly is useful when you have a read-write collection, such as an array, and you do not want to modify the original collection. This function can be used to preserve data encapsulation. In the following code example, a type that contains an array is created. A property exposes the array, but instead of returning an array, it returns a sequence that is created from the array by using Seq.readonly.


[!code-fsharpMain]


Seq.cache [https://msdn.microsoft.com/library/d197f9cc-08bf-4986-9869-246e72ca73f0] creates a stored version of a sequence. Use Seq.cache to avoid reevaluation of a sequence, or when you have multiple threads that use a sequence, but you must make sure that each element is acted upon only one time. When you have a sequence that is being used by multiple threads, you can have one thread that enumerates and computes the values for the original sequence, and remaining threads can use the cached sequence.





Performing Computations on Sequences


Simple arithmetic operations are like those of lists, such as Seq.average [https://msdn.microsoft.com/library/609d793b-c70f-4e36-9ab4-d928056d65b8], Seq.sum [https://msdn.microsoft.com/library/01208515-4880-4358-91f5-af34f66dc77a], Seq.averageBy [https://msdn.microsoft.com/library/47c855c1-2dbd-415a-885e-b909d9d3e4f8], Seq.sumBy [https://msdn.microsoft.com/library/68cca78c-94ed-4a45-9b8d-34d2c5f2b1b1], and so on.


Seq.fold [https://msdn.microsoft.com/library/30c4c95a-9563-4c96-bbe1-f7aacfd026e3], Seq.reduce [https://msdn.microsoft.com/library/a2ad4f64-ac69-47d2-92f0-7173d9dfeae9], and Seq.scan [https://msdn.microsoft.com/library/7e2d23e9-f153-4411-a884-b6d415ff627e] are like the corresponding functions that are available for lists. Sequences support a subset of the full variations of these functions that lists support. For more information and examples, see Lists.





See Also


F# Language Reference


F# Types








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/event-pattern.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: The Standard .NET Event Pattern
description: The Standard .NET Event Pattern
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 8a3133d6-4ef2-46f9-9c8d-a8ea8898e4c9





The Standard .NET Event Pattern


Previous


.NET events generally follow a few known patterns. Standardizing
on these patterns means that developers can leverage knowledge of
those standard patterns, which can be applied to any .NET event program.


Let’s go through these standard patterns so you will have all
the knowledge you need to create standard event sources, and
subscribe and process standard events in your code.



Event Delegate Signatures


The standard signature for a .NET event delegate is:


void OnEventRaised(object sender, EventArgs args);






The return type is void. Events are based on delegates and are
multicast delegates. That supports multiple subscribers for any
event source. The single return value from a method doesn’t scale
to multiple event subscribers. Which return value does the event
source see after raising an event? Later in this article you’ll
see how to create event protocols that support event subscribers
that report information to the event source.


The argument list contains two arguments: the sender, and the event
arguments. The compile time type of sender is System.Object,
even though you likely know a more derived type that would always
be correct. By convention, use object.


The second argument has typically been a type that is derived from
System.EventArgs. (You’ll see in the
next section that this convention is no longer
enforced.) If your event type does not need any additional
arguments, you will still provide both arguments.
There is a special value, EventArgs.Empty that you should use to
denote that your event does not contain any additional information.


Let’s build a class that lists files in a directory, or any of its
subdirectories that follow a pattern. This component raises an event
for each file found that matches the pattern.


Using an event model provides some design advantages. You can create
multiple event listeners that perform different actions when a sought
file is found. Combining the different listeners can create more
robust algorithms.


Here is the initial event argument declaration for finding a sought
file:


public class FileFoundArgs : EventArgs
{
    public string FoundFile { get; }

    public FileFoundArgs(string fileName)
    {
        FoundFile = fileName;
    }
}






Even though this type looks like a small, data-only type, you should
follow the convention and make it a reference (class) type. That
means the argument object will be passed by reference, and any
updates to the data will be viewed by all subscribers. The first
version is an immutable object. You should prefer to make the
properties in your event argument type immutable. That way, one
subscriber cannot change the values before another subscriber sees
them. (There are exceptions to this, as you’ll see below.)


Next, we need to create the event declaration in the FileSearcher
class. Leveraging the EventHandler<T> type means that you don’t
need to create yet another type definition. You simply use a generic
specialization.


Let’s fill out the FileSearcher class to search for files that match
a pattern, and raise the correct event when a match is discovered.


public class FileSearcher
{
    public event EventHandler<FileFoundArgs> FileFound;

    public void Search(string directory, string searchPattern)
    {
        foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
        {
            FileFound?.Invoke(this, new FileFoundArgs(file));
        }
    }
}









Definining and Raising Field-Like Events


The simplest way to add an event to your class is to declare that
event as a public field, as in the above example:


public event EventHandler<FileFoundArgs> FileFound;






This looks like it’s declaring a public field, which would appear to
be bad object oriented practice. You want to protect data access
through properties, or methods. While this make look like a bad
practice, the code generated by the compiler does create wrappers so
that the event objects can only be accessed in safe ways. The only
operations available on a field-like event are add handler:


EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
    Console.WriteLine(eventArgs.FoundFile);
lister.FileFound += onFIleFound;






and remove handler:


lister.FileFound -= onFileFound;






Note that there’s a local variable for the handler. If you used
the body of the lambda, the remove would not work correctly. It would
be a different instance of the delegate, and silently do nothing.


Code outside the class cannot raise the event, nor can it perform any
other operations.





Returning Values from Event Subscribers


Your simple version is working fine. Let’s add another feature:
Cancellation.


When you raise the found event, listeners should be able to stop
further processing, if this file is that last one sought.


The event handlers do not return a value, so you need to communicate
that in another way. The standard event pattern uses the EventArgs
object to include fields that event subscribers can use to
communicate cancel.


There are two different patterns that could be used, based on the
semantics of the Cancel contract. In both cases, you’ll add a boolean
field to the EventArguments for the found file event.


One pattern would allow any one subscriber to cancel the operation.
For this pattern, the new field is initialized to false. Any
subscriber can change it to true. After all subscribers have seen
the event raised, the FileSearcher component examines the boolean
value and takes action.


The second pattern would only cancel the operation if all subscribers
wanted the operation cancelled. In this pattern, the new field is
initialized to indicate the operation should cancel, and any
subscriber could change it to indicate the operation should continue.
After all subscribers have seen the event raised, the FileSearcher
component examines the boolean and takes action. There is one extra
step in this pattern: the component needs to know if any subscribers
have seen the event. If there are no subscribers, the field would
indicate a cancel incorrectly.


Let’s implement the first version for this sample. You need to add a
boolean field to the FileFoundEventArgs type:


public class FileFoundArgs : EventArgs
{
    public string FoundFile { get; }
    public bool CancelRequested { get; set; }

    public FileFoundArgs(string fileName)
    {
        FoundFile = fileName;
    }
}






This new Field should be initialized to false, so you don’t cancel
for no reason. That is the default value for a boolean field, so that
happens automatically. The only other change to the component is to
check the flag after raising the event to see if any of the
subscribers have requested a cancellation:


public void List(string directory, string searchPattern)
{
    foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
    {
        var args = new FileFoundArgs(file);
        FileFound?.Invoke(this, args);
        if (args.CancelRequested)
            break;
    }
}






One advantage of this pattern is that it isn’t a breaking change.
None of the subscribers requested a cancel before, and they still are
not. None of the subscriber code needs updating unless they want to
support the new cancel protocol. It’s very loosely coupled.


Let’s update the subscriber so that it requests a cancellation once
it finds the first executable:


EventHandler<FileFoundArgs> onFileFound = (sender, eventArgs) =>
{
    Console.WriteLine(eventArgs.FoundFile);
    eventArgs.CancelRequested = true;
};









Adding Another Event Declaration


Let’s add one more feature, and demonstrate other language idioms
for events. Let’s add an overload of the Search() method that
traverses all subdirectories in search of files.


This could get to be a lengthy operation in a directory with many
sub-directories. Let’s add an event that gets raised when each new
directory search begins. This enables subscribers to track progress,
and update the user as to progress. All the samples you’ve created so
far are public. Let’s make this one an internal event. That means you
can also make the types used for the arguments internal as well.


You’ll start by creating the new EventArgs derived class for
reporting the new directory and progress.


internal class SearchDirectoryArgs : EventArgs
{
    internal string CurrentSearchDirectory { get; }
    internal int TotalDirs { get; }
    internal int CompletedDirs { get; }

    internal SearchDirectoryArgs(string dir, int totalDirs, int completedDirs)
    {
        CurrentSearchDirectory = dir;
        TotalDirs = totalDirs;
        CompletedDirs = completedDirs;
    }
}






Again, you can follow the recommendations to make an immutable
reference type for the event arguments.


Next, define the event. This time, you’ll use a different syntax. In
addition to using the field syntax, you can explicitly create the
property, with add and remove handlers. In this sample, you won’t
need extra code in those handlers in this project, but this shows how
you would create them.


internal event EventHandler<SearchDirectoryArgs> DirectoryChanged
{
    add { directoryChanged += value; }
    remove { directoryChanged -= value; }
}
private EventHandler<SearchDirectoryArgs> directoryChanged;






In may ways, the code you write here mirrors the code the compiler
generates for the field event definitions you’ve seen earlier. You
create the event using syntax very similar to that used for
properties. Notice that the handlers have different
names: add and remove. These are called to subscribe to the event,
or unsubscribe from the event. Notice that you also must declare a
private backing field to store the event variable. It is initialized
to null.


Next, let’s add the overload of the Search() method that traverses
subdirectories and raises both events. The easiest way to accomplish
this is to use a default argument to specify that you want to search
all directories:


public void Search(string directory, string searchPattern, bool searchSubDirs = false)
{
    if (searchSubDirs)
    {
        var allDirectories = Directory.GetDirectories(directory, "*.*", SearchOption.AllDirectories);
        var completedDirs = 0;
        var totalDirs = allDirectories.Length + 1;
        foreach (var dir in allDirectories)
        {
            directoryChanged?.Invoke(this,
                new SearchDirectoryArgs(dir, totalDirs, completedDirs++));
            // Recursively search this child directory:
            SearchDirectory(dir, searchPattern);
        }
        // Include the Current Directory:
        directoryChanged?.Invoke(this,
            new SearchDirectoryArgs(directory, totalDirs, completedDirs++));
        SearchDirectory(directory, searchPattern);
    }
    else
    {
        SearchDirectory(directory, searchPattern);
    }
}

private void SearchDirectory(string directory, string searchPattern)
{
    foreach (var file in Directory.EnumerateFiles(directory, searchPattern))
    {
        var args = new FileFoundArgs(file);
        FileFound?.Invoke(this, args);
        if (args.CancelRequested)
            break;
    }
}






At this point, you can run the application calling the overload for
searching all sub-directories. There are no subscribers on the new
ChangeDirectory event, but using the ?.Invoke() idiom ensures
that this works correctly.


Let’s add a handler to write a line that shows the progress in the
console window.


lister.DirectoryChanged += (sender, eventArgs) =>
{
    Console.Write($"Entering '{eventArgs.CurrentSearchDirectory}'.");
    Console.WriteLine($" {eventArgs.CompletedDirs} of {eventArgs.TotalDirs} completed...");
};






You’ve seen patterns that are followed throughout the .NET ecosystem.
By learning these patterns and conventions, you’ll be writing
idiomatic C# and .NET quickly.


Next, you’ll see some changes in these patterns in the most recent
release of .NET.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/keyword-reference.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Keyword Reference (F#)
description: Keyword Reference (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 5795ce1f-11bf-4798-9f1f-6e44ffa1477e





Keyword Reference


This topic contains links to information about all F# language keywords.



F# Keyword Table


The following table shows all F# keywords in alphabetical order, together with brief descriptions and links to relevant topics that contain more information.


|Keyword|Link|Description|
|——-|—-|———–|
|abstract|Members

Abstract Classes|Indicates a method that either has no implementation in the type in which it is declared or that is virtual and has a default implementation.|
|and|let Bindings

Members

Constraints|Used in mutually recursive bindings, in property declarations, and with multiple constraints on generic parameters.|
|as|Classes

Pattern Matching|Used to give the current class object an object name. Also used to give a name to a whole pattern within a pattern match.|
|assert|Assertions|Used to verify code during debugging.|
|base|Classes

Inheritance|Used as the name of the base class object.|
|begin|Verbose Syntax|In verbose syntax, indicates the start of a code block.|
|class|Classes|In verbose syntax, indicates the start of a class definition.|
|default|Members|Indicates an implementation of an abstract method; used together with an abstract method declaration to create a virtual method.|
|delegate|Delegates|Used to declare a delegate.|
|do|do Bindings

Loops: for...to Expression

Loops: for...in Expression

Loops: while...do Expression|Used in looping constructs or to execute imperative code.|
|done|Verbose Syntax|In verbose syntax, indicates the end of a block of code in a looping expression.|
|downcast|Casting and Conversions|Used to convert to a type that is lower in the inheritance chain.|
|downto|Loops: for...to Expression|In a for expression, used when counting in reverse.|
|elif|Conditional Expressions: if...then...else|Used in conditional branching. A short form of else if.|
|else|Conditional Expressions: if...then...else|Used in conditional branching.|
|end|Structures

Discriminated Unions

Records

Type Extensions

Verbose Syntax|In type definitions and type extensions, indicates the end of a section of member definitions.

In verbose syntax, used to specify the end of a code block that starts with the begin keyword.|
|exception|Exception Handling

Exception Types|Used to declare an exception type.|
|extern|External Functions|Indicates that a declared program element is defined in another binary or assembly.|
|false|Primitive Types|Used as a Boolean literal.|
|finally|Exceptions: The try...finally Expression|Used together with try to introduce a block of code that executes regardless of whether an exception occurs.|
|for|Loops: for...to Expression

Loops: for...in Expression|Used in looping constructs.|
|fun|Lambda Expressions: The fun Keyword|Used in lambda expressions, also known as anonymous functions.|
|function|Match Expressions

Lambda Expressions: The fun Keyword|Used as a shorter alternative to the fun keyword and a match expression in a lambda expression that has pattern matching on a single argument.|
|global|Namespaces|Used to reference the top-level .NET namespace.|
|if|Conditional Expressions: if...then...else|Used in conditional branching constructs.|
|in|Loops: for...in Expression

Verbose Syntax|Used for sequence expressions and, in verbose syntax, to separate expressions from bindings.|
|inherit|Inheritance|Used to specify a base class or base interface.|
|inline|Functions

Inline Functions|Used to indicate a function that should be integrated directly into the caller’s code.|
|interface|Interfaces|Used to declare and implement interfaces.|
|internal|Access Control|Used to specify that a member is visible inside an assembly but not outside it.|
|lazy|Lazy Computations|Used to specify a computation that is to be performed only when a result is needed.|
|let|let Bindings|Used to associate, or bind, a name to a value or function.|
|let!|Asynchronous Workflows

Computation Expressions|Used in asynchronous workflows to bind a name to the result of an asynchronous computation, or, in other computation expressions, used to bind a name to a result, which is of the computation type.|
|match|Match Expressions|Used to branch by comparing a value to a pattern.|
|member|Members|Used to declare a property or method in an object type.|
|module|Modules|Used to associate a name with a group of related types, values, and functions, to logically separate it from other code.|
|mutable|let Bindings|Used to declare a variable, that is, a value that can be changed.|
|namespace|Namespaces|Used to associate a name with a group of related types and modules, to logically separate it from other code.|
|new|Constructors

Constraints|Used to declare, define, or invoke a constructor that creates or that can create an object.

Also used in generic parameter constraints to indicate that a type must have a certain constructor.|
|not|Symbol and Operator Reference

Constraints|Not actually a keyword. However, not struct in combination is used as a generic parameter constraint.|
|null|Null Values

Constraints|Indicates the absence of an object.

Also used in generic parameter constraints.|
|of|Discriminated Unions

Delegates

Exception Types|Used in discriminated unions to indicate the type of categories of values, and in delegate and exception declarations.|
|open|Import Declarations: The open Keyword|Used to make the contents of a namespace or module available without qualification.|
|or|Symbol and Operator Reference

Constraints|Used with Boolean conditions as a Boolean or operator. Equivalent to ||.

Also used in member constraints.|
|override|Members|Used to implement a version of an abstract or virtual method that differs from the base version.|
|private|Access Control|Restricts access to a member to code in the same type or module.|
|public|Access Control|Allows access to a member from outside the type.|
|rec|Functions|Used to indicate that a function is recursive.|
|return|Asynchronous Workflows

Computation Expressions|Used to indicate a value to provide as the result of a computation expression.|
|return!|Computation Expressions

Asynchronous Workflows|Used to indicate a computation expression that, when evaluated, provides the result of the containing computation expression.|
|select|Query Expressions|Used in query expressions to specify what fields or columns to extract. Note that this is a contextual keyword, which means that it is not actually a reserved word and it only acts like a keyword in appropriate context.|
|static|Members|Used to indicate a method or property that can be called without an instance of a type, or a value member that is shared among all instances of a type.|
|struct|Structures

Constraints|Used to declare a structure type.

Also used in generic parameter constraints.

Used for OCaml compatibility in module definitions.|
|then|Conditional Expressions: if...then...else

Constructors|Used in conditional expressions.

Also used to perform side effects after object construction.|
|to|Loops: for...to Expression|Used in for loops to indicate a range.|
|true|Primitive Types|Used as a Boolean literal.|
|try|Exceptions: The try...with Expression

Exceptions: The try...finally Expression|Used to introduce a block of code that might generate an exception. Used together with with or finally.|
|type|F# Types

Classes

Records

Structures

Enumerations

Discriminated Unions

Type Abbreviations

Units of Measure|Used to declare a class, record, structure, discriminated union, enumeration type, unit of measure, or type abbreviation.|
|upcast|Casting and Conversions|Used to convert to a type that is higher in the inheritance chain.|
|use|Resource Management: The use Keyword|Used instead of let for values that require Dispose to be called to free resources.|
|use!|Computation Expressions

Asynchronous Workflows|Used instead of let! in asynchronous workflows and other computation expressions for values that require Dispose to be called to free resources.|
|val|Explicit Fields: The val Keyword

Signatures

Members|Used in a signature to indicate a value, or in a type to declare a member, in limited situations.|
|void|Primitive Types|Indicates the .NET void type. Used when interoperating with other .NET languages.|
|when|Constraints|Used for Boolean conditions (when guards) on pattern matches and to introduce a constraint clause for a generic type parameter.|
|while|Loops: while...do Expression|Introduces a looping construct.|
|with|Match Expressions

Object Expressions

Copy and Update Record Expressions

Type Extensions

Exceptions: The try...with Expression/>|Used together with the match keyword in pattern matching expressions. Also used in object expressions, record copying expressions, and type extensions to introduce member definitions, and to introduce exception handlers.|
|yield|Sequences|Used in a sequence expression to produce a value for a sequence.|
|yield!|Computation Expressions

Asynchronous Workflows|Used in a computation expression to append the result of a given computation expression to a collection of results for the containing computation expression.|
In addition, the following tokens are reserved in F# because they are keywords in the OCaml language:


||
|-|
|asr|land|lor|lsl|lsr|lxor|mod|sig|
If you use the --mlcompatibility compiler option, these keywords are available for use as identifiers.


The following tokens are reserved as keywords for future expansion of the F# language:


||
|-|
|atomic|break|checked|component|const|constraint|constructor|
|continue|eager|event|external|fixed|functor|include|
|method|mixin|object|parallel|process|protected|pure|
|sealed|tailcall|trait|virtual|volatile|||





See Also


F# Language Reference


Symbol and Operator Reference


Compiler Options








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interop.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Native interoperability
description: Native interoperability
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 54485caa-09e0-466c-86fa-6a9aab6c332b





🔧 Native interoperability



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/492] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/object-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Object Expressions (F#)
description: Object Expressions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c6dcf4c9-e7fd-4eee-9e4e-1176f4c27f57





Object Expressions


An object expression is an expression that creates a new instance of a dynamically created, anonymous object type that is based on an existing base type, interface, or set of interfaces.



Syntax


// When typename is a class:
{ new typename [type-params]arguments with
    member-definitions
    [ additional-interface-definitions ]
}
// When typename is not a class:
{ new typename [generic-type-args] with
    member-definitions
    [ additional-interface-definitions ]
}









Remarks


In the previous syntax, the typename represents an existing class type or interface type. type-params describes the optional generic type parameters. The arguments are used only for class types, which require constructor parameters. The member-definitions are overrides of base class methods, or implementations of abstract methods from either a base class or an interface.


The following example illustrates several different types of object expressions.


[!code-fsharpMain]





Using Object Expressions


You use object expressions when you want to avoid the extra code and overhead that is required to create a new, named type. If you use object expressions to minimize the number of types created in a program, you can reduce the number of lines of code and prevent the unnecessary proliferation of types. Instead of creating many types just to handle specific situations, you can use an object expression that customizes an existing type or provides an appropriate implementation of an interface for the specific case at hand.





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/iterators.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Iterators
description: Iterators
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 5cf36f45-f91a-4fca-a0b7-87f233e108e9





Iterators


Almost every program you write will have some need to iterate
over a collection. You’ll write code that examines every item in
a collection.


You’ll also create iterator methods which are methods that produces an
iterator for the elements of that class. These can be used for:



		Performing an action on each item in a collection.


		Enumerating a custom collection.


		Extending LINQ or other libraries.


		Creating a data pipeline where data flows efficiently through iterator
methods.





The C# language provides
features for both these scenarios. This article provides an overview
of those features.



Iterating with foreach


Enumerating a collection is simple: The foreach keyword enumerates
a collection, executing the embedded statement once for each element
in the collection:


foreach (var item in collection)
{
   Console.WriteLine(item.ToString());
}






That’s all there is to it. To iterate over all the contents of a collection,
the foreach statement is all you need. The foreach statement isn’t magic,
though. It relies on two generic interfaces defined in the .NET core library in order
to generate the code necessary to iterate a collection: IEnumerable<T> and
IEnumerator<T>. This mechanism is explained in more detail below.


Both of these interfaces also have non-generic counterparts: IEnumerable and
IEnumerator. The generic versions are preferred for modern code.





Enumeration sources with iterator methods


Another great feature of the C# language enables you to build methods that create
a source for an enumeration. These are referred to as iterator methods. An iterator
method defines how to generate the objects in a sequence when requested. You
use the yield return contextual keywords to define an iterator method.


You could write this method to produce the sequence of integers from 0 through 9:


public IEnumerable<int> GetSingleDigitNumbers()
{
    yield return 0;
    yield return 1;
    yield return 2;
    yield return 3;
    yield return 4;
    yield return 5;
    yield return 6;
    yield return 7;
    yield return 8;
    yield return 9;
}






The code above shows distinct yield return statements to highlight the fact that
you can use multiple discrete yield return statements in an iterator method.
You can (and often do) use other language constructs to simplify the code of an
iterator method. The method definition below produces the exact same sequence
of numbers:


public IEnumerable<int> GetSingleDigitNumbers()
{
    int index = 0;
    while (index++ < 10)
        yield return index;
}






You don’t have to decide one or the other. You can have as many yield return
statements as necessary to meet the needs of your method:


public IEnumerable<int> GetSingleDigitNumbers()
{
    int index = 0;
    while (index++ < 10)
        yield return index;
        
    yield return 50;
    
    index = 100;
    while (index++ < 110)
        yield return index;
}






That’s the basic syntax. Let’s consider a real world example where you would
write an iterator method. Imagine you’re on an IoT project and the device
sensors generate a very large stream of data. To get a feel for the data, you
might write a method that samples every Nth data element. This small iterator
method does the trick:


public static IEnumerable<T> Sample(this IEnumerable<T> sourceSequence, int interval)
{
    int index = 0;
    foreach (T item in sourceSequence)
    {
        if (index++ % interval == 0)
            yield return item;
    }
}






There is one important restriction on iterator methods: you can’t have both a
return statement and a yield return statement in the same method. The following
will not compile:


public IEnumerable<int> GetSingleDigitNumbers()
{
    int index = 0;
    while (index++ < 10)
        yield return index;
        
    yield return 50;
   
    // generates a compile time error: 
    var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
    return items;  
}






This restriction normally isn’t a problem. You have a choice of either using
yield return throughout the method, or separating the original method into
multiple methods, some using return, and some using yield return.


You can modify the last method slightly to use yield return everywhere:


public IEnumerable<int> GetSingleDigitNumbers()
{
    int index = 0;
    while (index++ < 10)
        yield return index;
        
    yield return 50;
   
    var items = new int[] {100, 101, 102, 103, 104, 105, 106, 107, 108, 109 };
    foreach (var item in items)
        yield return item;
}






Sometimes, the right answer is to split an iterator method into two different
methods. One that uses return, and a second that uses yield return. Consider
a situation where you might want to return an empty collection, or the first 5
odd numbers, based on a boolean argument. You could write that as these two
methods:


public IEnumerable<int> GetSingleDigitOddNumbers(bool getCollection)
{
    if (getCollection == false)
        return new int[0];
    else
        return IteratorMethod();
}

private IEnumerable<int> IteratorMethod()
{
    int index = 0;
    while (index++ < 10)
        if (index % 2 == 1)
            yield return index;
}






Look at the methods above. The first uses the standard return statement to return
either an empty collection, or the iterator created by the second method. The second
method uses the yield return statement to create the requested sequence.





Deeper Dive into foreach


The foreach statement expands into a standard idiom that uses the
IEnumable<T> and IEnumerator<T> interfaces to iterate across all
elements of a collection. It also  minimizes errors developers make
by not properly managing resources.


The compiler translates the foreach loop shown in the first
example into something similar to this construct:


IEnumerator<int> enumerator = collection.GetEnumerator();
while (enumerator.MoveNext())
{
    var item = enumerator.Current;
    Console.WriteLine(item.ToString());
}






The construct above represents the code generated by the C# compiler as of
version 5 and above. Prior to version 5, the item variable had a different scope:


// C# versions 1 through 4:
IEnumerator<int> enumerator = collection.GetEnumerator();
int item = default(int);
while (enumerator.MoveNext())
{
    item = enumerator.Current;
    Console.WriteLine(item.ToString());
}






This was changed because the earlier behavior could lead to subtle and hard
to diagnose bugs involving lambda expressions. See the section on
lambda expressions for more information.


The exact code generated by the compiler is somewhat more complicated, and
handles situations where the object returned by GetEnumerator() implements
the IDisposable interface. The full expansion generates code more like this:


{
    var enumerator = collection.GetEnumerator();
    try 
    {
        while (enumerator.MoveNext())
        {
            var item = enumerator.Current;
            Console.WriteLine(item.ToString());
        }
    } finally 
    {
        // dispose of enumerator.
    }
}






The manner in which the enumerator is disposed of depends on the characteristics of
the type of enumerator. In the general case, the finally clause expands to:


finally 
{
   (enumerator as IDisposable)?.Dispose();
} 






However, if the type of enumerator is a sealed type and there is no implicit
conversion from the type of enumerator to IDisposable, the finally clause
expands to an empty block:


finally 
{
} 






If there is an implicit conversion from the type of enumerator to IDisposable,
and enumerator is a non-nullable value type, the finally clause expands to:


finally 
{
   ((IDisposable)enumerator).Dispose();
} 






Thankfully, you don’t need to remember all these details. The foreach statement
handles all those nuances for you. The compiler will generate the correct code for
any of these constructs.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/lambda-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Lambda Expressions
description: Lambda Expressions
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b6a0539a-8ce5-4da7-adcf-44be345a2714





🔧 Lambda Expressions



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/488] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interactive-with-powershell.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using C# Interactive with Powershell | C# Guide
description: Explore the C# Interactive Shell from the Windows Command Line
keywords: .NET, .NET Core, C#, REPL,
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: 675d962b-f711-4f1a-9eb6-e04220344b5a





🔧 Using C# Interactive with Powershell



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/970] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interactive-with-bash.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using C# Interactive with MacOS or Linux terminal | C# Guide
description: Explore the C# Interactive Shell from the MacOS or Linux Command Line
keywords: .NET, .NET Core, C#, REPL, cross-platform
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: 6312a76a-a298-49a0-9116-b9d9e6b3c7c3





🔧 Using C# Interactive with MacOS or Linux terminal



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/971] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/distinguish-delegates-events.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Distinguising Delegates and Events
description: Distinguising Delegates and Events
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0fdc8629-2fdb-4a7c-a433-5b9d04eaf911





Distinguising Delegates and Events


Previous


Developers that are new to the .NET Core platform often struggle
when deciding between a design based on delegates and a design
based on events. This is a difficult concept, because the two
language features are very similar. Events are even built using
the language support for delegates.


They both offer a late binding scenario: they enable scenarios
where a component communicates by calling a method that is only
known at runtime. They both support single and multiple subscriber
methods. You may find this referred to as singlecast and multicast
support. They both support similar syntax for adding and removing
handlers. Finally, raising an event and calling a delegate use exactly the same method call syntax. They even both support the same Invoke()
method syntax for use with the ?. operator.


With all those similarities, it is easy to have trouble determining when
to use which.



Listening to Events is Optional


The most important consideration in determining which language feature
to use is whether or not there must be an attached subscriber. If your
code must call the code supplied by the subscriber, you should
use a design based on delegates. If your code can complete all its
work without calling any subscribers, you should use a
design based on events.


Consider the examples built during this section. The code you built
using List.Sort() must be given a comparer function in order to
properly sort the elements. LINQ queries must be supplied with delegates
in order to determine what elements to return. Both used a design built
with delegates.


Consider the Progress event. It reports progress on a task.
The task continues to proceed whether or not there are any listeners.
The FileSearcher is another example. It would still search and find
all the files that were sought, even with no event subscribers attached.
UX controls still work correctly, even when there are no subscribers
listening to the events. They both use designs based on events.





Return Values Require Delegates


Another consideration is the method prototype you would want for your
delegate method. As you’ve seen, the delegates used for events all
have a void return type. You’ve also seen that there are idioms to
create event handlers that do pass information back to event sources
through modifying properties of the event argument object. While these
idioms do work, they are not as natural as returning a value from a
method.


Notice that these two heuristics may often both be present: If your
delegate method returns a value, it will likely impact the algorithm
in some way.





Event Listeners Often Have Longer Lifetimes


This is a slightly weaker justification. However, you may find that
event-based designs are more natural when the event source will be
raising events over a long period of time. You can see examples of
this for UX controls on many systems. Once you subscribe to an event,
the event source may raise events throughout the lifetime of the program.
(You can unsubscribe from events when you no longer need them.)


Contrast that with many delegate-based designs, where a delegate is
used as an argument to a method, and the delegate is not used after that
method returns.





Evaluate Carefully


The above considerations are not hard and fast rules. Instead, they
represent guidance that can help you decide which choice is best for
your particular usage. Because they are similar, you can even
prototype both, and consider which would be more natural to work
with. They both handle late binding scenarios well. Use the one
that communicates your design the best.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/namespaces-and-assemblies.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Namespaces and Assemblies | C# Guide
description: Namespaces and Assemblies are the fundamental organizing features for C#
keywords: .NET, .NET Core, C#
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: fe436e2b-c6ea-490d-a221-0d822c6e178b





🔧 Namespaces and Assemblies



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/962] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/interactive-with-visualstudio.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Using C# Interactive with Visual Studio | C# Guide
description: Explore the C# Interactive Shell inside Visual Studio
keywords: .NET, .NET Core, C#
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: abed9e00-2ddc-468e-9cca-d033bd6a7e36





🔧 Using C# Interactive with Visual Studio



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/969] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/basic-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Basic Types | C# Guide
description: Learn about the core types (numerics, strings, and object) in all C# programs
keywords: .NET, .NET Core, C#
author:  dotnet-bot
manager: wpickett
ms.date: 06/25/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: csharp
ms.assetid: 95c686ba-ae4f-440e-8e94-0dbd6e04d11f





🔧 Basic Types



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/963] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/csharp-6.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: What’s New in C# 6 | C# Guide
description: What’s New in C# 6keywords: .NET, .NET Core
author:  tdykstra
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4d879f69-f889-4d3f-a781-75194e143400





What’s New in C# 6


For information about new features in C# 6, we suggest you head over to the Roslyn repository in GitHub [https://github.com/dotnet/roslyn/wiki/New-Language-Features-in-C%23-6].






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/access-control.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Access Control (F#)
description: Access Control (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 955b06fe-d1cd-431d-8db6-93e83b697453





Access Control


Access control refers to declaring which clients can use certain program elements, such as types, methods, and functions.



Basics of Access Control


In F#, the access control specifiers public, internal, and private can be applied to modules, types, methods, value definitions, functions, properties, and explicit fields.



		public indicates that the entity can be accessed by all callers.


		internal indicates that the entity can be accessed only from the same assembly.


		private indicates that the entity can be accessed only from the enclosing type or module.






[!NOTE]
The access specifier protected is not used in F#, although it is acceptable if you are using types authored in languages that do support protected access. Therefore, if you override a protected method, your method remains accessible only within the class and its descendents.



In general, the specifier is put in front of the name of the entity, except when a mutable or inline specifier is used, which appear after the access control specifier.


If no access specifier is used, the default is public, except for let bindings in a type, which are always private to the type.


Signatures in F# provide another mechanism for controlling access to F# program elements. Signatures are not required for access control. For more information, see Signatures.





Rules for Access Control


Access control is subject to the following rules:



		Inheritance declarations (that is, the use of inherit to specify a base class for a class), interface declarations (that is, specifying that a class implements an interface), and abstract members always have the same accessibility as the enclosing type. Therefore, an access control specifier cannot be used on these constructs.


		Individual cases in a discriminated union cannot have their own access control modifiers separate from the union type.


		Individual fields of a record type cannot have their own access control modifiers separate from the record type.








Example


The following code illustrates the use of access control specifiers. There are two files in the project, Module1.fs and Module2.fs. Each file is implicitly a module. Therefore, there are two modules, Module1 and Module2. A private type and an internal type are defined in Module1. The private type cannot be accessed from Module2, but the internal type can.


[!code-fsharpMain]


The following code tests the accessibility of the types created in Module1.fs.


[!code-fsharpMain]





See Also


F# Language Reference


Signatures








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/primitive-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Primitive Types (F#)
description: Primitive Types (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 2f23d98b-551b-4fd2-9f4f-0fd7254288ed





Primitive Types


This topic lists the fundamental primitive types that are used in the F# language. It also provides the corresponding .NET types and the minimum and maximum values for each type.



Summary of Primitive Types


The following table summarizes the properties of the primitive F# types.


|Type|.NET type|Description|
|—-|———|———–|
|bool|System.Boolean|Possible values are true and false.|
|byte|System.Byte|Values from 0 to 255.|
|sbyte|System.SByte|Values from -128 to 127.|
|int16|System.Int16|Values from -32768 to 32767.|
|uint16|System.UInt16|Values from 0 to 65535.|
|int|System.Int32|Values from -2,147,483,648 to 2,147,483,647.|
|uint32|System.UInt32|Values from 0 to 4,294,967,295.|
|int64|System.Int64|Values from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.|
|uint64|System.UInt64|Values from 0 to 18,446,744,073,709,551,615.|
|nativeint|System.IntPtr|A native pointer as a signed integer.|
|unativeint|System.UIntPtr|A native pointer as an unsigned integer.|
|char|System.Char|Unicode character values.|
|string|System.String|Unicode text.|
|decimal|System.Decimal|A floating point data type that has at least 28 significant digits.|
|unit|not applicable|Indicates the absence of an actual value. The type has only one formal value, which is denoted (). The unit value, (), is often used as a placeholder where a value is needed but no real value is available or makes sense.|
|void|System.Void|Indicates no type or value.|
|float32, single|System.Single|A 32-bit floating point type.|
|float, double|System.Double|A 64-bit floating point type.|



[!NOTE]
You can perform computations with integers too big for the 64-bit integer type by using the bigint [https://msdn.microsoft.com/library/dc8be18d-4042-46c4-b136-2f21a84f6efa] type. bigint is not considered a primitive type; it is an abbreviation for System.Numerics.BigInteger.






See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/source-line-file-path-identifiers.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Source Line, File, and Path Identifiers (F#)
description: Source Line, File, and Path Identifiers (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 4cfe7439-275c-4d08-980b-784e240bbf29





Source Line, File, and Path Identifiers


The identifiers __LINE__, __SOURCE_DIRECTORY__ and __SOURCE_FILE__ are built-in values that enable you to access the source line number, directory and file name in your code.



Syntax


__LINE__
__SOURCE_DIRECTORY__
__SOURCE_FILE__









Remarks


Each of these values has type string.


The following table summarizes the source line, file, and path identifiers that are available in F#. These identifiers are not preprocessor macros; they are built-in values that are recognized by the compiler.


|Predefined identifier|Description|
|———————|———–|
|__LINE__|Evaluates to the current line number, considering #line directives.|
|__SOURCE_DIRECTORY__|Evaluates to the current full path of the source directory, considering #line directives.|
|__SOURCE_FILE__|Evaluates to the current source file name and its path, considering #line directives.|
For more information about the #line directive, see Compiler Directives.





Example


The following code example demonstrates the use of these values.


[!code-fsharpMain]


Output:


Line: 4
Source Directory: C:\Users\username\Documents\Visual Studio 2010\Projects\SourceInfo\SourceInfo
Source File: C:\Users\username\Documents\Visual Studio 2010\Projects\SourceInfo\SourceInfo\Program.fs









See Also


Compiler Directives


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/inheritance.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Inheritance (F#)
description: Inheritance (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: b38ab2f6-7ba7-4839-8eff-e6bd6cfd2b2f





Inheritance


Inheritance is used to model the “is-a” relationship, or subtyping, in object-oriented programming.



Specifying Inheritance Relationships


You specify inheritance relationships by using the inherit keyword in a class declaration. The basic syntactical form is shown in the following example.


type MyDerived(...) =
    inherit MyBase(...)






A class can have at most one direct base class. If you do not specify a base class by using the inherit keyword, the class implicitly inherits from System.Object.





Inherited Members


If a class inherits from another class, the methods and members of the base class are available to users of the derived class as if they were direct members of the derived class.


Any let bindings and constructor parameters are private to a class and, therefore, cannot be accessed from derived classes.


The keyword base is available in derived classes and refers to the base class instance. It is used like the self-identifier.





Virtual Methods and Overrides


Virtual methods (and properties) work somewhat differently in F# as compared to other .NET languages. To declare a new virtual member, you use the abstract keyword. You do this regardless of whether you provide a default implementation for that method. Thus a complete definition of a virtual method in a base class follows this pattern:


abstract member [method-name] : [type]

default [self-identifier].[method-name] [argument-list] = [method-body]






And in a derived class, an override of this virtual method follows this pattern:


override [self-identifier].[method-name] [argument-list] = [method-body]






If you omit the default implementation in the base class, the base class becomes an abstract class.


The following code example illustrates the declaration of a new virtual method function1 in a base class and how to override it in a derived class.


[!code-fsharpMain]





Constructors and Inheritance


The constructor for the base class must be called in the derived class. The arguments for the base class constructor appear in the argument list in the inherit clause. The values that are used must be determined from the arguments supplied to the derived class constructor.


The following code shows a base class and a derived class, where the derived class calls the base class constructor in the inherit clause:


[!code-fsharpMain]


In the case of multiple constructors, the following code can be used. The first line of the derived class constructors is the inherit clause, and the fields appear as explicit fields that are declared with the val keyword. For more information, see Explicit Fields: The val Keyword.


type BaseClass =
    val string1 : string
    new (str) = { string1 = str }
    new () = { string1 = "" }

type DerivedClass =
    inherit BaseClass

    val string2 : string
    new (str1, str2) = { inherit BaseClass(str1); string2 = str2 }
    new (str2) = { inherit BaseClass(); string2 = str2 }

let obj1 = DerivedClass("A", "B")
let obj2 = DerivedClass("A")









Alternatives to Inheritance


In cases where a minor modification of a type is required, consider using an object expression as an alternative to inheritance. The following example illustrates the use of an object expression as an alternative to creating a new derived type:


[!code-fsharpMain]


For more information about object expressions, see Object Expressions.


When you are creating object hierarchies, consider using a discriminated union instead of inheritance. Discriminated unions can also model varied behavior of different objects that share a common overall type. A single discriminated union can often eliminate the need for a number of derived classes that are minor variations of each other. For information about discriminated unions, see Discriminated Unions.





See Also


Object Expressions


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/namespaces.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Namespaces (F#)
description: Namespaces (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: ea42156f-e1b9-4535-9383-b45f46f3f7ca





Namespaces


A namespace lets you organize code into areas of related functionality by enabling you to attach a name to a grouping of program elements.



Syntax


namespace [parent-namespaces.]identifier









Remarks


If you want to put code in a namespace, the first declaration in the file must declare the namespace. The contents of the entire file then become part of the namespace.


Namespaces cannot directly contain values and functions. Instead, values and functions must be included in modules, and modules are included in namespaces. Namespaces can contain types, modules.


Namespaces can be declared explicitly with the namespace keyword, or implicitly when declaring a module. To declare a namespace explicitly, use the namespace keyword followed by the namespace name. The following example shows a code file that declares a namespace Widgets with a type and a module included in that namespace.


[!code-fsharpMain]


If the entire contents of the file are in one module, you can also declare namespaces implicitly by using the module keyword and providing the new namespace name in the fully qualified module name. The following example shows a code file that declares a namespace Widgets and a module WidgetsModule, which contains a function.


[!code-fsharpMain]


The following code is equivalent to the preceding code, but the module is a local module declaration. In that case, the namespace must appear on its own line.


[!code-fsharpMain]


If more than one module is required in the same file in one or more namespaces, you must use local module declarations. When you use local module declarations, you cannot use the qualified namespace in the module declarations. The following code shows a file that has a namespace declaration and two local module declarations. In this case, the modules are contained directly in the namespace; there is no implicitly created module that has the same name as the file. Any other code in the file, such as a do binding, is in the namespace but not in the inner modules, so you need to qualify the module member widgetFunction by using the module name.


[!code-fsharpMain]


The output of this example is as follows.


Module1 10 20
Module2 5 6






For more information, see Modules.





Nested Namespaces


When you create a nested namespace, you must fully qualify it. Otherwise, you create a new top-level namespace. Indentation is ignored in namespace declarations.


The following example shows how to declare a nested namespace.


[!code-fsharpMain]





Namespaces in Files and Assemblies


Namespaces can span multiple files in a single project or compilation. The term namespace fragment describes the part of a namespace that is included in one file. Namespaces can also span multiple assemblies. For example, the System namespace includes the whole .NET Framework, which spans many assemblies and contains many nested namespaces.





Global Namespace


You use the predefined namespace global to put names in the .NET top-level namespace.


[!code-fsharpMain]


You can also use global to reference the top-level .NET namespace, for example, to resolve name conflicts with other namespaces.


[!code-fsharpMain]





See Also


F# Language Reference


Modules








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/asynchronous-workflows.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Asynchronous Workflows (F#)
description: Asynchronous Workflows (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: ee2bb9bf-e04a-4fbe-bf58-46d07229e981





Asynchronous Workflows



[!NOTE]
The API reference link will take you to MSDN.  The docs.microsoft.com API reference is not complete.



This topic describes support in F# for performing computations asynchronously, that is, without blocking execution of other work. For example, asynchronous computations can be used to write applications that have UIs that remain responsive to users as the application performs other work.



Syntax


async { expression }









Remarks


In the previous syntax, the computation represented by expression is set up to run asynchronously, that is, without blocking the current computation thread when asynchronous sleep operations, I/O, and other asynchronous operations are performed. Asynchronous computations are often started on a background thread while execution continues on the current thread. The type of the expression is Async<'T>, where 'T is the type returned by the expression when the return keyword is used. The code in such an expression is referred to as an asynchronous block, or async block.


There are a variety of ways of programming asynchronously, and the Async [https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7] class provides methods that support several scenarios. The general approach is to create Async objects that represent the computation or computations that you want to run asynchronously, and then start these computations by using one of the triggering functions. The various triggering functions provide different ways of running asynchronous computations, and which one you use depends on whether you want to use the current thread, a background thread, or a .NET Framework task object, and whether there are continuation functions that should run when the computation finishes. For example, to start an asynchronous computation on the current thread, you can use Async.StartImmediate [https://msdn.microsoft.com/library/2f71d1cc-187f-48cf-ac66-e7fda41c46e3]. When you start an asynchronous computation from the UI thread, you do not block the main event loop that processes user actions such as keystrokes and mouse activity, so your application remains responsive.





Asynchronous Binding by Using let!


In an asynchronous workflow, some expressions and operations are synchronous, and some are longer computations that are designed to return a result asynchronously. When you call a method asynchronously, instead of an ordinary let binding, you use let!. The effect of let! is to enable execution to continue on other computations or threads as the computation is being performed. After the right side of the let! binding returns, the rest of the asynchronous workflow resumes execution.


The following code shows the difference between let and let!. The line of code that uses let just creates an asynchronous computation as an object that you can run later by using, for example, Async.StartImmediate or Async.RunSynchronously [https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b]. The line of code that uses let! starts the computation, and then the thread is suspended until the result is available, at which point execution continues.


// let just stores the result as an asynchronous operation.
let (result1 : Async<byte[]>) = stream.AsyncRead(bufferSize)
// let! completes the asynchronous operation and returns the data.
let! (result2 : byte[])  = stream.AsyncRead(bufferSize)






In addition to let!, you can use use! to perform asynchronous bindings. The difference between let! and use! is the same as the difference between let and use. For use!, the object is disposed of at the close of the current scope. Note that in the current release of the F# language, use! does not allow a value to be initialized to null, even though use does.





Asynchronous Primitives


A method that performs a single asynchronous task and returns the result is called an asynchronous primitive, and these are designed specifically for use with let!. Several asynchronous primitives are defined in the F# core library. Two such methods for Web applications are defined in the module Microsoft.FSharp.Control.WebExtensions [https://msdn.microsoft.com/library/95ef17bc-ee3f-44ba-8a11-c90fcf4cf003]: WebRequest.AsyncGetResponse [https://msdn.microsoft.com/library/09a60c31-e6e2-4b5c-ad23-92a86e50060c] and WebClient.AsyncDownloadString [https://msdn.microsoft.com/library/8a85a9b7-f712-4cac-a0ce-0a797f8ea32a]. Both primitives download data from a Web page, given a URL. AsyncGetResponse produces a System.Net.WebResponse object, and AsyncDownloadString produces a string that represents the HTML for a Web page.


Several primitives for asynchronous I/O operations are included in the Microsoft.FSharp.Control.CommonExtensions [https://msdn.microsoft.com/library/2edb67cb-6814-4a30-849f-b6dbdd042396] module. These extension methods of the System.IO.Stream class are Stream.AsyncRead [https://msdn.microsoft.com/library/85698aaa-bdda-47e6-abed-3730f59fda5e] and Stream.AsyncWrite [https://msdn.microsoft.com/library/1b0a2751-e42a-47e1-bd27-020224adc618].


Additional asynchronous primitives are available in the F# PowerPack [https://fsharppowerpack.codeplex.com/]. You can also write your own asynchronous primitives by defining a function whose complete body is enclosed in an async block.


To use asynchronous methods in the .NET Framework that are designed for other asynchronous models with the F# asynchronous programming model, you create a function that returns an F# Async object. The F# library has functions that make this easy to do.


One example of using asynchronous workflows is included here; there are many others in the documentation for the methods of the Async class [https://msdn.microsoft.com/library/03eb4d12-a01a-4565-a077-5e83f17cf6f7].


This example shows how to use asynchronous workflows to perform computations in parallel.


In the following code example, a function fetchAsync gets the HTML text returned from a Web request. The fetchAsync function contains an asynchronous block of code. When a binding is made to the result of an asynchronous primitive, in this case AsyncDownloadString [https://msdn.microsoft.com/library/8a85a9b7-f712-4cac-a0ce-0a797f8ea32a], let! is used instead of let.


You use the function Async.RunSynchronously [https://msdn.microsoft.com/library/0a6663a9-50f2-4d38-8bf3-cefd1a51fd6b] to execute an asynchronous operation and wait for its result. As an example, you can execute multiple asynchronous operations in parallel by using the Async.Parallel [https://msdn.microsoft.com/library/aa9b0355-2d55-4858-b943-cbe428de9dc4] function together with the Async.RunSynchronously function. The Async.Parallel function takes a list of the Async objects, sets up the code for each Async task object to run in parallel, and returns an Async object that represents the parallel computation. Just as for a single operation, you call Async.RunSynchronously to start the execution.


The runAll function launches three asynchronous workflows in parallel and waits until they have all completed.


[!code-fsharpMain]





See Also


F# Language Reference


Computation Expressions


Control.Async Class [https://msdn.microsoft.com/visualfsharpdocs/conceptual/control.async-class-%5bfsharp%5d]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/enumerations.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Enumerations (F#)
description: Enumerations (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 9272bf5a-9a9f-4314-9e34-a3248e5244f5





Enumerations


Enumerations, also known as enums, , are integral types where labels are assigned to a subset of the values. You can use them in place of literals to make code more readable and maintainable.



Syntax


type enum-name =
| value1 = integer-literal1
| value2 = integer-literal2
...









Remarks


An enumeration looks much like a discriminated union that has simple values, except that the values can be specified. The values are typically integers that start at 0 or 1, or integers that represent bit positions. If an enumeration is intended to represent bit positions, you should also use the System.FlagsAttribute attribute.


The underlying type of the enumeration is determined from the literal that is used, so that, for example, you can use literals with a suffix, such as 1u, 2u, and so on, for an unsigned integer (uint32) type.


When you refer to the named values, you must use the name of the enumeration type itself as a qualifier, that is, enum-name.value1, not just value1. This behavior differs from that of discriminated unions. This is because enumerations always have the RequireQualifiedAccess [https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15] attribute.


The following code shows the declaration and use of an enumeration.


[!code-fsharpMain]


You can easily convert enumerations to the underlying type by using the appropriate operator, as shown in the following code.


[!code-fsharpMain]


Enumerated types can have one of the following underlying types: sbyte, byte, int16, uint16, int32, uint32, int64, uint16, uint64, and char. Enumeration types are represented in the .NET Framework as types that are inherited from System.Enum, which in turn is inherited from System.ValueType. Thus, they are value types that are located on the stack or inline in the containing object, and any value of the underlying type is a valid value of the enumeration. This is significant when pattern matching on enumeration values, because you have to provide a pattern that catches the unnamed values.


The enum function in the F# library can be used to generate an enumeration value, even a value other than one of the predefined, named values. You use the enum function as follows.


[!code-fsharpMain]


The default enum function works with type int32. Therefore, it cannot be used with enumeration types that have other underlying types. Instead, use the following.


[!code-fsharpMain]





See Also


F# Language Reference


Casting and Conversions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/records.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Records (F#)
description: Records (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3a3701ea-4308-4fa1-9b5c-b955c470f17a





Records



[!NOTE]
The following article does not cover using the struct attribute for Records yet, which is an F# 4.1 feature.  It will be documented here.



Records represent simple aggregates of named values, optionally with members.



Syntax


[ attributes ]
type [accessibility-modifier] typename = {
    [ mutable ] label1 : type1;
    [ mutable ] label2 : type2;
    ...
}
    [ member-list ]









Remarks


In the previous syntax, typename is the name of the record type, label1 and label2 are names of values, referred to as labels, and type1 and type2 are the types of these values. member-list is the optional list of members for the type.


Following are some examples.


[!code-fsharpMain]


When each label is on a separate line, the semicolon is optional.


You can set values in expressions known as record expressions. The compiler infers the type from the labels used (if the labels are sufficiently distinct from those of other record types). Braces ({ }) enclose the record expression. The following code shows a record expression that initializes a record with three float elements with labels x, y and z.


[!code-fsharpMain]


Do not use the shortened form if there could be another type that also has the same labels.


[!code-fsharpMain]


The labels of the most recently declared type take precedence over those of the previously declared type, so in the preceding example, mypoint3D is inferred to be Point3D. You can explicitly specify the record type, as in the following code.


[!code-fsharpMain]


Methods can be defined for record types just as for class types.





Creating Records by Using Record Expressions


You can initialize records by using the labels that are defined in the record. An expression that does this is referred to as a record expression. Use braces to enclose the record expression and use the semicolon as a delimiter.


The following example shows how to create a record.


[!code-fsharpMain]


The semicolons after the last field in the record expression and in the type definition are optional, regardless of whether the fields are all in one line.


When you create a record, you must supply values for each field. You cannot refer to the values of other fields in the initialization expression for any field.


In the following code, the type of myRecord2 is inferred from the names of the fields. Optionally, you can specify the type name explicitly.


[!code-fsharpMain]


Another form of record construction can be useful when you have to copy an existing record, and possibly change some of the field values. The following line of code illustrates this.


[!code-fsharpMain]


This form of the record expression is called the copy and update record expression.


Records are immutable by default; however, you can easily create modified records by using a copy and update expression. You can also explicitly specify a mutable field.


[!code-fsharpMain]


Don’t use the DefaultValue attribute with record fields. A better approach is to define default instances of records with fields that are initialized to default values and then use a copy and update record expression to set any fields that differ from the default values.


// Rather than use [<DefaultValue>], define a default record.
type MyRecord =
{
    field1 : int
    field2 : int
}

let defaultRecord1 = { field1 = 0; field2 = 0 }
let defaultRecord2 = { field1 = 1; field2 = 25 }

// Use the with keyword to populate only a few chosen fields
// and leave the rest with default values.
let rr3 = { defaultRecord1 with field2 = 42 }









Pattern Matching with Records


Records can be used with pattern matching. You can specify some fields explicitly and provide variables for other fields that will be assigned when a match occurs. The following code example illustrates this.


[!code-fsharpMain]


The output of this code is as follows.


Point is at the origin.
Point is on the x-axis. Value is 100.000000.
Point is at (10.000000, 0.000000, -1.000000).









Differences Between Records and Classes


Record fields differ from classes in that they are automatically exposed as properties, and they are used in the creation and copying of records. Record construction also differs from class construction. In a record type, you cannot define a constructor. Instead, the construction syntax described in this topic applies. Classes have no direct relationship between constructor parameters, fields, and properties.


Like union and structure types, records have structural equality semantics. Classes have reference equality semantics. The following code example demonstrates this.


[!code-fsharpMain]


If you write the same code with classes, the two class objects would be unequal because the two values would represent two objects on the heap and only the addresses would be compared (unless the class type overrides the System.Object.Equals method).





See Also


F# Types


Classes


F# Language Reference


Pattern Matching








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/discriminated-unions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Discriminated Unions (F#)
description: Discriminated Unions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 16e2a011-c785-48c8-859f-79df7f3a0e29





Discriminated Unions



[!NOTE]
The following article does not cover using the struct attribute for Records yet, which is an F# 4.1 feature.  It will be documented here.



Discriminated unions provide support for values that can be one of a number of named cases, possibly each with different values and types. Discriminated unions are useful for heterogeneous data; data that can have special cases, including valid and error cases; data that varies in type from one instance to another; and as an alternative for small object hierarchies. In addition, recursive discriminated unions are used to represent tree data structures.



Syntax


type type-name =
    | case-identifier1 [of [ fieldname1 : ] type1 [ * [ fieldname2 : ] type2 ...]
    | case-identifier2 [of [fieldname3 : ]type3 [ * [ fieldname4 : ]type4 ...]
...









Remarks


Discriminated unions are similar to union types in other languages, but there are differences. As with a union type in C++ or a variant type in Visual Basic, the data stored in the value is not fixed; it can be one of several distinct options. Unlike unions in these other languages, however, each of the possible options is given a case identifier. The case identifiers are names for the various possible types of values that objects of this type could be; the values are optional. If values are not present, the case is equivalent to an enumeration case. If values are present, each value can either be a single value of a specified type, or a tuple that aggregates multiple fields of the same or different types. As of F# 3.1, you can give an individual field a name, but the name is optional, even if other fields in the same case are named.


For example, consider the following declaration of a Shape type.


type Shape =
    | Rectangle of width : float * length : float
    | Circle of radius : float
    | Prism of width : float * float * height : float






The preceding code declares a discriminated union Shape, which can have values of any of three cases: Rectangle, Circle, and Prism. Each case has a different set of fields. The Rectangle case has two named fields, both of type float, that have the names width and length. The Circle case has just one named field, radius. The Prism case has three fields, two of which are named Unnamed fields are referred to as anonymous fields.


You construct objects by providing values for the named and anonymous fields according to the following examples.


let rect = Rectangle(length = 1.3, width = 10.0)
let circ = Circle (1.0)
let prism = Prism(5., 2.0, height = 3.0)






This code shows that you can either use the named fields in the initialization, or you can rely on the ordering of the fields in the declaration and just provide the values for each field in turn. The constructor call for rect in the previous code uses the named fields, but the constructor call for circ uses the ordering. You can mix the ordered fields and named fields, as in the construction of prism.


The option type is a simple discriminated union in the F# core library. The option type is declared as follows.


// The option type is a discriminated union.
type Option<'a> =
    | Some of 'a
    | None






The previous code specifies that the type Option is a discriminated union that has two cases, Some and None. The Some case has an associated value that consists of one anonymous field whose type is represented by the type parameter 'a. The None case has no associated value. Thus the option type specifies a generic type that either has a value of some type or no value. The type Option also has a lowercase type alias, option, that is more commonly used.


The case identifiers can be used as constructors for the discriminated union type. For example, the following code is used to create values of the option type.


[!code-fsharpMain]


The case identifiers are also used in pattern matching expressions. In a pattern matching expression, identifiers are provided for the values associated with the individual cases. For example, in the following code, x is the identifier given the value that is associated with the Some case of the option type.


[!code-fsharpMain]


In pattern matching expressions, you can use named fields to specify discriminated union matches. For the Shape type that was declared previously, you can use the named fields as the following code shows to extract the values of the fields.


let getShapeHeight shape =
    match shape with
    | Rectangle(height = h) -> h
    | Circle(radius = r) -> 2. * r
    | Prism(height = h) -> h






Normally, the case identifiers can be used without qualifying them with the name of the union. If you want the name to always be qualified with the name of the union, you can apply the RequireQualifiedAccess [https://msdn.microsoft.com/library/8b9b6ade-0471-4413-ac5d-638cd0de5f15] attribute to the union type definition.





Using Discriminated Unions Instead of Object Hierarchies


You can often use a discriminated union as a simpler alternative to a small object hierarchy. For example, the following discriminated union could be used instead of a Shape base class that has derived types for circle, square, and so on.


[!code-fsharpMain]


Instead of a virtual method to compute an area or perimeter, as you would use in an object-oriented implementation, you can use pattern matching to branch to appropriate formulas to compute these quantities. In the following example, different formulas are used to compute the area, depending on the shape.


[!code-fsharpMain]


The output is as follows:


Area of circle that has radius 15.000000: 706.858347
Area of square that has side 10.000000: 100.000000
Area of rectangle that has height 5.000000 and width 10.000000 is 50.000000









Using Discriminated Unions for Tree Data Structures


Discriminated unions can be recursive, meaning that the union itself can be included in the type of one or more cases. Recursive discriminated unions can be used to create tree structures, which are used to model expressions in programming languages. In the following code, a recursive discriminated union is used to create a binary tree data structure. The union consists of two cases, Node, which is a node with an integer value and left and right subtrees, and Tip, which terminates the tree.


[!code-fsharpMain]


In the previous code, resultSumTree has the value 10. The following illustration shows the tree structure for myTree.


[image: Tree structure for myTree]


Discriminated unions work well if the nodes in the tree are heterogeneous. In the following code, the type Expression represents the abstract syntax tree of an expression in a simple programming language that supports addition and multiplication of numbers and variables. Some of the union cases are not recursive and represent either numbers (Number) or variables (Variable). Other cases are recursive, and represent operations (Add and Multiply), where the operands are also expressions. The Evaluate function uses a match expression to recursively process the syntax tree.


[!code-fsharpMain]


When this code is executed, the value of result is 5.





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/type-abbreviations.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Type Abbreviations (F#)
description: Type Abbreviations (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 560af74f-935f-415c-af56-604cddb9da6b





Type Abbreviations


A type abbreviation is an alias or alternate name for a type.



Syntax


type type-abbreviation = type-name









Remarks


You can use type abbreviations to give a type a more meaningful name, in order to make code easier to read. You can also use them to create an easy to use name for a type that is otherwise cumbersome to write out. Additionally, you can use type abbreviations to make it easier to change an underlying type without changing all the code that uses the type. The following is a simple type abbreviation.


[!code-fsharpMain]


Type abbreviations can include generic parameters, as in the following code.


[!code-fsharpMain]


In the previous code, Transform is a type abbreviation that represents a function that takes a single argument of any type and that returns a single value of that same type.


Type abbreviations are not preserved in the .NET Framework MSIL code. Therefore, when you use an F# assembly from another .NET Framework language, you must use the underlying type name for a type abbreviation.


Type abbreviations can also be used on units of measure. For more information, see Units of Measure.





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-explained.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Expression Trees Explained
description: Expression Trees Explained
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bbcdd339-86eb-4ae5-9911-4c214a39a92d





Expression Trees Explained


Previous – Overview


An Expression Tree is a data structure that defines code. They are based on the same structures
that a compiler uses to analyze code and generate the compiled output. As you read through this
tutorial, you will notice quite a bit of similarity between Expression Trees and the types used
in the Roslyn APIs to build Analyzers and CodeFixes [https://github.com/dotnet/roslyn-analyzers].
(Analyzers and CodeFixes are NuGet packages that perform static analysis on code and can suggest
potential fixes for a developer.)
The concepts are similar, and the end result
is a data structure that allows examination of the source ode in a meaningful way. However, Expression
Trees are based on a totally different set of classes and APIs than the Roslyn APIs.


Let’s look at a simple example.
Here’s a line of code:


var sum = 1 + 2;






If you were to analyze this as an expression tree, the tree contains several nodes.
The outermost node is a variable declaration statement with assignment (var sum = 1 + 2;)
That outermost node contains several child nodes: a variable declaration, an assignment operator, and an
expression representing the right hand side of the equals sign. That expression is further subdivided into
expressions that represent the addition operation, and left and right operands of the addition.


Let’s drill down a bit more into the expressions that make up the right side of the equals sign.
The expression is 1 + 2. That’s a binary expression. More specifically, it’s a binary addition
expression. A binary addition expression has two children, representing the left and right nodes
of the addition expression. Here, both nodes are constant expressions: The left operand is the
value 1, and the right operand is the value 2.


Visually, the entire statement is a tree: You could start at the root node, and travel to
each node in the tree to see the code that makes up the statement:



		Variable declaration statement with assignment (var sum = 1 + 2;)
		Implicit variable type declaration (var sum)
		Implicit var keyword (var)


		Variable name declaration (sum)








		Assignment operator (=)


		Binary addition expression (1 + 2)
		Left operand (1)


		Addition operator (+)


		Right operand (2)

















This may look complicated, but it is very powerful. Following the same process, you can decompose
much more complicated expressions. Consider this expression:


var finalAnswer = this.SecretSauceFuncion(
    currentState.createInterimResult(), currentState.createSecondValue(1, 2),
    decisionServer.considerFinalOptions("hello")) +
    MoreSecretSauce('A', DateTime.Now, true);






The expression above is also a variable declaration with an assignment.
In this instance, the right hand side of the assignment is a much more complicated tree.
I’m not going to decompose this expression, but consider what the different nodes might
be. There are method calls using the current object as a receiver, one that has an explicit this
receiver, one that does not. There are method calls using other receiver objects,
there are constant arguments of different types. And finally, there is a binary
addition operator. Depending on the return type of SecretSauceFunction() or
MoreSecretSauce(), that binary addition operator may be a method call to an
overridden addition operator, resolving to a static method call to the binary
addition operator defined for a class.


Despite this perceived complexity, the expression above creates a tree structure
that can be navigated as easily as the first sample. You can keep traversing
child nodes to find leaf nodes in the expression. Parent nodes will have
references to their children, and each node has a property that describes
what kind of node it is.


The structure of an expression tree is very consistent. Once you’ve learned
the basics, you can understand even the most complex code when it is represented
as an expression tree. The elegance in
the data structure explains how the C# compiler can analyze the most complex
C# programs and create proper output from that complicated source code.


Once you become familiar with the structure of expression trees, you will
find that knowledge you’ve gained quickly enables you to work with many
more and more advanced scenarios. There is incredible power to expression
trees.


In addition to translating algorithms to execute in other environments,
expression trees can be used to make it easier to write algorithms that inspect
code before executing it. You can write a method whose arguments are expressions
and then examine those expressions before executing the code. The Expression Tree
is a full representation of the code: you can see values of any sub-expression.
You can see method and property names. You can see the value of any constant expressions.
You can also convert an expression tree into an executable delegate, and execute the
code.


The APIs for Expression Trees enable you to create trees that represent almost any
valid code construct. However, to keep things as simple as possible, some C# idioms
cannot be created in an expression tree. One example is asynchronous expressions (using
the async and await keywords). If your needs require asynchronous algorithms, you would need
to manipulate the Task objects directly, rather than rely on the compiler support. Another
is in creating loops. Typically, you create these by using for, foreach, while or do
loops. As you’ll see later in this series, the APIs for
expression trees support a single loop expression, with break and continue expressions that
control repeating the loop.


The one thing you can’t do is modify an expression tree.  Expression Trees are immutable
data structures. If you want to mutate (change) an expression tree, you must create a new tree
that is a copy of the original, but with your desired changes.


Next – Framework Types Supporting Expression Trees






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/indexers.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Indexers
description: Indexers
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0e9496da-e766-45a9-b92b-91820d4a350e





Indexers


Indexers are similar to properties. In many ways indexers build
on the same language features as properties. Indexers
enable indexed properties: properties referenced using one or more
arguments. Those arguments provide an index into some collection
of values.



Indexer Syntax


You access an indexer through a variable name and square brackets . You place the indexer
arguments inside the brackets:


var item = someObject["key"];
someObject["AnotherKey"] = item;






You declare indexers using the this keyword as the property name, and
declaring the arguments within square brackets. This declaration would match
the usage shown in the previous paragraph:


public int this[string key]
{
    get { return storage.Find(key); }
    set { storage.SetAt(key, value); }
}






From this initial example, you can see the relationship between the syntax
for properties and for indexers. This analogy carries through most of the
syntax rules for indexers. Indexers can have any valid access modifiers
(public, protected internal, protected, internal, or private). They may
be sealed, virtual, or abstract. As with properties, you can specify
different access modifiers for the get and set accesssors in an indexer.
You may also specify read-only indexers (by omitting the set accessor),
or write-only indexers (by omitting the get accessor).


You can apply almost everything you learn from working with properties
to indexers. The only exception to that rule is
auto implemented properties. The compiler cannot always
generate the correct storage for an indexer.


The presence of arguments to reference an item in a set of items distinguishes
indexers from properties. You may define multiple indexers on a type, as long
as the argument lists for each indexer is unique. Let’s explore different
scenarios where you might use one or more indexers in a class definition.





Scenarios


You would define indexers in your type when its API models some
collection where you define the arguments to that collection. Your indexers
may or may not map directly to the collection types that are part of the .NET
core framework. Your type
may have other responsibilities in addition to modeling a collection.
Indexers enable you to provide the API that matches your type’s abstraction
without exposing the inner details of how the values for that abstraction
are stored or computed.


Let’s walk through some of the common scenarios for using indexers.
The code for all the samples is available at the core-docs GitHub
repository [https://github.com/dotnet/core-docs]. Or, you can
access the
sample folder [https://github.com/dotnet/core-docs/tree/master/samples/csharp/indexers]
directly.



Arrays and Vectors


One of the most common scenarios for creating indexers is when your
type models an array, or a vector. You can create an indexer to model
an ordered list of data.


The advantage of creating your own indexer is that you can define
the storage for that collection to suit your needs. Imagine a
scenario where your type models historical data that is too large
to load into memory at once. You need to load and unload sections
of the collection based on usage. The example following models
this behavior. It reports on how many data points exist. It creates
pages to hold sections of the data on demand. It removes pages
from memory to make room for pages needed by more recent requests.


public class DataSamples
{
    private class Page
    {
        private readonly List<Measurements> pageData = new List<Measurements>();
        private readonly int startingIndex;
        private readonly int length;
        private bool dirty;
        private DateTime lastAccess;

        public Page(int startingIndex, int length)
        {
            this.startingIndex = startingIndex;
            this.length = length;
            lastAccess = DateTime.Now;

            // This stays as random stuff:
            var generator = new Random();
            for(int i=0; i < length; i++)
            {
                var m = new Measurements
                {
                    HiTemp = generator.Next(50, 95),
                    LoTemp = generator.Next(12, 49),
                    AirPressure = 28.0 + generator.NextDouble() * 4
                };
                pageData.Add(m);
            }
        }
        public bool HasItem(int index) =>
            ((index >= startingIndex) &&
            (index < startingIndex + length));

        public Measurements this[int index]
        {
            get
            {
                lastAccess = DateTime.Now;
                return pageData[index - startingIndex];
            }
            set
            {
                pageData[index - startingIndex] = value;
                dirty = true;
                lastAccess = DateTime.Now;
            }
        }

        public bool Dirty => dirty;
        public DateTime LastAccess => lastAccess;
    }

    private readonly int totalSize;
    private readonly List<Page> pagesInMemory = new List<Page>();

    public DataSamples(int totalSize)
    {
        this.totalSize = totalSize;
    }

    public Measurements this[int index]
    {
        get
        {
            if (index < 0)
                throw new IndexOutOfRangeException("Cannot index less than 0");
            if (index >= totalSize)
                throw new IndexOutOfRangeException("Cannot index past the end of storage");

            var page = updateCachedPagesForAccess(index);
            return page[index];
        }
        set
        {
            if (index < 0)
                throw new IndexOutOfRangeException("Cannot index less than 0");
            if (index >= totalSize)
                throw new IndexOutOfRangeException("Cannot index past the end of storage");
            var page = updateCachedPagesForAccess(index);

            page[index] = value;
        }
    }

    private Page updateCachedPagesForAccess(int index)
    {
        foreach (var p in pagesInMemory)
        {
            if (p.HasItem(index))
            {
                return p;
            }
        }
        var startingIndex = (index / 1000) * 1000;
        var newPage = new Page(startingIndex, 1000);
        addPageToCache(newPage);
        return newPage;
    }

    private void addPageToCache(Page p)
    {
        if (pagesInMemory.Count > 4)
        {
            // remove oldest non-dirty page:
            var oldest = pagesInMemory
                .Where(page => !page.Dirty)
                .OrderBy(page => page.LastAccess)
                .FirstOrDefault();
            // Note that this may keep more than 5 pages in memory
            // if too much is dirty
            if (oldest != null)
                pagesInMemory.Remove(oldest);
        }
        pagesInMemory.Add(p);
    }
}






You can follow this design idiom to model any sort of collection where
there are good reasons not to load the entire set of data into an in-
memory collection. Notice that the Page class is a private nested
class that is not part of the public interface. Those details are hidden
from any users of this class.





Dictionaries


Another common scenario is when you need to model a dictionary
or a map. This scenario is when your type stores values based on key,
typically text keys. This example creates a dictionary that maps command
line arguments to lamdba expressions that manage
those options. The following example shows two classes: an ArgsActions
class that maps a command line option to an Action delegate, and an
ArgsProcessor that uses the ArgsActions to execute each Action when
it encounters that option.


public class ArgsProcessor
{
    private readonly ArgsActions actions;

    public ArgsProcessor(ArgsActions actions)
    {
        this.actions = actions;
    }

    public void Process(string[] args)
    {
        foreach(var arg in args)
        {
            actions[arg]?.Invoke();
        }
    }

}
public class ArgsActions
{
    readonly private Dictionary<string, Action> argsActions = new Dictionary<string, Action>();

    public Action this[string s]
    {
        get
        {
            Action action;
            Action defaultAction = () => {} ;
            return argsActions.TryGetValue(s, out action) ? action : defaultAction;
        }
    }

    public void SetOption(string s, Action a)
    {
        argsActions[s] = a;
    }
}






In this example, the ArgsAction collection maps closely to the underlying collection.
The get determines if a given option has been configured. If so, it returns
the Action associated with that option. If not, it returns an Action that
does nothing. The public accessor does not include a set accessor. Rather,
the design using a public method for setting options.





Multi-Dimensional Maps


You can create indexers that use multiple arguments. In addition,
those arguments are not constrained to be the same type. Let’s look at
two examples.


The first example shows a class that generates values for a Mandelbrot
set. For more information on the mathematics behind the set, read
this article [https://en.wikipedia.org/wiki/Mandelbrot_set].
The indexer uses two doubles to define a point in the X, Y plane.
The get accessor computes the number of iterations until a point is
determined to be not in the set. If the maximum iterations is reached, the point
is in the set, and the class’s maxIterations value is returned. (The computer
generated images popularized for the Mandelbrot set define colors for the
number of iterations necessary to determine that a point is outside the set.


public class Mandelbrot
{
    readonly private int maxIterations;

    public Mandelbrot(int maxIterations)
    {
        this.maxIterations = maxIterations;
    }

    public int this [double x, double y]
    {
        get
        {
            var iterations = 0;
            var x0 = x;
            var y0 = y;

            while ((x*x + y * y < 4) &&
                (iterations < maxIterations))
            {
                var newX = x * x - y * y + x0;
                y = 2 * x * y + y0;
                x = newX;
                iterations++;
            }
            return iterations;
        }
    }
}






The Mandelbrot Set defines values at every (x,y) coordinate for real number values.
That defines a dictionary that could contain an infinite number of values. Therefore,
there is no storage behind the set. Instead, this class computes the value for each
point when code calls the get accessor. There’s no underlying storage used.


Let’s examine one last use of indexers, where the indexer takes multiple arguments
of different types. Consider a program that manages historical temperature
data. This indexer uses a city and a date to set or get the high and low
temperatures for that location:


using DateMeasurements = 
    System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements = 
    System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>>;

public class HistoricalWeatherData
{
    readonly CityDataMeasurements storage = new CityDataMeasurements();

    public Measurements this[string city, DateTime date]
    {
        get
        {
            var cityData = default(DateMeasurements);

            if (!storage.TryGetValue(city, out cityData))
                throw new ArgumentOutOfRangeException(nameof(city), "City not found");

            // strip out any time portion:
            var index = date.Date;
            var measure = default(Measurements);
            if (cityData.TryGetValue(index, out measure))
                return measure;
            throw new ArgumentOutOfRangeException(nameof(date), "Date not found");
        }
        set
        {
            var cityData = default(DateMeasurements);

            if (!storage.TryGetValue(city, out cityData))
            {
                cityData = new DateMeasurements();
                storage.Add(city, cityData);
            }

            // Strip out any time portion:
            var index = date.Date;
            cityData[index] = value;
        }
    }
}






This example creates an indexer that maps weather data on two different
arguments: a city (represented by a string) and a date (represented by
a DateTime). The internal storage uses two Dictionary classes to represent
the two-dimensional dictionary. The public API no longer represents the
underlying storage. Rather, the language features of indexers enables you
to create a public interface that represents your abstraction, even though
the underlying storage must use different core collection types.


There are two parts of this code that may be unfamiliar
to some developers. These two using statements:


using DateMeasurements = System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>;
using CityDataMeasurements = System.Collections.Generic.Dictionary<string, System.Collections.Generic.Dictionary<System.DateTime, IndexersSamples.Common.Measurements>>;






create an alias for a constructed generic type. Those statements enable the
code later to use the more descriptive DateMeasurements and CityDateMeasurements
names instead of the generic construction of Dictionary<DateTime, Measurements>
and Dictionary<string, Dictionary<DateTime, Measurements> >.
This construct does require using the fully qualified type names on the right
side of the = sign.


The second technique is to strip off the time portions of any DateTime object
used to index into the collections. The .NET framework does not include a Date only type.
Developers use the DateTime type, but use the Date property to ensure that any
DateTime object from that day are equal.







Summing Up


You should create indexers anytime you have a property-like element in your
class where that property represents not a single value, but rather a collection
of values where each individual item is identified by a set of arguments. Those
arguments can uniquely identify which item in the collection should be referenced.
Indexers extend the concept of properties, where a member is treated
like a data item from outside the class, but like a method on the side. Indexers allow
arguments to find a single item in a property that represents a set of items.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/compiler-directives.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Compiler Directives (F#)
description: Compiler Directives (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 93aef07a-6747-4ce4-a10f-a05168978af6





Compiler Directives


This topic describes processor directives and compiler directives.



Preprocessor Directives


A preprocessor directive is prefixed with the # symbol and appears on a line by itself. It is interpreted by the preprocessor, which runs before the compiler itself.


The following table lists the preprocessor directives that are available in F#.


|Directive|Description|
|———|———–|
|#if symbol|Supports conditional compilation. Code in the section after the #if is included if the symbol is defined.|
|#else|Supports conditional compilation. Marks a section of code to include if the symbol used with the previous #if is not defined.|
|#endif|Supports conditional compilation. Marks the end of a conditional section of code.|
|#[line] int,
#[line] int string,
#[line] int verbatim-string|Indicates the original source code line and file name, for debugging. This feature is provided for tools that generate F# source code.|
|#nowarn warningcode|Disables a compiler warning or warnings. To disable a warning, find its number from the compiler output and include it in quotation marks. Omit the “FS” prefix. To disable multiple warning numbers on the same line, include each number in quotation marks, and separate each string by a space. For example:


#nowarn "9" "40"


The effect of disabling a warning applies to the entire file, including portions of the file that precede the directive.|





Conditional Compilation Directives


Code that is deactivated by one of these directives appears dimmed in the Visual StudioCode Editor.



[!NOTE]
The behavior of the conditional compilation directives is not the same as it is in other languages. For example, you cannot use Boolean expressions involving symbols, and true and false have no special meaning. Symbols that you use in the if directive must be defined by the command line or in the project settings; there is no define preprocessor directive.



The following code illustrates the use of the #if, #else, and #endif directives. In this example, the code contains two versions of the definition of function1. When VERSION1 is defined by using the -define compiler option [https://msdn.microsoft.com/library/434394ae-0d4a-459c-a684-bffede519a04], the code between the #if directive and the #else directive is activated. Otherwise, the code between #else and #endif is activated.


[!code-fsharpMain]


There is no #define preprocessor directive in F#. You must use the compiler option or project settings to define the symbols used by the #if directive.


Conditional compilation directives can be nested. Indentation is not significant for preprocessor directives.





Line Directives


When building, the compiler reports errors in F# code by referencing line numbers on which each error occurs. These line numbers start at 1 for the first line in a file. However, if you are generating F# source code from another tool, the line numbers in the generated code are generally not of interest, because the errors in the generated F# code most likely arise from another source. The #line directive provides a way for authors of tools that generate F# source code to pass information about the original line numbers and source files to the generated F# code.


When you use the #line directive, file names must be enclosed in quotation marks. Unless the verbatim token (@) appears in front of the string, you must escape backslash characters by using two backslash characters instead of one in order to use them in the path. The following are valid line tokens. In these examples, assume that the original file Script1 results in an automatically generated F# code file when it is run through a tool, and that the code at the location of these directives is generated from some tokens at line 25 in file Script1.


[!code-fsharpMain]


These tokens indicate that the F# code generated at this location is derived from some constructs at or near line 25 in Script1.





Compiler Directives


Compiler directives resemble preprocessor directives, because they are prefixed with a # sign, but instead of being interpreted by the preprocessor, they are left for the compiler to interpret and act on.


The following table lists the compiler directive that is available in F#.


|Directive|Description| |
|———|———–|
|#light [“on”|”off”]|Enables or disables lightweight syntax, for compatibility with other versions of ML. By default, lightweight syntax is enabled. Verbose syntax is always enabled. Therefore, you can use both lightweight syntax and verbose syntax. The directive #light by itself is equivalent to #light "on". If you specify #light "off", you must use verbose syntax for all language constructs. Syntax in the documentation for F# is presented with the assumption that you are using lightweight syntax. For more information, see Verbose Syntax.|
For interpreter (fsi.exe) directives, see Interactive Programming with F#.





See Also


F# Language Reference


Compiler Options








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/assertions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Assertions (F#)
description: Assertions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 2badaad7-f086-47e7-99c1-91f35117da83





Assertions


The assert expression is a debugging feature that you can use to test an expression. Upon failure in Debug mode, an assertion generates a system error dialog box.



Syntax


assert condition









Remarks


The assert expression has type bool -> unit.


In the previous syntax, condition represents a Boolean expression that is to be tested. If the expression evaluates to true, execution continues unaffected. If it evaluates to false, a system error dialog box is generated. The error dialog box has a caption that contains the string Assertion Failed. The dialog box contains a stack trace that indicates where the assertion failure occurred.


Assertion checking is enabled only when you compile in Debug mode; that is, if the constant DEBUG is defined. In the project system, by default, the DEBUG constant is defined in the Debug configuration but not in the Release configuration.


The assertion failure error cannot be caught by using F# exception handling.



[!NOTE]
The assert function resolves to System.Diagnostics.Debug.Assert [https://msdn.microsoft.com/library/system.diagnostics.debug.assert.aspx].






Example


The following code example illustrates the use of the assert expression.


[!code-fsharpMain]





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/reference-cells.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Reference Cells (F#)
description: Reference Cells (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 09a0b221-ea21-45c4-bae8-5e4a339750c4





Reference Cells


Reference cells are storage locations that enable you to create mutable values with reference semantics.



Syntax


ref expression









Remarks


You use the ref operator before a value to create a new reference cell that encapsulates the value. You can then change the underlying value because it is mutable.


A reference cell holds an actual value; it is not just an address. When you create a reference cell by using the ref operator, you create a copy of the underlying value as an encapsulated mutable value.


You can dereference a reference cell by using the ! (bang) operator.


The following code example illustrates the declaration and use of reference cells.


[!code-fsharpMain]


The output is 50.


Reference cells are instances of the Ref generic record type, which is declared as follows.


type Ref<'a> =
{ mutable contents: 'a }






The type 'a ref is a synonym for Ref<'a>. The compiler and IntelliSense in the IDE display the former for this type, but the underlying definition is the latter.


The ref operator creates a new reference cell. The following code is the declaration of the ref operator.


let ref x = { contents = x }






The following table shows the features that are available on the reference cell.


|Operator, member, or field|Description|Type|Definition|
|————————–|———–|—-|———-|
|! (dereference operator)|Returns the underlying value.|'a ref -> 'a|let (!) r = r.contents|
|:= (assignment operator)|Changes the underlying value.|'a ref -> 'a -> unit|let (:=) r x = r.contents <- x|
|ref (operator)|Encapsulates a value into a new reference cell.|'a -> 'a ref|let ref x = { contents = x }|
|Value (property)|Gets or sets the underlying value.|unit -> 'a|member x.Value = x.contents|
|contents (record field)|Gets or sets the underlying value.|'a|let ref x = { contents = x }|
There are several ways to access the underlying value. The value returned by the dereference operator (!) is not an assignable value. Therefore, if you are modifying the underlying value, you must use the assignment operator (:=) instead.


Both the Value property and the contents field are assignable values. Therefore, you can use these to either access or change the underlying value, as shown in the following code.


[!code-fsharpMain]


The output is as follows.


10
10
11
12






The field contents is provided for compatibility with other versions of ML and will produce a warning during compilation. To disable the warning, use the --mlcompatibility compiler option. For more information, see Compiler Options.


The following code illustrates the use of reference cells in parameter passing. The Incrementor type has a method Increment that takes a parameter that includes byref in the parameter type. The byref in the parameter type indicates that callers must pass a reference cell or the address of a typical variable of the specified type, in this case int. The remaining code illustrates how to call Increment with both of these types of arguments, and shows the use of the ref operator on a variable to create a reference cell (ref myDelta1). It then shows the use of the address-of operator (

&amp;


) to generate an appropriate argument. Finally, the Increment method is called again by using a reference cell that is declared by using a let binding. The final line of code demonstrates the use of the ! operator to dereference the reference cell for printing.


[!code-fsharpMain]


For more information about how to pass by reference, see Parameters and Arguments.



[!NOTE]
C# programmers should know that ref works differently in F# than it does in C#. For example, the use of ref when you pass an argument does not have the same effect in F# as it does in C#.






Reference Cells vs. Mutable Variables


Reference cells and mutable variables can often be used in the same situations. However, there are some situations in which mutable variables cannot be used, and you must use a reference cell instead. In general, you should prefer mutable variables where they are accepted by the compiler. However, in expressions that generate closures, the compiler will report that you cannot use mutable variables. Closures are local functions that are generated by certain F# expressions, such as lambda expressions, sequence expressions, computation expressions, and curried functions that use partially applied arguments. The closures generated by these expressions are stored for later evaluation. This process is not compatible with mutable variables. Therefore, if you need mutable state in such an expression, you have to use reference cells. For more information about closures, see Closures (F#).


The following code example demonstrates the scenario in which you must use a reference cell.


[!code-fsharpMain]


In the previous code, the reference cell finished is included in local state, that is, variables that are in the closure are created and used entirely within the expression, in this case a sequence expression. Consider what occurs when the variables are non-local. Closures can also access non-local state, but when this occurs, the variables are copied and stored by value. This process is known as value semantics. This means that the values at the time of the copy are stored, and any subsequent changes to the variables are not reflected. If you want to track the changes of non-local variables, or, in other words, if you need a closure that interacts with non-local state by using reference semantics, you must use a reference cell.


The following code examples demonstrate the use of reference cells in closures. In this case, the closure results from the partial application of function arguments.


[!code-fsharpMain]





See Also


F# Language Reference


Parameters and Arguments


Symbol and Operator Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/xml-documentation.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: XML Documentation (F#)
description: XML Documentation (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: d99ab1b6-e170-4ec2-a543-43ea7ab15bb2





XML Documentation


You can produce documentation from triple-slash (///) code comments in F#. XML comments can precede declarations in code files (.fs) or signature (.fsi) files.



Generating Documentation from Comments


The support in F# for generating documentation from comments is the same as that in other .NET Framework languages. As in other .NET Framework languages, the -doc compiler option [https://msdn.microsoft.com/library/434394ae-0d4a-459c-a684-bffede519a04] enables you to produce an XML file that contains information that you can convert into documentation by using a tool such as Sandcastle. The documentation generated by using tools that are designed for use with assemblies that are written in other .NET Framework languages generally produce a view of the APIs that is based on the compiled form of F# constructs. Unless tools specifically support F#, documentation generated by these tools does not match the F# view of an API.


For more information about how to generate documentation from XML, see XML Documentation Comments 

(


C#


 Programming Guide)


 [https://msdn.microsoft.com/library/b2s063f7].





Recommended Tags


There are two ways to write XML documentation comments. One is to just write the documentation directly in a triple-slash comment, without using XML tags. If you do this, the entire comment text is taken as the summary documentation for the code construct that immediately follows. Use this method when you want to write only a brief summary for each construct. The other method is to use XML tags to provide more structured documentation. The second method enables you to specify separate notes for a short summary, additional remarks, documentation for each parameter and type parameter and exceptions thrown, and a description of the return value. The following table describes XML tags that are recognized in F# XML code comments.


|Tag syntax|Description|
|———-|———–|
|

&lt;


c&gt;


text&lt;


/c&gt;


|Specifies that text is code. This tag can be used by documentation generators to display text in a font that is appropriate for code.|
|&lt;


summary&gt;


text&lt;


/summary&gt;


|Specifies that text is a brief description of the program element. The description is usually one or two sentences.|
|&lt;


remarks&gt;


text&lt;


/remarks&gt;


|Specifies that text contains supplementary information about the program element.|
|&lt;


param name=”name“&gt;


description&lt;


/param&gt;


|Specifies the name and description for a function or method parameter.|
|&lt;


typeparam name=”name“&gt;


description &lt;


/typeparam&gt;


|Specifies the name and description for a type parameter.|
|&lt;


returns&gt;


text&lt;


/returns&gt;


|Specifies that text describes the return value of a function or method.|
|&lt;


exception cref=”type“&gt;


description&lt;


/exception&gt;


|Specifies the type of exception that can be generated and the circumstances under which it is thrown.|
|&lt;


see cref=”reference“&gt;


text&lt;


/see&gt;


|Specifies an inline link to another program element. The reference is the name as it appears in the XML documentation file. The text is the text shown in the link.|
|&lt;


seealso cref=”reference“/&gt;


|Specifies a See Also link to the documentation for another type. The reference is the name as it appears in the XML documentation file. See Also links usually appear at the bottom of a documentation page.|
|&lt;


para&gt;


text&lt;


/para&gt;


|Specifies a paragraph of text. This is used to separate text inside the remarks tag.|





Example



Description


The following is a typical XML documentation comment in a signature file.





Code


[!code-fsharpMain]







Example



Description


The following example shows the alternative method, without XML tags. In this example, the entire text in the comment is considered a summary. Note that if you do not specify a summary tag explicitly, you should not specify other tags, such as param or returns tags.





Code


[!code-fsharpMain]







See Also


F# Language Reference


Compiler Options








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/interfaces.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Interfaces (F#)
description: Interfaces (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 3a082459-17d4-45cf-9153-0b7550a154ec





Interfaces


Interfaces specify sets of related members that other classes implement.



Syntax


// Interface declaration:
[ attributes ]
type interface-name =
    [ interface ]     [ inherit base-interface-name ...]
    abstract member1 : [ argument-types1 -> ] return-type1
    abstract member2 : [ argument-types2 -> ] return-type2
    ...
[ end ]

// Implementing, inside a class type definition:
interface interface-name with
    member self-identifier.member1argument-list = method-body1
    member self-identifier.member2argument-list = method-body2

// Implementing, by using an object expression:
[ attributes ]
let class-name (argument-list) =
    { new interface-name with
        member self-identifier.member1argument-list = method-body1
        member self-identifier.member2argument-list = method-body2
        [ base-interface-definitions ]
    }
    member-list









Remarks


Interface declarations resemble class declarations except that no members are implemented. Instead, all the members are abstract, as indicated by the keyword abstract. You do not provide a method body for abstract methods. However, you can provide a default implementation by also including a separate definition of the member as a method together with the default keyword. Doing so is equivalent to creating a virtual method in a base class in other .NET languages. Such a virtual method can be overridden in classes that implement the interface.


You can optionally give each method parameter a name using normal F# syntax:


[!code-fsharpMain]


In the above ISprintable example, the Print method has a single parameter of the type string with the name format.


There are two ways to implement interfaces: by using object expressions, and by using class types. In either case, the class type or object expression provides method bodies for abstract methods of the interface. Implementations are specific to each type that implements the interface. Therefore, interface methods on different types might be different from each other.


The keywords interface and end, which mark the start and end of the definition, are optional when you use lightweight syntax. If you do not use these keywords, the compiler attempts to infer whether the type is a class or an interface by analyzing the constructs that you use. If you define a member or use other class syntax, the type is interpreted as a class.


The .NET coding style is to begin all interfaces with a capital I.





Implementing Interfaces by Using Class Types


You can implement one or more interfaces in a class type by using the interface keyword, the name of the interface, and the with keyword, followed by the interface member definitions, as shown in the following code.


[!code-fsharpMain]


Interface implementations are inherited, so any derived classes do not need to reimplement them.





Calling Interface Methods


Interface methods can be called only through the interface, not through any object of the type that implements the interface. Thus, you might have to upcast to the interface type by using the :> operator or the upcast operator in order to call these methods.


To call the interface method when you have an object of type SomeClass, you must upcast the object to the interface type, as shown in the following code.


[!code-fsharpMain]


An alternative is to declare a method on the object that upcasts and calls the interface method, as in the following example.


[!code-fsharpMain]





Implementing Interfaces by Using Object Expressions


Object expressions provide a short way to implement an interface. They are useful when you do not have to create a named type, and you just want an object that supports the interface methods, without any additional methods. An object expression is illustrated in the following code.


[!code-fsharpMain]





Interface Inheritance


Interfaces can inherit from one or more base interfaces.


[!code-fsharpMain]





See Also


F# Language Reference


Object Expressions


Classes








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/signatures.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Signatures (F#)
description: Signatures (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 76c84a62-b2f6-44ec-8238-e687e2f7d18e





Signatures


A signature file contains information about the public signatures of a set of F# program elements, such as types, namespaces, and modules. It can be used to specify the accessibility of these program elements.



Remarks


For each F# code file, you can have a signature file, which is a file that has the same name as the code file but with the extension .fsi instead of .fs. Signature files can also be added to the compilation command-line if you are using the command line directly. To distinguish between code files and signature files, code files are sometimes referred to as implementation files. In a project, the signature file should precede the associated code file.


A signature file describes the namespaces, modules, types, and members in the corresponding implementation file. You use the information in a signature file to specify what parts of the code in the corresponding implementation file can be accessed from code outside the implementation file, and what parts are internal to the implementation file. The namespaces, modules, and types that are included in the signature file must be a subset of the namespaces, modules, and types that are included in the implementation file. With some exceptions noted later in this topic, those language elements that are not listed in the signature file are considered private to the implementation file. If no signature file is found in the project or command line, the default accessibility is used.


For more information about the default accessibility, see Access Control.


In a signature file, you do not repeat the definition of the types and the implementations of each method or function. Instead, you use the signature for each method and function, which acts as a complete specification of the functionality that is implemented by a module or namespace fragment. The syntax for a type signature is the same as that used in abstract method declarations in interfaces and abstract classes, and is also shown by IntelliSense and by the F# interpreter fsi.exe when it displays correctly compiled input.


If there is not enough information in the type signature to indicate whether a type is sealed, or whether it is an interface type, you must add an attribute that indicates the nature of the type to the compiler. Attributes that you use for this purpose are described in the following table.


|Attribute|Description|
|———|———–|
|[<Sealed>]|For a type that has no abstract members, or that should not be extended.|
|[<Interface>]|For a type that is an interface.|
The compiler produces an error if the attributes are not consistent between the signature and the declaration in the implementation file.


Use the keyword val to create a signature for a value or function value. The keyword type introduces a type signature.


You can generate a signature file by using the --sig compiler option. Generally, you do not write .fsi files manually. Instead, you generate .fsi files by using the compiler, add them to your project, if you have one, and edit them by removing methods and functions that you do not want to be accessible.


There are several rules for type signatures:



		Type abbreviations in an implementation file must not match a type without an abbreviation in a signature file.






		Records and discriminated unions must expose either all or none of their fields and constructors, and the order in the signature must match the order in the implementation file. Classes can reveal some, all, or none of their fields and methods in the signature.






		Classes and structures that have constructors must expose the declarations of their base classes (the inherits declaration). Also, classes and structures that have constructors must expose all of their abstract methods and interface declarations.






		Interface types must reveal all their methods and interfaces.





The rules for value signatures are as follows:



		Modifiers for accessibility (public, internal, and so on) and the inline and mutable modifiers in the signature must match those in the implementation.






		The number of generic type parameters (either implicitly inferred or explicitly declared) must match, and the types and type constraints in generic type parameters must match.






		If the Literal attribute is used, it must appear in both the signature and the implementation, and the same literal value must be used for both.






		The pattern of parameters (also known as the arity) of signatures and implementations must be consistent.





The following code example shows an example of a signature file that has namespace, module, function value, and type signatures together with the appropriate attributes. It also shows the corresponding implementation file.


[!code-fsharpMain]


The following code shows the implementation file.


[!code-fsharpMain]





See Also


F# Language Reference


Access Control


Compiler Options








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/lists.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Lists (F#)
description: Lists (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: a1a6075f-064d-4aee-8222-2b59ff16cc12





Lists



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



A list in F# is an ordered, immutable series of elements of the same type. To perform basic operations on lists, use the functions in the List module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788].



Creating and Initializing Lists


You can define a list by explicitly listing out the elements, separated by semicolons and enclosed in square brackets, as shown in the following line of code.


[!code-fsharpMain]


You can also put line breaks between elements, in which case the semicolons are optional. The latter syntax can result in more readable code when the element initialization expressions are longer, or when you want to include a comment for each element.


[!code-fsharpMain]


Normally, all list elements must be the same type. An exception is that a list in which the elements are specified to be a base type can have elements that are derived types. Thus the following is acceptable, because both Button and CheckBox derive from Control.


[!code-fsharpMain]


You can also define list elements by using a range indicated by integers separated by the range operator (..), as shown in the following code.


[!code-fsharpMain]


You can also define a list by using a looping construct, as in the following code.


[!code-fsharpMain]


An empty list is specified by a pair of square brackets with nothing in between them.


[!code-fsharpMain]


You can also use a sequence expression to create a list. See “Sequence Expressions” in Sequences [https://msdn.microsoft.com/library/6b773b6b-9c9a-4af8-bd9e-d96585c166db]. For example, the following code creates a list of squares of integers from 1 to 10.


let squaresList = [ for i in 1 .. 10 -> i * i ]









Operators for Working with Lists


You can attach elements to a list by using the :: (cons) operator. If list1 is [2; 3; 4], the following code creates list2 as [100; 2; 3; 4].


[!code-fsharpMain]


You can concatenate lists that have compatible types by using the @ operator, as in the following code. If list1 is [2; 3; 4] and list2 is [100; 2; 3; 4 ], this code creates list3 as [2; 3; 4; 100; 2; 3; 4].


[!code-fsharpMain]


Functions for performing operations on lists are available in the List module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788].


Because lists in F# are immutable, any modifying operations generate new lists instead of modifying existing lists.


Lists in F# are implemented as singly linked lists, which means that operations that access only the head of the list are O(1), and element access is O(n).





Properties


The list type supports the following properties:


|Property|Type|Description|
|——–|—-|———–|
|Head [https://msdn.microsoft.com/library/5f9414fd-6bdb-470a-8b72-40016db30740]|'T|The first element.|
|Empty [https://msdn.microsoft.com/library/44406ecb-1918-4d32-b32a-ca1f69840386]|'T list|A static property that returns an empty list of the appropriate type.|
|IsEmpty [https://msdn.microsoft.com/library/3ba087b2-2fc2-406d-b10a-cff6a19322da]|bool|true if the list has no elements.|
|Item [https://msdn.microsoft.com/library/bdb2553a-0e54-4ff8-baed-ab1aac8f5dae]|'T|The element at the specified index (zero-based).|
|Length [https://msdn.microsoft.com/library/25f715c8-9daa-4c4d-a6c7-26772f9dab4d]|int|The number of elements.|
|Tail [https://msdn.microsoft.com/library/2a6f8eb9-dc32-41aa-8b62-2baffaface91]|'T list|The list without the first element.|
Following are some examples of using these properties.


[!code-fsharpMain]





Using Lists


Programming with lists enables you to perform complex operations with a small amount of code. This section describes common operations on lists that are important to functional programming.



Recursion with Lists


Lists are uniquely suited to recursive programming techniques. Consider an operation that must be performed on every element of a list. You can do this recursively by operating on the head of the list and then passing the tail of the list, which is a smaller list that consists of the original list without the first element, back again to the next level of recursion.


To write such a recursive function, you use the cons operator (::) in pattern matching, which enables you to separate the head of a list from the tail.


The following code example shows how to use pattern matching to implement a recursive function that performs operations on a list.


[!code-fsharpMain]


The previous code works well for small lists, but for larger lists, it could overflow the stack. The following code improves on this code by using an accumulator argument, a standard technique for working with recursive functions. The use of the accumulator argument makes the function tail recursive, which saves stack space.


[!code-fsharpMain]


The function RemoveAllMultiples is a recursive function that takes two lists. The first list contains the numbers whose multiples will be removed, and the second list is the list from which to remove the numbers. The code in the following example uses this recursive function to eliminate all the non-prime numbers from a list, leaving a list of prime numbers as the result.


[!code-fsharpMain]


The output is as follows:


Primes Up To 100:
[2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41; 43; 47; 53; 59; 61; 67; 71; 73; 79; 83; 89; 97]











Module Functions


The List module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788] provides functions that access the elements of a list. The head element is the fastest and easiest to access. Use the property Head [https://msdn.microsoft.com/library/5f9414fd-6bdb-470a-8b72-40016db30740] or the module function List.head [https://msdn.microsoft.com/library/22514cc5-0511-498b-a2cc-837b688a6da2]. You can access the tail of a list by using the Tail [https://msdn.microsoft.com/library/2a6f8eb9-dc32-41aa-8b62-2baffaface91] property or the List.tail [https://msdn.microsoft.com/library/da0a0638-4420-4571-84b6-d09ae601f601] function. To find an element by index, use the List.nth [https://msdn.microsoft.com/library/1f717d57-89be-4007-a971-9cf5a28d83b1] function. List.nth traverses the list. Therefore, it is O(n). If your code uses List.nth frequently, you might want to consider using an array instead of a list. Element access in arrays is O(1).



Boolean Operations on Lists


The List.isEmpty [https://msdn.microsoft.com/library/a7941d44-9e92-427c-b806-c378f4558107] function determines whether a list has any elements.


The List.exists [https://msdn.microsoft.com/library/15a3ebd5-98f0-44c0-8220-7dedec3e68a8] function applies a Boolean test to elements of a list and returns true if any element satisfies the test. List.exists2 [https://msdn.microsoft.com/library/7532b39e-3f4f-4534-a60b-d7721dc6fa7e] is similar but operates on successive pairs of elements in two lists.


The following code demonstrates the use of List.exists.


[!code-fsharpMain]


The output is as follows:


For list [0; 1; 2; 3], contains zero is true






The following example demonstrates the use of List.exists2.


[!code-fsharpMain]


The output is as follows:


Lists [1; 2; 3; 4; 5] and [5; 4; 3; 2; 1] have at least one equal element at the same position.






You can use List.forall [https://msdn.microsoft.com/library/e11a5233-d612-40ac-833b-d5cf496900b7] if you want to test whether all the elements of a list meet a condition.


[!code-fsharpMain]


The output is as follows:


true
false






Similarly, List.forall2 [https://msdn.microsoft.com/library/bb611f02-8277-48f5-9af3-6194ae27d07e] determines whether all elements in the corresponding positions in two lists satisfy a Boolean expression that involves each pair of elements.


[!code-fsharpMain]


The output is as follows:


true
false









Sort Operations on Lists


The List.sort [https://msdn.microsoft.com/library/17f1030e-aa7e-41dd-94ea-72cb6c04fd3d], List.sortBy [https://msdn.microsoft.com/library/955bfc5f-ad9c-4f2d-a7ab-91e43eb21359], and List.sortWith [https://msdn.microsoft.com/library/1d806a54-9166-4198-906d-15101f7916c7] functions sort lists. The sorting function determines which of these three functions to use. List.sort uses default generic comparison. Generic comparison uses global operators based on the generic compare function to compare values. It works efficiently with a wide variety of element types, such as simple numeric types, tuples, records, discriminated unions, lists, arrays, and any type that implements System.IComparable. For types that implement System.IComparable, generic comparison uses the System.IComparable.CompareTo() function. Generic comparison also works with strings, but uses a culture-independent sorting order. Generic comparison should not be used on unsupported types, such as function types. Also, the performance of the default generic comparison is best for small structured types; for larger structured types that need to be compared and sorted frequently, consider implementing System.IComparable and providing an efficient implementation of the System.IComparable.CompareTo() method.


List.sortBy takes a function that returns a value that is used as the sort criterion, and List.sortWith takes a comparison function as an argument. These latter two functions are useful when you are working with types that do not support comparison, or when the comparison requires more complex comparison semantics, as in the case of culture-aware strings.


The following example demonstrates the use of List.sort.


[!code-fsharpMain]


The output is as follows:


[-2; 1; 4; 5; 8]






The following example demonstrates the use of List.sortBy.


[!code-fsharpMain]


The output is as follows:


[1; -2; 4; 5; 8]






The next example demonstrates the use of List.sortWith. In this example, the custom comparison function compareWidgets is used to first compare one field of a custom type, and then another when the values of the first field are equal.


[!code-fsharpMain]


The output is as follows:


[{ID = 92;
Rev = 1;}; {ID = 92;
Rev = 1;}; {ID = 100;
Rev = 2;}; {ID = 100;
Rev = 5;}; {ID = 110;
Rev = 1;}]









Search Operations on Lists


Numerous search operations are supported for lists. The simplest, List.find [https://msdn.microsoft.com/library/0594593e-9c75-44c1-8f5a-a37b2e561c06], enables you to find the first element that matches a given condition.


The following code example demonstrates the use of List.find to find the first number that is divisible by 5 in a list.


[!code-fsharpMain]


The result is 5.


If the elements must be transformed first, call List.pick [https://msdn.microsoft.com/library/0430b515-7fe4-49a1-a616-d2286d8b08b2], which takes a function that returns an option, and looks for the first option value that is Some(x). Instead of returning the element, List.pick returns the result x. If no matching element is found, List.pick throws System.Collections.Generic.KeyNotFoundException. The following code shows the use of List.pick.


[!code-fsharpMain]


The output is as follows:


"b"






Another group of search operations, List.tryFind [https://msdn.microsoft.com/library/37f4532e-9fd0-4802-8bbd-e1aa2380287d] and related functions, return an option value. The List.tryFind function returns the first element of a list that satisfies a condition if such an element exists, but the option value None if not. The variation List.tryFindIndex [https://msdn.microsoft.com/library/5e31968c-c3d3-43d2-859a-0526825895ec] returns the index of the element, if one is found, rather than the element itself. These functions are illustrated in the following code.


[!code-fsharpMain]


The output is as follows:


The first even value is 22.
The first even value is at position 8.









Arithmetic Operations on Lists


Common arithmetic operations such as sum and average are built into the List module [https://msdn.microsoft.com/library/a2264ba3-2d45-40dd-9040-4f7aa2ad9788]. To work with List.sum [https://msdn.microsoft.com/library/54d47fe3-5ecf-4883-beb5-e915342a17f9], the list element type must support the + operator and have a zero value. All built-in arithmetic types satisfy these conditions. To work with List.average [https://msdn.microsoft.com/library/2b9a627b-106d-4548-8c4c-ab5058b8f8e1], the element type must support division without a remainder, which excludes integral types but allows for floating point types. The List.sumBy [https://msdn.microsoft.com/library/b7623389-0fe1-4762-9c67-51079903ab7d] and List.averageBy [https://msdn.microsoft.com/library/936cc9ec-62af-464d-8726-7999c2f48403] functions take a function as a parameter, and this function’s results are used to calculate the values for the sum or average.


The following code demonstrates the use of List.sum, List.sumBy, and List.average.


[!code-fsharpMain]


The output is 1.000000.


The following code shows the use of List.averageBy.


[!code-fsharpMain]


The output is 5.5.





Lists and Tuples


Lists that contain tuples can be manipulated by zip and unzip functions. These functions combine two lists of single values into one list of tuples or separate one list of tuples into two lists of single values. The simplest List.zip [https://msdn.microsoft.com/library/3028d790-8f48-4c94-bf08-b058bec3689c] function takes two lists of single elements and produces a single list of tuple pairs. Another version, List.zip3 [https://msdn.microsoft.com/library/003cc28e-0de3-4d99-89ed-cb19028e3c5b], takes three lists of single elements and produces a single list of tuples that have three elements. The following code example demonstrates the use of List.zip.


[!code-fsharpMain]


The output is as follows:


[(1, -1); (2, -2); (3; -3)]






The following code example demonstrates the use of List.zip3.


[!code-fsharpMain]


The output is as follows:


[(1, -1, 0); (2, -2, 0); (3, -3, 0)]






The corresponding unzip versions, List.unzip [https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21] and List.unzip3 [https://msdn.microsoft.com/library/43078c77-32ec-4342-85b3-c31ccf984db4], take lists of tuples and return lists in a tuple, where the first list contains all the elements that were first in each tuple, and the second list contains the second element of each tuple, and so on.


The following code example demonstrates the use of List.unzip [https://msdn.microsoft.com/library/639db80c-41b5-45bb-a6b4-1eaa04d61d21].


[!code-fsharpMain]


The output is as follows:


([1; 3], [2; 4])
[1; 3] [2; 4]






The following code example demonstrates the use of List.unzip3 [https://msdn.microsoft.com/library/43078c77-32ec-4342-85b3-c31ccf984db4].


[!code-fsharpMain]


The output is as follows:


([1; 4], [2; 5], [3; 6])









Operating on List Elements


F# supports a variety of operations on list elements. The simplest is List.iter [https://msdn.microsoft.com/library/f778d075-81a9-4994-af60-cddcc53a201f], which enables you to call a function on every element of a list. Variations include List.iter2 [https://msdn.microsoft.com/library/ea3b7761-916c-4016-9bd8-651124c98b40], which enables you to perform an operation on elements of two lists, List.iteri [https://msdn.microsoft.com/library/6dd21ae6-5c00-41cd-8306-821e513d8f60], which is like List.iter except that the index of each element is passed as an argument to the function that is called for each element, and List.iteri2 [https://msdn.microsoft.com/library/9658d740-9be5-4bf7-b663-c8ab2b3e196c], which is a combination of the functionality of List.iter2 and List.iteri. The following code example illustrates these functions.


[!code-fsharpMain]


The output is as follows:


List.iter: element is 1
List.iter: element is 2
List.iter: element is 3
List.iteri: element 0 is 1
List.iteri: element 1 is 2
List.iteri: element 2 is 3
List.iter2: elements are 1 4
List.iter2: elements are 2 5
List.iter2: elements are 3 6
List.iteri2: element 0 of list1 is 1; element 0 of list2 is 4
List.iteri2: element 1 of list1 is 2; element 1 of list2 is 5
List.iteri2: element 2 of list1 is 3; element 2 of list2 is 6






Another frequently used function that transforms list elements is List.map [https://msdn.microsoft.com/library/c6b49c99-d4f3-4ba3-b1d0-85a312683dc6], which enables you to apply a function to each element of a list and put all the results into a new list. List.map2 [https://msdn.microsoft.com/library/5f48cce7-6eaf-4e54-8996-2b04d3c31e57] and List.map3 [https://msdn.microsoft.com/library/dd9fb190-6980-4537-be96-5645a64908f8] are variations that take multiple lists. You can also use List.mapi [https://msdn.microsoft.com/library/284b9234-3d26-409b-b328-ac79638d9e14] and List.mapi2 [https://msdn.microsoft.com/library/680643af-233c-40a3-82f2-43d5af27ec49], if, in addition to the element, the function needs to be passed the index of each element. The only difference between List.mapi2 and List.mapi is that List.mapi2 works with two lists. The following example illustrates List.map [https://msdn.microsoft.com/library/c6b49c99-d4f3-4ba3-b1d0-85a312683dc6].


[!code-fsharpMain]


The output is as follows:


[2; 3; 4]






The following example shows the use of List.map2.


[!code-fsharpMain]


The output is as follows:


[5; 7; 9]






The following example shows the use of List.map3.


[!code-fsharpMain]


The output is as follows:


[7; 10; 13]






The following example shows the use of List.mapi.


[!code-fsharpMain]


The output is as follows:


[1; 3; 5]






The following example shows the use of List.mapi2.


[!code-fsharpMain]


The output is as follows:


[0; 7; 18]






List.collect [https://msdn.microsoft.com/library/cd08bbc7-a3b9-40ab-8c20-4e85ec84664f] is like List.map, except that each element produces a list and all these lists are concatenated into a final list. In the following code, each element of the list generates three numbers. These are all collected into one list.


[!code-fsharpMain]


The output is as follows:


[1; 2; 3; 2; 4; 6; 3; 6; 9]






You can also use List.filter [https://msdn.microsoft.com/library/11a8c926-547b-44dd-bbae-98d44f3dd248], which takes a Boolean condition and produces a new list that consists only of elements that satisfy the given condition.


[!code-fsharpMain]


The resulting list is [2; 4; 6].


A combination of map and filter, List.choose [https://msdn.microsoft.com/library/2e21d3fb-ce35-4824-8a57-c4404616093d] enables you to transform and select elements at the same time. List.choose applies a function that returns an option to each element of a list, and returns a new list of the results for elements when the function returns the option value Some.


The following code demonstrates the use of List.choose to select capitalized words out of a list of words.


[!code-fsharpMain]


The output is as follows:


["Rome's"; "Bob's"]









Operating on Multiple Lists


Lists can be joined together. To join two lists into one, use List.append [https://msdn.microsoft.com/library/2954da80-3f4a-4a4b-9371-794645c03426]. To join more than two lists, use List.concat [https://msdn.microsoft.com/library/c5afd433-8764-4ea8-a6a8-937fb4d77c4c].


[!code-fsharpMain]





Fold and Scan Operations


Some list operations involve interdependencies between all of the list elements. The fold and scan operations are like List.iter and List.map in that you invoke a function on each element, but these operations provide an additional parameter called the accumulator that carries information through the computation.


Use List.fold to perform a calculation on a list.


The following code example demonstrates the use of List.fold [https://msdn.microsoft.com/library/c272779e-bae7-4983-8d7f-16b345bb33a0] to perform various operations.


The list is traversed; the accumulator acc is a value that is passed along as the calculation proceeds. The first argument takes the accumulator and the list element, and returns the interim result of the calculation for that list element. The second argument is the initial value of the accumulator.


[!code-fsharpMain]


The versions of these functions that have a digit in the function name operate on more than one list. For example, List.fold2 [https://msdn.microsoft.com/library/6cfcd043-a65d-4423-805a-2ab234cb5343] performs computations on two lists.


The following example demonstrates the use of List.fold2.


[!code-fsharpMain]


List.fold and List.scan [https://msdn.microsoft.com/library/21f636db-885c-4a72-970e-e3841f33a1b8] differ in that List.fold returns the final value of the extra parameter, but List.scan returns the list of the intermediate values (along with the final value) of the extra parameter.


Each of these functions includes a reverse variation, for example, List.foldBack [https://msdn.microsoft.com/library/b9a58e66-efe1-445f-a90c-ac9ffb9d40c7], which differs in the order in which the list is traversed and the order of the arguments. Also, List.fold and List.foldBack have variations, List.fold2 [https://msdn.microsoft.com/library/6cfcd043-a65d-4423-805a-2ab234cb5343] and List.foldBack2 [https://msdn.microsoft.com/library/56371d3e-5271-4183-9e8c-15a02eda9aa2], that take two lists of equal length. The function that executes on each element can use corresponding elements of both lists to perform some action. The element types of the two lists can be different, as in the following example, in which one list contains transaction amounts for a bank account, and the other list contains the type of transaction: deposit or withdrawal.


[!code-fsharpMain]


For a calculation like summation, List.fold and List.foldBack have the same effect because the result does not depend on the order of traversal. In the following example, List.foldBack is used to add the elements in a list.


[!code-fsharpMain]


The following example returns to the bank account example. This time a new transaction type is added: an interest calculation. The ending balance now depends on the order of transactions.


[!code-fsharpMain]


The function List.reduce [https://msdn.microsoft.com/library/048e1f95-691b-49cb-bb99-fb85f68f3d8b] is somewhat like List.fold and List.scan, except that instead of passing around a separate accumulator, List.reduce takes a function that takes two arguments of the element type instead of just one, and one of those arguments acts as the accumulator, meaning that it stores the intermediate result of the computation. List.reduce starts by operating on the first two list elements, and then uses the result of the operation along with the next element. Because there is not a separate accumulator that has its own type, List.reduce can be used in place of List.fold only when the accumulator and the element type have the same type. The following code demonstrates the use of List.reduce. List.reduce throws an exception if the list provided has no elements.


In the following code, the first call to the lambda expression is given the arguments 2 and 4, and returns 6, and the next call is given the arguments 6 and 10, so the result is 16.


[!code-fsharpMain]





Converting Between Lists and Other Collection Types


The List module provides functions for converting to and from both sequences and arrays. To convert to or from a sequence, use List.toSeq [https://msdn.microsoft.com/library/7024be4b-ee70-43cc-8d0a-e6564a4ff7c0] or List.ofSeq [https://msdn.microsoft.com/library/74ab9289-4a59-4433-92eb-3f662d7f7db0]. To convert to or from an array, use List.toArray [https://msdn.microsoft.com/library/ac87dd82-a0cd-40b3-b1fa-dd3168134547] or List.ofArray [https://msdn.microsoft.com/library/f4bddc26-8c8f-4307-a6d7-a49dceb97032].





Additional Operations


For information about additional operations on lists, see the library reference topic Collections.List Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/collections.list-module-%5bfsharp%5d].







See Also


F# Language Reference


F# Types


Sequences


Arrays


Options








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/loops-for-to-expression.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Loops: for...to Expression (F#)”
description: “Loops: for...to Expression (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: e14c38d9-b1ef-4b7f-be9a-fb6ef6708e02





Loops: for...to Expression


The for...to expression is used to iterate in a loop over a range of values of a loop variable.



Syntax


for identifier = start [ to | downto ] finish do
    body-expression









Remarks


The type of the identifier is inferred from the type of the start and finish expressions. Types for these expressions must be 32-bit integers.


Although technically an expression, for...to is more like a traditional statement in an imperative programming language. The return type for the body-expression must be unit. The following examples show various uses of the for...to expression.


[!code-fsharpMain]


The output of the previous code is as follows.


1 2 3 4 5 6 7 8 9 10
10 9 8 7 6 5 4 3 2 1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18









See Also


F# Language Reference


Loops: for...in Expression


Loops: while...do Expression








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: F# Language Reference
description: F# Language Reference
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: b1707be1-7b7c-4fdd-a717-d9c190bc5fb5





F# Language Reference


This section is a reference to the F# language, a multi-paradigm programming language targeting the .NET platform. The F# language supports functional, object-oriented and imperative programming models.



F# Tokens


The following table shows reference topics that provide tables of keywords, symbols and literals used as tokens in F#.


|Title|Description|
|—–|———–|
|Keyword Reference|Contains links to information about all F# language keywords.|
|Symbol and Operator Reference|Contains a table of symbols and operators that are used in the F# language.|
|Literals|Describes the syntax for literal values in F# and how to specify type information for F# literals.|





F# Language Concepts


The following table shows reference topics available that describe language concepts.


|Title|Description|
|—–|———–|
|Functions|Functions are the fundamental unit of program execution in any programming language. As in other languages, an F# function has a name, can have parameters and take arguments, and has a body. F# also supports functional programming constructs such as treating functions as values, using unnamed functions in expressions, composition of functions to form new functions, curried functions, and the implicit definition of functions by way of the partial application of function arguments.|
|F# Types|Describes the types that are used in F# and how F# types are named and described.|
|Type Inference|Describes how the F# compiler infers the types of values, variables, parameters and return values.|
|Automatic Generalization|Describes generic constructs in F#.|
|Inheritance|Describes inheritance, which is used to model the “is-a” relationship, or subtyping, in object-oriented programming.|
|Members|Describes members of F# object types.|
|Parameters and Arguments |Describes language support for defining parameters and passing arguments to functions, methods, and properties. It includes information about how to pass by reference.|
|Operator Overloading|Describes how to overload arithmetic operators in a class or record type, and at the global level.|
|Casting and Conversions|Describes support for type conversions in F#.|
|Access Control|Describes access control in F#. Access control means declaring what clients are able to use certain program elements, such as types, methods, functions and so on.|
|Pattern Matching|Describes patterns, which are rules for transforming input data that are used throughout the F# language to extract compare data with a pattern, decompose data into constituent parts, or extract information from data in various ways.|
|Active Patterns|Describes active patterns. Active patterns enable you to define named partitions that subdivide input data. You can use active patterns to decompose data in a customized manner for each partition.|
|Assertions|Describes the assert expression, which is a debugging feature that you can use to test an expression. Upon failure in Debug mode, an assertion generates a system error dialog box.|
|Exception Handling|Contains information about exception handling support in the F# language.|
|attributes|Describes attributes, which enable metadata to be applied to a programming construct.|
|Resource Management: The use Keyword|Describes the keywords use and using, which can control the initialization and release of resources|
|namespaces|Describes namespace support in F#. A namespace lets you organize code into areas of related functionality by enabling you to attach a name to a grouping of program elements.|
|Modules|Describes modules. An F# module is a grouping of F# code, such as values, types, and function values, in an F# program. Grouping code in modules helps keep related code together and helps avoid name conflicts in your program.|
|Import Declarations: The open Keyword|Describes how open works. An import declaration specifies a module or namespace whose elements you can reference without using a fully qualified name.|
|Signatures|Describes signatures and signature files. A signature file contains information about the public signatures of a set of F# program elements, such as types, namespaces, and modules. It can be used to specify the accessibility of these program elements.|
|XML Documentation|Describes support for generating documentation files for XML doc comments, also known as triple slash comments. You can produce documentation from code comments in F# just as in other .NET languages.|
|Verbose Syntax|Describes the syntax for F# constructs when lightweight syntax is not enabled. Verbose syntax is indicated by the #light "off" directive at the top of the code file.|





F# Types


The following table shows reference topics available that describe types supported by the F# language.


|Title|Description|
|—–|———–|
|values|Describes values, which are immutable quantities that have a specific type; values can be integral or floating point numbers, characters or text, lists, sequences, arrays, tuples, discriminated unions, records, class types, or function values.|
|Primitive Types|Describes the fundamental primitive types that are used in the F# language. It also provides the corresponding .NET types and the minimum and maximum values for each type.|
|Unit Type|Describes the unit type, which is a type that indicates the absence of a specific value; the unit type has only a single value, which acts as a placeholder when no other value exists or is needed.|
|Strings|Describes strings in F#. The string type represents immutable text, as a sequence of Unicode characters. string is an alias for System.String in the .NET Framework.|
|Tuples|Describes tuples, which are groupings of unnamed but ordered values of possibly different types.|
|F# Collection Types|An overview of the F# functional collection types, including types for arrays, lists, sequences (seq), maps, and sets.|
|Lists|Describes lists. A list in F# is an ordered, immutable series of elements all of the same type.|
|Options|Describes the option type. An option in F# is used when a value may or may not exist. An option has an underlying type and may either hold a value of that type or it may not have a value.|
|Sequences|Describes sequences. A sequence is a logical series of elements all of one type. Individual sequence elements are only computed if required, so the representation may be smaller than a literal element count indicates.|
|Arrays|Describes arrays. Arrays are fixed-size, zero-based, mutable sequences of consecutive data elements, all of the same type.|
|Records|Describes records. Records represent simple aggregates of named values, optionally with members.|
|Discriminated Unions|Describes discriminated unions, which provides support for values which may be one of a variety of named cases, each with possibly different values and types.|
|Enumerations|Describes enumerations are types that have a defined set of named values. You can use them in place of literals to make code more readable and maintainable.|
|Reference Cells|Describes reference cells, which are storage locations that enable you to create mutable variables with reference semantics.|
|Type Abbreviations|Describes type abbreviations, which are alternate names for types.|
|Classes|Describes classes, which are types that represent objects that can have properties, methods, and events.|
|Structures|Describes structures, which are compact object types that can be more efficient than a class for types that have a small amount of data and simple behavior.|
|Interfaces|Describes interfaces, which specify sets of related members that other classes implement.|
|Abstract Classes|Describes abstract classes, which are classes that leave some or all members unimplemented, so that implementations can be provided by derived classes.|
|Type Extensions|Describes type extensions, which let you add new members to a previously defined object type.|
|Flexible Types|Describes flexible types. A flexible type annotation is an indication that a parameter, variable or value has a type that is compatible with type specified, where compatibility is determined by position in an object-oriented hierarchy of classes or interfaces.|
|Delegates|Describes delegates, which represent a function call as an object.|
|Units of Measure|Describes units of measure. Floating point values in F# can have associated units of measure, which are typically used to indicate length, volume, mass, and so on.|
|Type Providers|Describes type provides and provides links to walkthroughs on using the built-in type providers to access databases and web services.|





F# Expressions


The following table lists topics that describe F# expressions.


|Title|Description|
|—–|———–|
|Conditional Expressions: if...then...else|Describes the if...then...else expression, which runs different branches of code and also evaluates to a different value depending on the Boolean expression given.|
|Match Expressions|Describes the match expression, which provides branching control that is based on the comparison of an expression with a set of patterns.|
|Loops: for...to Expression|Describes the for...to expression, which is used to iterate in a loop over a range of values of a loop variable.|
|Loops: for...in Expression|Describes the for...in expression, a looping construct that is used to iterate over the matches of a pattern in an enumerable collection such as a range expression, sequence, list, array, or other construct that supports enumeration.|
|Loops: while...do Expression|Describes the while...do expression, which is used to perform iterative execution (looping) while a specified test condition is true.|
|Object Expressions|Describes object expressions, which are expressions that create new instances of a dynamically created, anonymous object type that is based on an existing base type, interface, or set of interfaces.|
|Lazy Computations|Describes lazy computations, which are computations that are not evaluated immediately, but are instead evaluated when the result is actually needed.|
|Computation Expressions|Describes computation expressions in F#, which provide a convenient syntax for writing computations that can be sequenced and combined using control flow constructs and bindings. They can be used to provide a convenient syntax for monads, a functional programming feature that can be used to manage data, control and side effects in functional programs. One type of computation expression, the asynchronous workflow, provides support for asynchronous and parallel computations. For more information, see Asynchronous Workflows.|
|Asynchronous Workflows|Describes asynchronous workflows, a language feature that lets you write asynchronous code in a way that is very close to the way you would naturally write synchronous code.|
|Code Quotations|Describes code quotations, a language feature that enables you to generate and work with F# code expressions programmatically.|
|Query Expressions|Describes query expressions, a language feature that implements LINQ for F# and enables you to write queries against a data source or enumerable collection.|





Compiler-supported Constructs


The following table lists topics that describe special compiler-supported constructs.


|Topic|Description|
|—–|———–|
|Compiler Options|Describes the command-line options for the F# compiler.|
|Compiler Directives|Describes processor directives and compiler directives.|
|Source Line, File, and Path Identifiers|Describes the identifiers __LINE__, __SOURCE_DIRECTORY__ and __SOURCE_FILE__, which are built-in values that enable you to access the source line number, directory and file name in your code.|





See Also


Visual F#








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/classes-and-objects.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Classes and Objects in C# | A tour of the C# Language
description: New to C#? Read this overview of classes, objects and inheritance
keywords: .NET, csharp, class, instance, object, inheritance, polymorphism
author: BillWagner
manager: wpickett
ms.date: 2016/08/10
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 63a89bde-0f05-4bc4-b0cd-4f693854f0cd





Classes and objects


Classes are the most fundamental of C#’s types. A class is a data structure that combines state (fields) and actions (methods and other function members) in a single unit. A class provides a definition for dynamically created instances of the class, also known as objects. Classes support inheritance and polymorphism, mechanisms whereby derived classes can extend and specialize base classes.


New classes are created using class declarations. A class declaration starts with a header that specifies the attributes and modifiers of the class, the name of the class, the base class (if given), and the interfaces implemented by the class. The header is followed by the class body, which consists of a list of member declarations written between the delimiters { and }.


The following is a declaration of a simple class named Point:


[!code-csharpPointClass]


Instances of classes are created using the new operator, which allocates memory for a new instance, invokes a constructor to initialize the instance, and returns a reference to the instance. The following statements create two Point objects and store references to those objects in two variables:


[!code-csharpPointExample]


The memory occupied by an object is automatically reclaimed when the object is no longer reachable. It is neither necessary nor possible to explicitly deallocate objects in C#.



Members


The members of a class are either static members or instance members. Static members belong to classes, and instance members belong to objects (instances of classes).


The following provides an overview of the kinds of members a class can contain.



		Constants
		Constant values associated with the class








		Fields
		Variables of the class








		Methods
		Computations and actions that can be performed by the class








		Properties
		Actions associated with reading and writing named properties of the class








		Indexers
		Actions associated with indexing instances of the class like an array








		Events
		Notifications that can be generated by the class








		Operators
		Conversions and expression operators supported by the class








		Constructors
		Actions required to initialize instances of the class or the class itself








		Finalizers
		Actions to perform before instances of the class are permanently discarded








		Types
		Nested types declared by the class














Accessibility


Each member of a class has an associated accessibility, which controls the regions of program text that are able to access the member. There are five possible forms of accessibility. These are summarized below.



		public
		Access not limited








		protected
		Access limited to this class or classes derived from this class








		internal
		Access limited to this program








		protected internal
		Access limited to this program or classes derived from this class








		private
		Access limited to this class














Type parameters


A class definition may specify a set of type parameters by following the class name with angle brackets enclosing a list of type parameter names. The type parameters can then be used in the body of the class declarations to define the members of the class. In the following example, the type parameters of Pair are TFirst and TSecond:


[!code-csharpPair]


A class type that is declared to take type parameters is called a generic class type. Struct, interface and delegate types can also be generic.
When the generic class is used, type arguments must be provided for each of the type parameters:


[!code-csharpPairExample]


A generic type with type arguments provided, like Pair<int,string> above, is called a constructed type.





Base classes


A class declaration may specify a base class by following the class name and type parameters with a colon and the name of the base class. Omitting a base class specification is the same as deriving from type object. In the following example, the base class of Point3D is Point, and the base class of Point is object:


[!code-csharpPoint3DClass]


A class inherits the members of its base class. Inheritance means that a class implicitly contains all members of its base class, except for the instance and static constructors, and the finalizers of the base class. A derived class can add new members to those it inherits, but it cannot remove the definition of an inherited member. In the previous example, Point3D inherits the x and y fields from Point, and every Point3D instance contains three fields, x, y, and z.


An implicit conversion exists from a class type to any of its base class types. Therefore, a variable of a class type can reference an instance of that class or an instance of any derived class. For example, given the previous class declarations, a variable of type Point can reference either a Point or a Point3D:


[!code-csharpPoint3DExample]





Fields


A field is a variable that is associated with a class or with an instance of a class.


A field declared with the static modifier defines a static field. A static field identifies exactly one storage location. No matter how many instances of a class are created, there is only ever one copy of a static field.


A field declared without the static modifier defines an instance field. Every instance of a class contains a separate copy of all the instance fields of that class.


In the following example, each instance of the Color class has a separate copy of the r, g, and b instance fields, but there is only one copy of the Black, White, Red, Green, and Blue static fields:


[!code-csharpColorClass]


As shown in the previous example, read-only fields may be declared with a readonly modifier. Assignment to a readonly field can only occur as part of the field’s declaration or in a constructor in the same class.





Methods


A method is a member that implements a computation or action that can be performed by an object or class. Static methods are accessed through the class. Instance methods are accessed through instances of the class.


Methods may have a list of parameters, which represent values or variable references passed to the method, and a return type, which specifies the type of the value computed and returned by the method. A method’s return type is void if it does not return a value.


Like types, methods may also have a set of type parameters, for which type arguments must be specified when the method is called. Unlike types, the type arguments can often be inferred from the arguments of a method call and need not be explicitly given.


The signature of a method must be unique in the class in which the method is declared. The signature of a method consists of the name of the method, the number of type parameters and the number, modifiers, and types of its parameters. The signature of a method does not include the return type.



Parameters


Parameters are used to pass values or variable references to methods. The parameters of a method get their actual values from the arguments that are specified when the method is invoked. There are four kinds of parameters: value parameters, reference parameters, output parameters, and parameter arrays.


A value parameter is used for input parameter passing. A value parameter corresponds to a local variable that gets its initial value from the argument that was passed for the parameter. Modifications to a value parameter do not affect the argument that was passed for the parameter.


Value parameters can be optional, by specifying a default value so that corresponding arguments can be omitted.


A reference parameter is used for both input and output parameter passing. The argument passed for a reference parameter must be a variable, and during execution of the method, the reference parameter represents the same storage location as the argument variable. A reference parameter is declared with the ref modifier. The following example shows the use of ref parameters.


[!code-csharpswapExample]


An output parameter is used for output parameter passing. An output parameter is similar to a reference parameter except that the initial value of the caller-provided argument is unimportant. An output parameter is declared with the out modifier. The following example shows the use of out parameters.


[!code-csharpOutExample]


A parameter array permits a variable number of arguments to be passed to a method. A parameter array is declared with the params modifier. Only the last parameter of a method can be a parameter array, and the type of a parameter array must be a single-dimensional array type. The Write and WriteLine methods of the @System.Console class are good examples of parameter array usage. They are declared as follows.


[!code-csharpConsoleExample]


Within a method that uses a parameter array, the parameter array behaves exactly like a regular parameter of an array type. However, in an invocation of a method with a parameter array, it is possible to pass either a single argument of the parameter array type or any number of arguments of the element type of the parameter array. In the latter case, an array instance is automatically created and initialized with the given arguments. This example


[!code-csharpStringFormat]


is equivalent to writing the following.


[!code-csharpStringFormat2]





Method body and local variables


A method’s body specifies the statements to execute when the method is invoked.


A method body can declare variables that are specific to the invocation of the method. Such variables are called local variables. A local variable declaration specifies a type name, a variable name, and possibly an initial value. The following example declares a local variable i with an initial value of zero and a local variable j with no initial value.


[!code-csharpSquares]


C# requires a local variable to be definitely assigned before its value can be obtained. For example, if the declaration of the previous i did not include an initial value, the compiler would report an error for the subsequent usages of i because i would not be definitely assigned at those points in the program.


A method can use return statements to return control to its caller. In a method returning void, return statements cannot specify an expression. In a method returning non-void, return statements must include an expression that computes the return value.





Static and instance methods


A method declared with a static modifier is a static method. A static method does not operate on a specific instance and can only directly access static members.


A method declared without a static modifier is an instance method. An instance method operates on a specific instance and can access both static and instance members. The instance on which an instance method was invoked can be explicitly accessed as this. It is an error to refer to this in a static method.


The following Entity class has both static and instance members.


[!code-csharpEntity]


Each Entity instance contains a serial number (and presumably some other information that is not shown here). The Entity constructor (which is like an instance method) initializes the new instance with the next available serial number. Because the constructor is an instance member, it is permitted to access both the serialNo instance field and the nextSerialNo static field.


The GetNextSerialNo and SetNextSerialNo static methods can access the nextSerialNo static field, but it would be an error for them to directly access the serialNo instance field.


The following example shows the use of the Entity class.


[!code-csharpEntityExample]


Note that the SetNextSerialNo and GetNextSerialNo static methods are invoked on the class whereas the GetSerialNo instance method is invoked on instances of the class.





Virtual, override, and abstract methods


When an instance method declaration includes a virtual modifier, the method is said to be a virtual method. When no virtual modifier is present, the method is said to be a nonvirtual method.


When a virtual method is invoked, the run-time type of the instance for which that invocation takes place determines the actual method implementation to invoke. In a nonvirtual method invocation, the compile-time type of the instance is the determining factor.


A virtual method can be overridden in a derived class. When an instance method declaration includes an override modifier, the method overrides an inherited virtual method with the same signature. Whereas a virtual method declaration introduces a new method, an override method declaration specializes an existing inherited virtual method by providing a new implementation of that method.


An abstract method is a virtual method with no implementation. An abstract method is declared with the abstract modifier and is permitted only in a class that is also declared abstract. An abstract method must be overridden in every non-abstract derived class.


The following example declares an abstract class, Expression, which represents an expression tree node, and three derived classes, Constant, VariableReference, and Operation, which implement expression tree nodes for constants, variable references, and arithmetic operations. (This is similar to, but not to be confused with the expression tree types).


[!code-csharpExpressionClass]


The previous four classes can be used to model arithmetic expressions. For example, using instances of these classes, the expression x + 3 can be represented as follows.


[!code-csharpExpressionExample]


The Evaluate method of an Expression instance is invoked to evaluate the given expression and produce a double value. The method takes as an argument a @Dctionary that contains variable names (as keys of the entries) and values (as values of the entries). The Evaluate method is a virtual abstract method, meaning that non-abstract derived classes must override it to provide an actual implementation.


A Constant‘s implementation of Evaluate simply returns the stored constant. A VariableReference‘s implementation looks up the variable name in the dictionary and returns the resulting value. An Operation‘s implementation first evaluates the left and right operands (by recursively invoking their Evaluate methods) and then performs the given arithmetic operation.


The following program uses the Expression classes to evaluate the expression x * (y + 2) for different values of x and y.


[!code-csharpExpressionUsage]





Method overloading


Method overloading permits multiple methods in the same class to have the same name as long as they have unique signatures. When compiling an invocation of an overloaded method, the compiler uses overload resolution to determine the specific method to invoke. Overload resolution finds the one method that best matches the arguments or reports an error if no single best match can be found. The following example shows overload resolution in effect. The comment for each invocation in the Main method shows which method is actually invoked.


[!code-csharpOverloadUsage]


As shown by the example, a particular method can always be selected by explicitly casting the arguments to the exact parameter types and/or explicitly supplying type arguments.







Other function members


Members that contain executable code are collectively known as the function members of a class. The preceding section describes methods, which are the primary kind of function members. This section describes the other kinds of function members supported by C#: constructors, properties, indexers, events, operators, and finalizers.


The following shows a generic class called List, which implements a growable list of objects. The class contains several examples of the most common kinds of function members.


[!code-csharpListClass]



Constructors


C# supports both instance and static constructors. An instance constructor is a member that implements the actions required to initialize an instance of a class. A static constructor is a member that implements the actions required to initialize a class itself when it is first loaded.


A constructor is declared like a method with no return type and the same name as the containing class. If a constructor declaration includes a static modifier, it declares a static constructor. Otherwise, it declares an instance constructor.


Instance constructors can be overloaded, and can have optional parameters. For example, the List<T> class declares two instance constructors, one with no parameters and one that takes an int parameter. Instance constructors are invoked using the new operator. The following statements allocate two List<string> instances using the constructor of the List class with and without the optional argument.


[!code-csharpListExample1]


Unlike other members, instance constructors are not inherited, and a class has no instance constructors other than those actually declared in the class. If no instance constructor is supplied for a class, then an empty one with no parameters is automatically provided.





Properties


Properties are a natural extension of fields. Both are named members with associated types, and the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote storage locations. Instead, properties have accessors that specify the statements to be executed when their values are read or written.


A property is declared like a field, except that the declaration ends with a get accessor and/or a set accessor written between the delimiters { and } instead of ending in a semicolon. A property that has both a get accessor and a set accessor is a read-write property, a property that has only a get accessor is a read-only property, and a property that has only a set accessor is a write-only property.


A get accessor corresponds to a parameterless method with a return value of the property type. Except as the target of an assignment, when a property is referenced in an expression, the get accessor of the property is invoked to compute the value of the property.


A set accessor corresponds to a method with a single parameter named value and no return type. When a property is referenced as the target of an assignment or as the operand of ++ or –, the set accessor is invoked with an argument that provides the new value.


The List<T> class declares two properties, Count and Capacity, which are read-only and read-write, respectively. The following is an example of use of these properties.


[!code-csharpListExample2]


Similar to fields and methods, C# supports both instance properties and static properties. Static properties are declared with the static modifier, and instance properties are declared without it.


The accessor(s) of a property can be virtual. When a property declaration includes a virtual, abstract, or override modifier, it applies to the accessor(s) of the property.





Indexers


An indexer is a member that enables objects to be indexed in the same way as an array. An indexer is declared like a property except that the name of the member is this followed by a parameter list written between the delimiters [ and ]. The parameters are available in the accessor(s) of the indexer. Similar to properties, indexers can be read-write, read-only, and write-only, and the accessor(s) of an indexer can be virtual.


The List class declares a single read-write indexer that takes an int parameter. The indexer makes it possible to index List instances with int values. For example:


[!code-csharpListExample3]


Indexers can be overloaded, meaning that a class can declare multiple indexers as long as the number or types of their parameters differ.





Events


An event is a member that enables a class or object to provide notifications. An event is declared like a field except that the declaration includes an event keyword and the type must be a delegate type.


Within a class that declares an event member, the event behaves just like a field of a delegate type (provided the event is not abstract and does not declare accessors). The field stores a reference to a delegate that represents the event handlers that have been added to the event. If no event handlers are present, the field is null.


The List<T> class declares a single event member called Changed, which indicates that a new item has been added to the list. The Changed event is raised by the OnChanged virtual method, which first checks whether the event is null (meaning that no handlers are present). The notion of raising an event is precisely equivalent to invoking the delegate represented by the event—thus, there are no special language constructs for raising events.


Clients react to events through event handlers. Event handlers are attached using the += operator and removed using the -= operator. The following example attaches an event handler to the Changed event of a List<string>.


[!code-csharpEventExample]


For advanced scenarios where control of the underlying storage of an event is desired, an event declaration can explicitly provide add and remove accessors, which are somewhat similar to the set accessor of a property.





Operators


An operator is a member that defines the meaning of applying a particular expression operator to instances of a class. Three kinds of operators can be defined: unary operators, binary operators, and conversion operators. All operators must be declared as public and static.


The List<T> class declares two operators, operator == and operator !=, and thus gives new meaning to expressions that apply those operators to List instances. Specifically, the operators define equality of two List<T> instances as comparing each of the contained objects using their Equals methods. The following example uses the == operator to compare two List<int> instances.


[!code-csharpOperatorExample]


The first Console.WriteLine outputs True because the two lists contain the same number of objects with the same values in the same order. Had List<T> not defined operator ==, the first Console.WriteLine would have output False because a and b reference different List<int> instances.





Finalizers


A finalizer is a member that implements the actions required to finalize an instance of a class. Finalizers cannot have parameters, they cannot have accessibility modifiers, and they cannot be invoked explicitly. The finalizer for an instance is invoked automatically during garbage collection.


The garbage collector is allowed wide latitude in deciding when to collect objects and run finalizers. Specifically, the timing of finalizer invocations is not deterministic, and finalizers may be executed on any thread. For these and other reasons, classes should implement finalizers only when no other solutions are feasible.


The using statement provides a better approach to object destruction.



[!div class=”step-by-step”]
Previous
Next











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/modules.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Modules (F#)
description: Modules (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 46de2d18-da51-40fa-a262-92edecada79d





Modules


In the context of the F# language, a module is a grouping of F# code, such as values, types, and function values, in an F# program. Grouping code in modules helps keep related code together and helps avoid name conflicts in your program.



Syntax


// Top-level module declaration.
module [accessibility-modifier] [qualified-namespace.]module-namedeclarations
// Local module declaration.
module [accessibility-modifier] module-name =
    declarations









Remarks


An F# module is a grouping of F# code constructs such as types, values, function values, and code in do bindings. It is implemented as a common language runtime (CLR) class that has only static members. There are two types of module declarations, depending on whether the whole file is included in the module: a top-level module declaration and a local module declaration. A top-level module declaration includes the whole file in the module. A top-level module declaration can appear only as the first declaration in a file.


In the syntax for the top-level module declaration, the optional qualified-namespace is the sequence of nested namespace names that contains the module. The qualified namespace does not have to be previously declared.


You do not have to indent declarations in a top-level module. You do have to indent all declarations in local modules. In a local module declaration, only the declarations that are indented under that module declaration are part of the module.


If a code file does not begin with a top-level module declaration or a namespace declaration, the whole contents of the file, including any local modules, becomes part of an implicitly created top-level module that has the same name as the file, without the extension, with the first letter converted to uppercase. For example, consider the following file.


[!code-fsharpMain]


This file would be compiled as if it were written in this manner:


[!code-fsharpMain]


If you have multiple modules in a file, you must use a local module declaration for each module. If an enclosing namespace is declared, these modules are part of the enclosing namespace. If an enclosing namespace is not declared, the modules become part of the implicitly created top-level module. The following code example shows a code file that contains multiple modules. The compiler implicitly creates a top-level module named Multiplemodules, and MyModule1 and MyModule2 are nested in that top-level module.


[!code-fsharpMain]


If you have multiple files in a project or in a single compilation, or if you are building a library, you must include a namespace declaration or module declaration at the top of the file. The F# compiler only determines a module name implicitly when there is only one file in a project or compilation command line, and you are creating an application.


The accessibility-modifier can be one of the following: public, private, internal. For more information, see Access Control. The default is public.





Referencing Code in Modules


When you reference functions, types, and values from another module, you must either use a qualified name or open the module. If you use a qualified name, you must specify the namespaces, the module, and the identifier for the program element you want. You separate each part of the qualified path with a dot (.), as follows.


Namespace1.Namespace2.ModuleName.Identifier


You can open the module or one or more of the namespaces to simplify the code. For more information about opening namespaces and modules, see Import Declarations: The open Keyword.


The following code example shows a top-level module that contains all the code up to the end of the file.


[!code-fsharpMain]


To use this code from another file in the same project, you either use qualified names or you open the module before you use the functions, as shown in the following examples.


[!code-fsharpMain]





Nested Modules


Modules can be nested. Inner modules must be indented as far as outer module declarations to indicate that they are inner modules, not new modules. For example, compare the following two examples. Module Z is an inner module in the following code.


[!code-fsharpMain]


But module Z is a sibling to module Y in the following code.


[!code-fsharpMain]
Module Z is also a sibling module in the following code, because it is not indented as far as other declarations in module Y.


[!code-fsharpMain]
Finally, if the outer module has no declarations and is followed immediately by another module declaration, the new module declaration is assumed to be an inner module, but the compiler will warn you if the second module definition is not indented farther than the first.


[!code-fsharpMain]
To eliminate the warning, indent the inner module.


[!code-fsharpMain]
If you want all the code in a file to be in a single outer module and you want inner modules, the outer module does not require the equal sign, and the declarations, including any inner module declarations, that will go in the outer module do not have to be indented. Declarations inside the inner module declarations do have to be indented. The following code shows this case.


[!code-fsharpMain]





See Also


F# Language Reference


Namespaces








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/test-protocol.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core CLI test communication protocol
description: .NET Core CLI test communication protocol
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 88cba792-3640-41de-b55d-00f575e9d5e2




#.NET Core CLI test communication protocol



Introduction


Anytime you pass a port to dotnet test, the command will run in design time. That means that dotnet test will connect to that port
using TCP and will then exchange an established set of messages with whatever else is connected to that port. When this happens, the runner
also receives a new port that dotnet test will use to communicate with it. The reason why the runner also uses TCP to
communicate with dotnet test is because in design mode, it is not sufficient to just output results to the console. The
command needs to send the adapter structure messages containing the results of the test execution.



Communication protocol at design time.



		Because during design time, dotnet test connects to a port when it starts up, the adapter needs to be listening on
that port otherwise dotnet test will fail. We did it like this so that the adapter could reserve all the ports it needs
by binding and listening to them before dotnet test ran and tried to get ports for the runner.


		Once dotnet test starts, it sends a TestSession.Connected message to the adapter indicating that it is ready to receive messages.


		It is possible to send an optional
version check [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/ProtocolVersionMessage.cs]
message with the adapter version of the protocol in it. Dotnet test will send back the version of the protocol that it supports.





All messages have the format described here:
Message.cs [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/Message.cs].
The payload formats for each message is described in links to the classes used to serialize/deserialize the information in the description of the protocol.



Test Execution


[image: Test Execution]



		After the optional version check, the adapter sends a TestExecution.GetTestRunnerProcessStartInfo, with the
tests [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/RunTestsMessage.cs] it wants to execute inside of it. Dotnet test sends back a FileName and Arguments inside a TestStartInfo [https://github.com/dotnet/cli/blob/rel/1.0.0/src/dotnet/commands/dotnet-test/TestStartInfo.cs] payload that the adapter can use to start the runner. In the past, we would send the list of tests to run as part of that argument, but we were actually going over the command line size limit for some test projects.


		As part of the arguments, we send a port that the runner should connect to and for executing tests, a –wait-command flag, that indicates that the runner should connect to the port and wait for commands, instead of going ahead and executing the tests.


		At this point, the adapter can launch the runner (and attach to it for debugging if it chooses to).


		Once the runner starts, it sends dotnet test a TestRunner.WaitCommand message that indicates it is ready to receive commands, at which point dotnet test sends a TestRunner.Execute with the list of tests [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Messages/RunTestsMessage.cs] to run. This bypasses the command line size limit described above.


		The runner then sends dotnet test (and it passes forward to the adapter) a TestExecution.TestStarted for each tests as they start with the test [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Test.cs] information inside of it.


		The runner also sends dotnet test (and it forwards to the adapter) a TestExecution.TestResult for each test with the individual result [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/TestResult.cs] of the test.


		After all tests finish, the runner sends a TestRunner.Completed message to dotnet test, which dotnet test sends as TestExecution.Completed to the adapter.


		Once the adapter is done, it sends dotnet test a TestSession.Terminate which will cause dotnet test to shutdown.








Test discovery


[image: Test discovery]



		After the optional version check, the adapter sends a TestDiscovery.Start message. Because in this case, the adapter does not need to attach to the process, dotnet test will start the runner itself. Also, since there is no long list of arguments to be passed to the runner, no –wait-command flag is needed to be passed to the runner. dotnet test only passes a –list argument to the runner, which means the runner should not run the tests, just list them.


		The runner then sends dotnet test (and it passes forward to the adapter) a TestDiscovery.TestFound for each test [https://github.com/dotnet/cli/blob/rel/1.0.0/src/Microsoft.Extensions.Testing.Abstractions/Test.cs] found.


		After all tests are discovered, the runner sends a TestRunner.Completed message to dotnet test, which dotnet test sends as TestDiscovery.Completed to the adapter.


		Once the adapter is done, it sends dotnet test a TestSession.Terminate which will cause dotnet test to shutdown.













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/getting-started/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting Started | C# Guide
description: Getting Started with C#
keywords: C#, Getting Started, Acquisition, Install
author: dotnet-bot
manager: wpickett
ms.date: 08/23/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: b77c7263-7cbf-4729-9626-8fbc3f5f14d9





🔧 Getting started



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/942] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/dotnet-test.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: dotnet-test
description: dotnet-test
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3a0fa917-eb0a-4d7e-9217-d06e65455675





dotnet-test



NAME


dotnet-test - Runs unit tests using the configured test runner





SYNOPSIS


dotnet test [--configuration] [--output] [--build-base-path] [--framework] [--runtime] [--no-build] [--parentProcessId] [--port] [<project>]





DESCRIPTION


The dotnet test command is used to execute unit tests in a given project. Unit tests are class library
projects that have dependencies on the unit test framework (for example, NUnit or xUnit) and the
dotnet test runner for that unit testing framework.
These are packaged as NuGet packages and are restored as ordinary dependencies for the project.


Test projects also need to specify a test runner property in project.json using the “testRunner” node.
This value should contain the name of the unit test framework.


The following sample project.json shows the properties needed:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "debugType": "portable"
  },
  "dependencies": {
    "System.Runtime.Serialization.Primitives": "4.1.1",
    "xunit": "2.1.0",
    "dotnet-test-xunit": "1.0.0-rc2-192208-24"
  },
  "testRunner": "xunit",
  "frameworks": {
    "netcoreapp1.0": {
      "dependencies": {
        "Microsoft.NETCore.App": {
          "type": "platform",
          "version": "1.0.0"
        }
      },
      "imports": [
        "dotnet5.4",
        "portable-net451+win8"
      ]
    }
  }
}






dotnet test supports two running modes:



		Console: In console mode, dotnet test simply executes fully any command gets passed to it and outputs the results. Anytime you invoke dotnet test without passing –port, it runs in console mode, which in turn will cause the runner to run in console mode.


		Design time: used in the context of other tools, such as editors or Integrated Development Environments (IDEs). You can find out more about this mode in the dotnet-test protocol document.








OPTIONS


[project]


Specifies a path to the test project. If omitted, it defaults to current directory.


-c, --configuration [Debug|Release]


Configuration under which to build. The default value is Release.


-o, --output [DIR]


Directory in which to find binaries to run.


-b, --build-base-path [DIR]


Directory in which to place temporary outputs.


-f, --framework [FRAMEWORK]


Looks for test binaries for a specific framework.


-r, --runtime [RUNTIME_IDENTIFIER]


Look for test binaries for a for the specified runtime.


--no-build


Does not build the test project prior to running it.


–parentProcessId


Used by IDEs to specify their process ID. Test will exit if the parent process does.


--port


Used by IDEs to specify a port number to listen for a connection.





EXAMPLES


dotnet test


Runs the tests in the project in the current directory.


dotnet test /projects/test1/project.json


Runs the tests in the test1 project.





SEE ALSO



		dotnet-test communication protocol











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/getting-started/with-visual-studio.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with Visual Studio | C# Guide
description: Getting Started with Visual Studio
keywords: C#, Getting Started, Acquisition, Install, Visual Studio
author: dotnet-bot
manager: wpickett
ms.date: 08/23/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: aa4da675-74e4-44a3-801b-884002fd9daf





🔧 Getting started with Visual Studio



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/943] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/project-json.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: project.json reference
description: project.json reference
keywords: .NET, .NET Core, project.json
author: aL3891
manager: wpickett
ms.date: 07/06/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3aef32bd-ee2a-4e24-80f8-a2b615e0336d





project.json reference



Overview


{
    "name": String,
    "version": String,
    "description": String,
    "copyright": String,
    "title": String,
    "entryPoint": String,
    "testRunner": String,
    "authors": String[],
    "language": String,
    "embedInteropTypes": Boolean,
    "preprocess": String or String[],
    "shared": String or String[],
    "dependencies": Object,
    "tools": Object,
    "scripts": Object,
    "buildOptions": Object {
        "define": String[],
        "nowarn": String[],
        "additionalArguments": String[],
        "warningsAsErrors": Boolean,
        "allowUnsafe": Boolean,
        "emitEntryPoint": Boolean,
        "optimize": Boolean,
        "platform": String,
        "languageVersion": String,
        "keyFile": String,
        "delaySign": Boolean,
        "publicSign": Boolean,
        "debugType": String,
        "xmlDoc": Boolean,
        "preserveCompilationContext": Boolean,
        "outputName": String,
        "compilerName": String,
        "compile": Object {
            "include": String or String[],
            "exclude": String or String[],
            "includeFiles": String or String[],
            "excludeFiles": String or String[],
            "builtIns": Object,
            "mappings": Object
        },
        "embed": Object {
            "include": String or String[],
            "exclude": String or String[],
            "includeFiles": String or String[],
            "excludeFiles": String or String[],
            "builtIns": Object,
            "mappings": Object
        },
        "copyToOutput": Object {
            "include": String or String[],
            "exclude": String or String[],
            "includeFiles": String or String[],
            "excludeFiles": String or String[],
            "builtIns": Object,
            "mappings": Object
        }
    },
    "publishOptions": Object {
        "include": String or String[],
        "exclude": String or String[],
        "includeFiles": String or String[],
        "excludeFiles": String or String[],
        "builtIns": Object,
        "mappings": Object
    },
    "runtimeOptions": Object {
        "configProperties": Object {
            "System.GC.Server": Boolean,
            "System.GC.Concurrent": Boolean,
            "System.GC.RetainVM": Boolean,
            "System.Threading.ThreadPool.MinThreads": Integer,
            "System.Threading.ThreadPool.MaxThreads": Integer
        },
        "framework": Object {
            "name": String,
            "version": String,
        },
        "applyPatches": Boolean
    },
    "packOptions": Object {
        "summary": String,
        "tags": String[],
        "owners": String[],
        "releaseNotes": String,
        "iconUrl": String,
        "projectUrl": String,
        "licenseUrl": String,
        "requireLicenseAcceptance": Boolean,
        "repository": Object {
            "type": String,
            "url": String
        },
        "files": Object {
            "include": String or String[],
            "exclude": String or String[],
            "includeFiles": String or String[],
            "excludeFiles": String or String[],
            "builtIns": Object,
            "mappings": Object
        }
    },
    "analyzerOptions": Object {
        "languageId": String
    },
    "configurations": Object,
    "frameworks": Object {
        "dependencies": Object,
        "frameworkAssemblies": Object,
        "wrappedProject": String,
        "bin": Object,
        "imports": String
    }
}









name


Type: String


The name of the project, used for the assembly name as well as the name of the package. The top level folder name is used if this property is not specified.


For example:


{
    "name": "MyLibrary"
}









version


Type: String


The Semver [http://semver.org/spec/v1.0.0.html] version of the project, also used for the NuGet package.


For example:


{
    "version": "1.0.0-*"
}









description


Type: String


A longer description of the project. Used in the assembly properties.


For example:


{
    "description": "This is my library and it's really great!"
}









copyright


Type: String


The copyright information for the project. Used in the assembly properties.


For example:


{
    "copyright": "Fabrikam 2016"
}









title


Type: String


The friendly name of the project, can contain spaces and special characters not allowed when using the name property. Used in the assembly properties.


For example:


{
    "title": "My Library"
}









entryPoint


Type: String


The entrypoint method for the project. Main by default.


For example:


{
    "entryPoint": "ADifferentMethod"
}









testRunner


Type: String


The name of the test runner, such as NUnit [http://nunit.org/] or xUnit [http://xunit.github.io/], to use with this project. Setting this also marks the project as a test project.


For example:


{
    "testRunner": "NUnit"
}









authors


Type: String[]


An array of strings with the names of the authors of the project.


For example:


{
    "authors": ["Anne", "Bob"]
}









language


Type: String


The (human) language of the project. Corresponds to the “neutral-language” compiler argument.


For example:


{
    "language": "en-US"
}









embedInteropTypes


Type: Boolean


true to embed COM interop types in the assembly; otherwise, false.


For example:


{
    "embedInteropTypes": true
}









preprocess


Type: String or String[] with a globbing pattern


Specifies which files are included in preprocessing.


For example:


{
    "preprocess": "compiler/preprocess/**/*.cs"
}









shared


Type: String or String[] with a globbing pattern


Specifies which files are shared, this is used for library export.


For example:


{
    "shared": "shared/**/*.cs"
}









dependencies


Type: Object


An object that defines the package dependencies of the project, each key of this object is the name of a package and each value contains versioning information.


For example:


    "dependencies": {
        "System.Reflection.Metadata": "1.3.0",
        "Microsoft.Extensions.JsonParser.Sources": {
          "type": "build",
          "version": "1.0.0-rc2-20221"
        },
        "Microsoft.Extensions.HashCodeCombiner.Sources": {
          "type": "build",
          "version": "1.1.0-alpha1-21456"
        },
        "Microsoft.Extensions.DependencyModel": "1.0.0-*"
    }









tools


Type: Object


An object that defines package dependencies that are used as tools for the current project, not as references. Packages defined here are available in scripts that run during the build process, but they are not accessible to the code in the project itself. Tools can for example include code generators or post-build tools that perform tasks related to packing.


For example:


{
    "tools": {
    "MyObfuscator": "1.2.4"
    }
}









scripts


Type: Object


An object that defines scripts run during the build process. Each key in this object identifies where in the build the script is run. Each value is either a string with the script to run or an array of strings containing scripts that will run in order.
The supported events are:



		precompile


		postcompile


		prepublish


		postpublish





For example:


{
    "scripts": {
        "precompile": "generateCode.cmd",
        "postcompile": [ "obfuscate.cmd", "removeTempFiles.cmd" ]
    }
}









buildOptions


Type: Object


An object whose properties control various aspects of compilation. The valid properties are listed below. Can also be specified per target framework as described in the frameworks section.


For example:


    "buildOptions": {
      "allowUnsafe": true,
      "emitEntryPoint": true
    }







define


Type: String[]


A list of defines such as “DEBUG” or “TRACE” that can be used in conditional compilation in the code.


For example:


{
    "buildOptions": {
        "define": ["TEST", "OTHERCONDITION"]
    }
}









nowarn


Type: String[]


A list of warnings to ignore.


For example:


{
    "buildOptions": {
        "nowarn": ["CS0168", "CS0219"]
    }
}






This ignores the warnings The variable 'var' is assigned but its value is never used and The variable 'var' is assigned but its value is never used





additionalArguments


Type: String[]


A list of extra arguments that will be passed to the compiler.


For example:


{
    "buildOptions": {
        "additionalArguments": ["/parallel", "/nostdlib"]
    }
}









warningsAsErrors


Type: Boolean


true to treat warnings as errors; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "warningsAsErrors": true
    }
}









allowUnsafe


Type: Boolean


true to allow unsafe code in this project; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "allowUnsafe": true
    }
}









emitEntryPoint


Type: Boolean


true to create an executable; false to produce a library. The default is false.


For example:


{
    "buildOptions": {
        "emitEntryPoint": true
    }
}









optimize


Type: Boolean


true to enable the compiler to optimize the code in this project; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "optimize": true
    }
}









platform


Type: String


The name of the target platform, such as AnyCpu, x86 or x64.


For example:


{
    "buildOptions": {
        "platform": "x64"
    }
}









languageVersion


Type: String


The version of the language used by the compiler: ISO-1, ISO-2, 3, 4, 5, 6, or Default


For example:


{
    "buildOptions": {
        "languageVersion": "5"
    }
}









keyFile


Type: String


The path for the key file used for signing this assembly.


For example:


{
    "buildOptions": {
        "keyFile": "../keyfile.snk"
    }
}









delaySign


Type: Boolean


true to delay signing; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "delaySign": true
    }
}









publicSign


Type: Boolean


true to enable signing of the resulting assembly; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "publicSign": true
    }
}









debugType


Type: String


Indicates the type of symbol file (PDB file) to generate. The options are “portable” (for .NET Core projects) or “full” (the traditional Windows-only PDB files).


For example:


{
    "buildOptions": {
        "debugType": "portable"
    }
}









xmlDoc


Type: Boolean


true to generate XML documentation from triple-slash comments in the source code; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "xmlDoc": true
    }
}









preserveCompilationContext


Type: Boolean


true to preserve reference assemblies and other context data to allow for runtime compilation; otherwise, false. The default is false.


For example:


{
    "buildOptions": {
        "preserveCompilationContext": true
    }
}









outputName


Type: String


Change the name of the output file.


For example:


{
    "buildOptions": {
        "outputName": "MyApp"
    }
}









compilerName


Type: String


The name of the compiler used for this project. csc by default. Currently, csc (the C# compiler) or fsc (the F# compiler) are supported.


For example:


{
    "compilerName": "fsc"
}









compile


Type: Object


An object containing properties for compilation configuration.



include


Type: String or String[] with a globbing pattern.


Specifies which files to include in the build. The patterns are rooted at the project folder. Defaults to none.


For example:


{
    "include":["wwwroot", "Views"]
}









exclude


Type: String or String[] with a globbing pattern.


Specifies which files to exclude from the build. The exclude patterns have higher priority than the include patterns, so a file found in both will be excluded. The patterns are rooted at the project folder. Defaults to none.


For example:


{
    "exclude": ["bin/**", "obj/**"]
}









includeFiles


Type: String or String[] with a globbing pattern.


A list of file paths to include. The paths are rooted at the project folder. This list has a higher priority than the include and exclude globbing patterns, hence a file listed here and in the exclude globbing pattern will still be included. Defaults to none.


For example:


{
    "includeFiles": []
}









excludeFiles


Type: String or String[] with a globbing pattern.


A list of file paths to exclude. The paths are rooted at the project folder. This list has a higher priority than globbing patterns and the include paths, hence a file found in all will be excluded. Defaults to none.


For example:


{
    "excludeFiles":[],
}









builtIns


Type: Object


The defaults provided by the system. It can have include and exclude globbing patterns which are merged with the corresponding values of the include and exclude properties.


For example:


{
    "builtIns":{}
}









mappings


Type: Object


Keys to the object represent destination paths in the output layout.


Values are either a string or an object representing the source path of files to include.  The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.


String example:


{
    "mappings": {
        "dest/path": "./src/path"
    }
}






Object example:


{
    "mappings": {
        "dest/path":{
            "include":"./src/path"
        }
    }
}











embed


Type: Object


An object containing properties for compilation configuration.



include


Type: String or String[] with a globbing pattern.


{
    "include":["wwwroot", "Views"]
}









exclude


Type: String or String[] with a globbing pattern.


Specifies which files to exclude from the build.


For example:


{
    "exclude": ["bin/**", "obj/**"]
}









includeFiles


Type: String or String[] with a globbing pattern.


{
    "includeFiles":[],
}









excludeFiles


Type: String or String[] with a globbing pattern.


{
    "excludeFiles":[],
}









builtIns


Type: Object


{
    "builtIns":{}
}









mappings


Type: Object


Keys to the object represent destination paths in the output layout.


Values are either a string or an object representing the source path of files to include.  The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.


String example:


{
    "mappings": {
        "dest/path": "./src/path"
    }
}






Object example:


{
    "mappings": {
        "dest/path":{
            "include":"./src/path"
        }
    }
}











copyToOutput


Type: Object


An object containing properties for compilation configuration.



include


Type: String or String[] with a globbing pattern.


{
    "include":["wwwroot", "Views"]
}









exclude


Type: String or String[] with a globbing pattern.


Specifies which files to exclude from the build.


For example:


{
    "exclude": ["bin/**", "obj/**"]
}









includeFiles


Type: String or String[] with a globbing pattern.


{
    "includeFiles":[],
}









excludeFiles


Type: String or String[] with a globbing pattern.


{
    "excludeFiles":[],
}









builtIns


Type: Object


{
    "builtIns":{}
}









mappings


Type: Object


Keys to the object represent destination paths in the output layout.


Values are either a string or an object representing the source path of files to include.  The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.


String example:


{
    "mappings": {
        "dest/path": "./src/path"
    }
}






Object example:


{
    "mappings": {
        "dest/path":{
            "include":"./src/path"
        }
    }
}













publishOptions


Type: Object


An object containing properties for compilation configuration.



include


Type: String or String[] with a globbing pattern.


{
    "include":["wwwroot", "Views"]
}









exclude


Type: String or String[] with a globbing pattern.


Specifies which files to exclude from the build.


For example:


{
    "exclude": ["bin/**", "obj/**"]
}









includeFiles


Type: String or String[] with a globbing pattern.


{
    "includeFiles":[],
}









excludeFiles


Type: String or String[] with a globbing pattern.


{
    "excludeFiles":[],
}









builtIns


Type: Object


{
    "builtIns":{}
}









mappings


Type: Object


Keys to the object represent destination paths in the output layout.


Values are either a string or an object representing the source path of files to include.  The object represtation can have its own include, exclude, includeFiles and excludeFiles sections.


String example:


{
    "mappings": {
        "dest/file": "./src/file",
        "dest/folder/": "./src/folder/**/*"
    }
}






Object example:


{
    "mappings": {
        "dest/file":{
            "include":"./src/file"
        },
        "dest/folder/":{
            "include":"./src/folder/**/*"
        }
    }
}











runtimeOptions


Type: Object


Specifies parameters to be provided to the runtime during initialization.



configProperties


Type: Object


Contains configuration properties to configure the runtime and the framework.



System.GC.Server


Type: Boolean


true to enable server garbage collection; otherwise, false. The default is false.


For example:


{
    "runtimeOptions": {
        "configProperties": {
            "System.GC.Server": true
        }
    }
}









System.GC.Concurrent


Type: Boolean


true to enable concurrent garbage collection; otherwise, false. The default is false.


For example:


{
    "runtimeOptions": {
        "configProperties": {
            "System.GC.Concurrent": true
        }
    }
}









System.GC.RetainVM


Type: Boolean


true to put segments that should be deleted on a standby list for future use instead of releasing them back to the operating system (OS); otherwise, false.


For example:


{
    "runtimeOptions": {
        "configProperties": {
            "System.GC.RetainVM": true
        }
    }
}









System.Threading.ThreadPool.MinThreads


Type: Integer


Overrides the number of minimum threads for the ThreadPool worker pool.


{
    "runtimeOptions": {
        "configProperties": {
            "System.Threading.ThreadPool.MinThreads": 4
        }
    }
}









System.Threading.ThreadPool.MaxThreads


Type: Integer


Overrides the number of maximum threads for the ThreadPool worker pool.


{
    "runtimeOptions": {
        "configProperties": {
            "System.Threading.ThreadPool.MaxThreads": 25
        }
    }
}











framework


Type: Object


Contains shared framework properties to use when activating the application. The presence of this section indicates that the application is a portable app designed to use a shared redistributable framework.



name


Type: String


Name of the shared framework.


{
    "runtimeOptions": {
        "framework": {
            "name": "Microsoft.DotNetCore"
        }
    }
}









version


Type: String


Version of the shared framework.


{
    "runtimeOptions": {
        "framework": {
            "version": "1.0.1"
        }
    }
}











applyPatches


Type: Boolean


true to use the framework from either the same or a higher version that differs only in the SemVer patch field. false for the host to use only the exact framework version. The default is true.


{
    "runtimeOptions": {
        "applyPatches": false
    }
}











packOptions


Type: Object


Defines options pertaining to the packaging of the project output into a NuGet package.



summary


Type: String


A short description of the project.


For example:


{
    "packOptions": {
        "summary": "This is my library."
    }
}









tags


Type: String[]


An array of strings with tags for the project, used for searching in NuGet.


For example:


{
    "packOptions": {
        "tags": ["hyperscale", "cats"]
    }
}









owners


Type: String[]


An array of strings with the names of the owners of the project.


For example:


{
    "packOptions": {
        "owners": ["Fabrikam", "Microsoft"]
    }
}









releaseNotes


Type: String


Release notes for the project.


For example:


{
    "packOptions": {
        "releaseNotes": "Initial version, implemented flimflams."
    }
}









iconUrl


Type: String


The URL for an icon that will be used in various places such as the package explorer.


For example:


{
    "packOptions": {
        "iconUrl": "http://www.mylibrary.gov/favicon.ico"
    }
}









projectUrl


Type: String


The URL for the homepage of the project.


For example:


{
    "packOptions": {
        "projectUrl": "http://www.mylibrary.gov"
    }
}









licenseUrl


Type: String


The URL for the license the project uses.


For example:


{
    "packOptions": {
        "licenseUrl": "http://www.mylibrary.gov/licence"
    }
}









requireLicenseAcceptance


Type: Boolean


true to cause a prompt to accept the package license when installing the package to be shown; otherwise, false. Only used for NuGet packages, ignored in other uses. The default is false.


For example:


{
    "packOptions": {
        "requireLicenseAcceptance": true
    }
}









repository


Type: Object


Contains information about the repository where the project is stored.



type


Type: String


Type of the repository. The default value is “git”.


For example:


{
    "packOptions": {
        "repository": {
            "type": "git"
        }
    }
}









url


Type: String


URL of the repository where the project is stored.


For example:


{
    "packOptions": {
        "repository": {
            "url": "http://github.com/dotnet/corefx"
        }
    }
}











files


Type: Object



include


Type: String or String[] with a globbing pattern.


{
    "include":["wwwroot", "Views"]
}









exclude


Type: String or String[] with a globbing pattern.


Specifies which files to exclude from the build.


For example:


{
    "exclude": ["bin/**", "obj/**"]
}









includeFiles


Type: String or String[] with a globbing pattern.


{
    "includeFiles":[]
}









excludeFiles


Type: String or String[] with a globbing pattern.


{
    "excludeFiles":[]
}









builtIns


Type: Object


{
    "builtIns":{}
}









mappings


Type: Object


Keys to the object represent destination paths in the output layout.


Values are either a string or an object representing the source path of files to include.  The object representation can have its own include, exclude, includeFiles and excludeFiles sections.


String example:


{
    "mappings": {
        "dest/path": "./src/path"
    }
}






Object example:


{
    "mappings": {
        "dest/path":{
            "include":"./src/path"
        }
    }
}













analyzerOptions


Type: Object


An object with properties used by code analysers.


For example:


{
    "analyzerOptions": { }
}







languageId


Type: String


The id of the language to analyze. “cs” represents C#, “vb” represents Visual Basic and “fs” represents F#.


For example:


"analyzerOptions": {
    "languageId": "vb"
}











configurations


Type: Object


An object whose properties define different configurations for this project, such as Debug and Release. Each value is an object that can contain a buildOptions object with options specific for this configuration.


For example:


"configurations": {
    "Release": {
        "buildOptions": {
            "allowUnsafe": false
        }
    }
}









frameworks


Type: Object


Specifies which frameworks this project supports, such as the .NET Framework or Universal Windows Platform (UWP). Must be a valid Target Framework Moniker (TFM). Each value is an object that can contain information specific to this framework such as buildOptions, analyzerOptions, dependencies as well as the properties in the following sections.


For example:


"frameworks": {
    "netcoreapp1.0": {
        "buildOptions": {
            "define": ["FOO", "BIZ"]
        }
    }
}







dependencies


Type: Object


Dependencies that are specific for this framework. This is useful in scenarios where you cannot simply specify a package-level dependency across all targets. Reasons for this can include one target lacking built-in support that other targets have, or requiring a different version of a dependency than other targets.


For example:


    "frameworks": {
        "netstandard1.5": {
        "dependencies": {
            "Microsoft.Extensions.JsonParser.Sources": "1.0.0-rc2-20221"
        }
    }
}









frameworkAssemblies


Type: Object


Similar to dependencies but contains reference to assemblies in the GAC that are not NuGet packages. Can also specify the version to use as well as the dependency type. This is used when targeting .NET Framework and Portable Class Library (PCL) targets. You can only build a project with this specified on Windows.


For example:


"frameworks": {
    "net451": {
        "frameworkAssemblies": {
            "System.Runtime": {
                "type": "build",
                "version": "4.0.0"
            }
        }
    }
}









wrappedProject


Type: String


Specifies the location of the dependency project.


For example:


"frameworks": {
    "net451": {
        "wrappedProject": "MyProject.csproj"
    }
}









bin


Type: Object


An object with a single property, assembly, whose value is the assembly path.


For example:


"frameworks": {
    "netcoreapp1.0": {
        "bin": {
            "assembly" :"c:/otherProject/otherdll.dll"
        }
    }
}









imports


Type: String


Specifies other framework profiles that this project is compatible with.


For example:


"frameworks": {
    "netcoreapp1.0": {
        "imports": "portable-net45+win8"
    }
}






Will cause other packages targeting portable-net45+win8 to be usable when targeting netcoreapp1.0 with the current project.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/getting-started/with-csharp-interactive.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with C# Interactive | C# Guide
description: Getting Started with C# interactive
keywords: C#, Getting Started, REPL,  Cross Platform
author: dotnet-bot
manager: wpickett
ms.date: 08/23/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: a6907ffe-7920-4813-984f-6001d9e44756





🔧 Getting started with C# interactive



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/946] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/tools/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Command Line Tools (CLI)
description: .NET Core Command Line Tools (CLI)
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b70e9ac0-c8be-49f7-9332-95ab93e0e7bc





.NET Core Command Line Tools



What is the .NET Core Command Line Interface (CLI)?


The .NET Core CLI is a new foundational cross-platform toolchain for developing
.NET Core applications. It is “foundational” because it is the primary layer on which other,
higher-level tools, such as Integrated Development Environments (IDEs), editors and
build orchestrators can build on.


It is also cross-platform by default and has the same surface area on each of the supported platforms. This means that
when you learn how to use the tooling, you can use it the same way from any of the supported platforms.





Installation


As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can either
use the native installers to install the CLI or use the installation shell script.


The native installers are primarily meant for developer’s machines. The CLI is distributed using each supported platform’s
native install mechanism, for instance DEB packages on Ubuntu or MSI bundles on Windows. These installers will install
and set up the environment as needed for the user to use the CLI immediately after the install. However, they also
require administrative privileges on the machine. You can view the installation instructions on the
.NET Core getting started page [https://aka.ms/dotnetcoregs].


Install scripts, on the other hand, do not require administrative privileges. However, they will also not install any
prerequisites on the machine; you need to install all of the prerequisites manually. The scripts are meant mostly for
setting up build servers or when you wish to install the tools without administrative privileges (do note the prerequisites
caveat above). You can find more information on the install script reference topic. If you are
interested in how to set up CLI on your continuous integration (CI) build server you can take a look at the
CLI with CI servers document.


By default, the CLI will install in a side-by-side (SxS) manner. This means that multiple versions of the CLI tools
can coexist at any given time on a single machine. How the correct version gets used is explained in more detail in
the driver section below.



What commands come in the box?


The following commands are installed by default:



		new


		restore


		run


		build


		test


		publish


		pack





There is also a way to import more commands on a per-project basis as well as to add your own commands. This is
explained in greater detail in the extensibility section.







Working with the CLI



A short sample


Before we go into any more details, let’s see how working with the CLI looks like from a 10,000-foot view.
The sample below utilizes several commands from the CLI standard install to initialize a new simple console application,
restore the dependencies, build the application and then run it.


dotnet new
dotnet restore
dotnet build --output /stuff
dotnet /stuff/new.dll









How does it work?


As we saw in the short sample above, there is a pattern in the way you use the CLI tools. Within that pattern, we can
identify three main pieces of each command:



		The driver (“dotnet”)


		The command, or “verb”


		Command arguments





Let’s dig into more details on each of the above.





Driver


The driver is named dotnet. It is the first part of what you invoke. The driver has two responsibilities:



		Executing IL code


		Executing the verb





Which of the two things it does is dependent on what is specified on the command line. In the first case, you would
specify an IL assembly that dotnet would run similar to this: dotnet /path/to/your.dll.


In the second case, the driver attempts to invoke the specified command. This will start the CLI command execution
process. First, the driver will determine the version of the tooling that you want. You can specify the version in the
global.json file using the sdkVersion property. If that is not available, the driver will find the latest version
of the tools that is installed on disk and will use that version. Once the version is determined, it will execute the
command.





The “verb”


The verb is simply a command that performs an action. dotnet build will build your code. dotnet publish will publish
your code. The verb is implemented as a console application that is named per convention: dotnet-{verb}. All of the
logic is implemented in the console application that represents the verb.





The arguments


The arguments that you pass on the command line are the arguments to the actual verb/command being invoked.
For example, when you type dotnet publish --output publishedapp the --output argument is passed to the
publish command.







Types of application portability


CLI enables applications to be portable in two main ways:



		Completely portable application that can run anywhere .NET Core is installed


		Self-contained applications





You can learn more about both of these in the application types overview topic.





Migration from DNX


If you used DNX in RC1 of .NET Core, you may be wondering what happened to it and how do these new tools
relate to the DNX tools. In short, the DNX tools have been replaced with the .NET Core CLI tools.
If you have existing projects or are just wondering how the commands map, you
can use the DNX to CLI migration document to get all of the details.





Extensibility


Of course, not every tool that you could use in your workflow will be a part of the core CLI tools. However, .NET Core
CLI has an extensibility model that allows you to specify additional tools for your projects. You can find out more
in the extensibility document.





More resources


This was a short overview of the most important features of the CLI. You can find out more by using the reference and
conceptual topics on this site. There are also other resources you can use:



		GitHub repo [https://github.com/dotnet/cli/]


		Getting Started instructions [https://aka.ms/dotnetcoregs/]











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/getting-started/with-cross-platform-tools.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with C# and the cross platform tools | C# Guide
description: Getting Started with C# and the cross platform tools
keywords: C#, Getting Started, Acquisition,  Cross Platform
author: dotnet-bot
manager: wpickett
ms.date: 08/23/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 48cac496-2dc2-4dc7-b8fd-b9ade0fcdfd2





🔧 Getting started with C# using the cross platform command line tools



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/945] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/versions/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Versioning
description: .NET Core Versioning
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f6f684b1-1d2c-4105-8376-7c1959e23803





.NET Core Versioning


.NET Core is a platform of NuGet packages, of frameworks and distributed as a unit. Each of these platform layers can be versioned separately for product agility and to accurately describe product changes. While there is significant versioning flexibility, there is a desire to version the platform as a unit to make the product easier to understand.


The product is in some respects unique, being described and delivered via a package manager (NuGet) as packages. While you typically acquire .NET Core as a standalone SDK, the SDK is largely a convenience experience over NuGet packages and therefore not distinct from packages. As a result, versioning is first and foremost in terms of packages and other versioning experiences follow from there.



Semantic Versioning


.NET Core uses Semantic Versioning (SemVer) [http://semver.org/], adopting the use of major.minor.patch versioning, using the various parts of the version number to describe the degree and kind of change.


The following versioning template is generally applied to .NET Core. There are cases where it has been adapted to fit with existing versioning. These cases are described later in this document. For example, frameworks are only intended to represent platform and API capabilities, which aligns with major/minor versioning.



Versioning Form


MAJOR.MINOR.PATCH[-PRERELEASE-BUILDNUMBER]





Decision Tree


MAJOR when:



		drop support for a platform


		adopt a newer MAJOR version of an existing dependency


		disable a compatibility quirk off by default





MINOR when:



		add public API surface area


		add new behavior


		adopt a newer MINOR version of an existing dependency


		introduce a new dependency





PATCH when:



		make bug fixes


		add support for a newer platform


		adopt a newer PATCH version of an existing dependency


		any other change (not otherwise captured)





When determining what to increment when there are multiple changes, choose the highest kind of change.







Versioning Scheme


.NET Core can be defined as and will version in the following way:



		A runtime and framework implementation, distributed as packages. Each package is versioned independently, particularly for patch versioning.


		A set of metapackages that reference fine-grained packages as a versioned unit. Metapackages are versioned separately from packages.


		A set of frameworks (for example, netstandard) that represent a progressively larger API set, described in a set of versioned snapshots.






Packages


Library packages evolve and version independently. Packages that overlap with .NET Framework System.* assemblies typically use 4.x versions, aligning with the .NET Framework 4.x versioning (a historical choice). Packages that do not overlap with the .NET Framework libraries (for example, System.Reflection.Metadata [https://www.nuget.org/packages/System.Reflection.Metadata]) typically start at 1.0 and increment from there.


The packages described by NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] are treated specially due to being at the base of the platform.



		NETStandard.Library packages will typically version as a set, since they have implementation-level dependencies between them.


		APIs will only be added to NETStandard.Library packages as part of major or minor .NET Core releases, since doing so would require adding a new netstandard version. This is in addition to SemVer requirements.








Metapackages


Versioning for .NET Core metapackages is based on the framework that they map to. The metapackages adopt the highest version number of the framework (for example, netstandard1.6) it maps to in its package closure.


The patch version for the metapackage is used to represent updates to the metapackage to reference updated packages. Patch versions will never include an updated framework version. As a result, the metapackages are not strictly SemVer compliant because their versioning scheme doesn’t represent the degree of change in the underlying packages, but primarily the API level.


There are two primary metapackages for .NET Core.


NETStandard.Library



		v1.6 as of .NET Core 1.0 (these versions won’t typically or intentionally match).


		Maps to the netstandard framework.


		Describes the packages that are considered required for modern app development and that .NET platforms must implement to be considered a .NET Standard platform.





Microsoft.NETCore.App



		v1.0 as of .NET Core 1.0 (these versions will match).


		Maps to the netcoreapp framework.


		Describes the packages in the .NET Core distribution.





Note: Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] is another .NET Core metapackage. It doesn’t map to a particular framework, so versions like a package.





Frameworks


Framework versions are updated when new APIs are added. They have no concept of patch version, since they represent API shape and not implementation concerns. Major and minor versioning will follow the SemVer rules specified earlier.


The netcoreapp framework is tied to the .NET Core distribution. It will follow the version numbers used by .NET Core. For example, when .NET Core 2.0 is released, it will target netcoreapp2.0. The netstandard framework will not match the versioning scheme of any .NET runtime, given that it is equally applicable to all of them.







Versioning in Practice


There are commits and PRs on .NET Core repos on GitHub on a daily basis, resulting in new builds of many libraries. It is not practical to create new public versions of .NET Core for every change. Instead, changes will be aggregated over some loosely-defined period of time (for example, weeks or months) before making a new public stable .NET Core version.


A new version of .NET Core could mean several things:



		New versions of packages and metapackages.


		New versions of various frameworks, assuming the addition of new APIs.


		New version of the .NET Core distribution.






Shipping a patch release


After shipping a .NET Core v1.0.0 stable version, patch-level changes (no new APIs) are made to .NET Core libraries to fix bugs and improve performance and reliability. The various metapackages are updated to reference the updated .NET Core library packages. The metapackages are versioned as patch updates (x.y.z). Frameworks are not updated. A new .NET Core distribution is released with a matching version number to the Microsoft.NETCore.App metapackage.


You can see patch updates demonstrated in the project.json examples below.


{
  "dependencies": {
    "Microsoft.NETCore.App": "1.0.1"
  },
  "frameworks": {
    "netcoreapp1.0": {}
  }
}









Shipping a minor release


After shipping a .NET Core v1.0.0 stable version, new APIs are added to .NET Core libraries to enable new scenarios. The various metapackages are updated to reference the updated .NET Core library packages. The metapackages are versioned as patch updates (x.y) to match the higher framework version. The various frameworks are updated to describe the new APIs. A new .NET Core distribution is released with a matching version number to the Microsoft.NETCore.App metapackage.


You can see minor updates demonstrated in the project.json examples below.


{
  "dependencies": {
    "Microsoft.NETCore.App": "1.1.0"
  },
  "frameworks": {
    "netcoreapp1.1": {}
  }
}









Shipping a major release


Given a .NET Core v1.y.z stable version, new APIs are added to .NET Core libraries to enable major new scenarios. Perhaps, support is dropped for a platform. The various metapackages are updated to reference the updated .NET Core library packages. The Microsoft.NETCore.App metapackage and the netcore framework are versioned as a major update (x.). The NETStandard.Library metapackage is likely  versioned as a minor update (x.y) since it applies to multiple .NET implementations. A new .NET Core distribution would be released with a matching version number to the Microsoft.NETCore.App metapackage.


You can see major updates demonstrated in the project.json metapackage reference in the example below.


{
  "dependencies": {
    "Microsoft.NETCore.App": "2.0.0"
  },
  "frameworks": {
    "netcoreapp2.0": {}
  }
}














          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: A Tour of C# | C# Guide
description: New to C#? Learn the basics of the language.
keywords: .NET, .NET Core, C#, C# Primer, C# Guide
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: ebc727cd-8112-42e7-b59c-3c2873ad661c





A Tour of the C# Language


C# (pronounced “See Sharp”) is a simple, modern, object-oriented, and type-safe programming language. C# has its roots in the C family of languages and will be immediately familiar to C, C++, Java, and JavaScript programmers.


C# is an object-oriented language, but C# further includes support for component-oriented programming. Contemporary software design increasingly relies on software components in the form of self-contained and self-describing packages of functionality. Key to such components is that they present a programming model with properties, methods, and events; they have attributes that provide declarative information about the component; and they incorporate their own documentation. C# provides language constructs to support directly these concepts, making C# a very natural language in which to create and use software components.


Several C# features aid in the construction of robust and durable applications: Garbage collection automatically reclaims memory occupied by unreachable unused objects; exception handling provides a structured and extensible approach to error detection and recovery; and the type-safe design of the language makes it impossible to read from uninitialized variables, to index arrays beyond their bounds, or to perform unchecked type casts.


C# has a unified type system. All C# types, including primitive types such as int and double, inherit from a single root object type. Thus, all types share a set of common operations, and values of any type can be stored, transported, and operated upon in a consistent manner. Furthermore, C# supports both user-defined reference types and value types, allowing dynamic allocation of objects as well as in-line storage of lightweight structures.


To ensure that C# programs and libraries can evolve over time in a compatible manner, much emphasis has been placed on versioning in C#’s design. Many programming languages pay little attention to this issue, and, as a result, programs written in those languages break more often than necessary when newer versions of dependent libraries are introduced. Aspects of C#’s design that were directly influenced by versioning considerations include the separate virtual and override modifiers, the rules for method overload resolution, and support for explicit interface member declarations.



Hello world


The “Hello, World” program is traditionally used to introduce a programming language. Here it is in C#:


[!code-csharpHello World]


C# source files typically have the file extension .cs. Assuming that the “Hello, World” program is stored in the file hello.cs, the program might be compiled using the command line:


csc hello.cs






which produces an executable assembly named hello.exe. The output produced by this application when it is run is:


Hello, World







[!IMPORTANT]
The csc command compiles for the full framework, and may not be available on all platforms.



The “Hello, World” program starts with a using directive that references the System namespace. Namespaces provide a hierarchical means of organizing C# programs and libraries. Namespaces contain types and other namespaces—for example, the System namespace contains a number of types, such as the Console class referenced in the program, and a number of other namespaces, such as IO and Collections. A using directive that references a given namespace enables unqualified use of the types that are members of that namespace. Because of the using directive, the program can use Console.WriteLine as shorthand for System.Console.WriteLine.


The Hello class declared by the “Hello, World” program has a single member, the method named Main. The Main method is declared with the static modifier. While instance methods can reference a particular enclosing object instance using the keyword this, static methods operate without reference to a particular object. By convention, a static method named Main serves as the entry point of a program.


The output of the program is produced by the WriteLine method of the Console class in the System namespace. This class is provided by the standard class libraries, which, by default, are automatically referenced by the compiler.


There’s a lot more to learn about C#.  The following topics provide an overview of the elements of the C# language. These overviews will provide basic information about all elements of the language and give you the information necessary to dive deeper into elements of the C# language:



		Program Structure
		Learn the key organizational concepts in the C# language: programs, namespaces, types, members, and assemblies.








		Types and Variables
		Learn about value types, reference types, and variables in the C# language.








		Expressions
		Expressions are constructed from operands and operators. Expressions produce a value.








		Statements
		You use statements to express the actions of a program.








		Classes and objects
		Classes are the most fundamental of C#’s types. Objects are instances of a class. Classes are built using members, which are also covered in this topic.








		Structs
		Structs are data structures that, unlike classes, are value types.








		Arrays
		An array is a data structure that contains a number of variables that are accessed through computed indices.








		Interfaces
		An interface defines a contract that can be implemented by classes and structs. An interface can contain methods, properties, events, and indexers. An interface does not provide implementations of the members it defines—it merely specifies the members that must be supplied by classes or structs that implement the interface.








		Enums
		An enum type is a distinct value type with a set of named constants.








		Delegates
		A delegate type represents references to methods with a particular parameter list and return type. Delegates make it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates are similar to the concept of function pointers found in some other languages, but unlike function pointers, delegates are object-oriented and type-safe.








		Attributes
		Attributes enable programs to specify additional declarative information about types, members, and other entities.












[!div class=”step-by-step”]
Next









          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/versions/servicing.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Servicing
description: .NET Core Servicing
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 48682290-4fd7-40dc-8a7b-bac528eba361





🔧 .NET Core Servicing



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can
track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/469] at GitHub.


If you would like to review early drafts and outlines of this
topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/types-and-variables.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Types and Variables | A tour of the C# language
description: Learn about defining types and declaring variables in C#
keywords: .NET, csharp, type, reference type, value type
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: f8a8051e-0049-43f1-b594-9c84cc7b1224





Types and variables


There are two kinds of types in C#: value types and reference types. Variables of value types directly contain their data whereas variables of reference types store references to their data, the latter being known as objects. With reference types, it is possible for two variables to reference the same object and thus possible for operations on one variable to affect the object referenced by the other variable. With value types, the variables each have their own copy of the data, and it is not possible for operations on one to affect the other (except in the case of ref and out parameter variables).


C#’s value types are further divided into simple types, enum types, struct types, and nullable value types. C#’s reference types are further divided into class types, interface types, array types, and delegate types.


The following provides an overview of C#’s type system.



		Value types
		Simple Types
		Signed integral: sbyte, short, int, long


		Unsigned integral: byte, ushort, uint, ulong


		Unicode characters: char


		IEEE floating point: float, double


		High-precision decimal: decimal


		Boolean: bool








		Enum types
		User-defined types of the form enum E {...}








		Struct types
		User-defined types of the form struct S {...}








		Nullable value types
		Extensions of all other value types with a null value














		Reference types
		Class types
		Ultimate base class of all other types: object


		Unicode strings: string


		User-defined types of the form class C {...}








		Interface types
		User-defined types of the form interface I {...}








		Array types
		Single- and multi-dimensional, for example, int[] and int[,]








		Delegate types
		User-defined types of the form delegate int D(...)

















The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed or unsigned form.


The two floating-point types, float and double, are represented using the 32-bit single-precision and 64-bit double-precision IEC-60559 formats, respectively.


The decimal type is a 128-bit data type suitable for financial and monetary calculations.


C#’s bool type is used to represent Boolean values—values that are either true or false.


Character and string processing in C# uses Unicode encoding. The char type represents a UTF-16 code unit, and the string type represents a sequence of UTF-16 code units.


This summarizes C#’s numeric types.



		Signed Integral
		sbyte:  8 bits, range from -128 - 127


		short: 16 bits, range from -32,768 - 32,767


		int  : 32 bits, range from -2,147,483,648 - 2,147,483,647


		long : 64 bits, range from –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807








		Unsigned integral
		byte   :  8 bits, range from 0 - 255


		ushort : 16 bits, range from 0 - 65,535


		uint   : 32 bits, range from 0 - 4,294,967,295


		ulong  : 64 bits, range from 0 - 18,446,744,073,709,551,615








		Floating point
		float  : 32 bits, range from 1.5 × 10^−45 - 3.4 × 10^38,    7-digit precision


		double : 64 bits, range from 5.0 × 10^−324 - 1.7 × 10^308, 15-digit precision








		Decimal
		`decimal : 128 bits, range is at least –7.9 × 10^−28 -  7.9 × 10^28, with at least 28-digit precision











C# programs use type declarations to create new types. A type declaration specifies the name and the members of the new type. Five of C#’s categories of types are user-definable: class types, struct types, interface types, enum types, and delegate types.


A class type defines a data structure that contains data members (fields) and function members (methods, properties, and others). Class types support single inheritance and polymorphism, mechanisms whereby derived classes can extend and specialize base classes.


A struct type is similar to a class type in that it represents a structure with data members and function members. However, unlike classes, structs are value types and do not typically require heap allocation. Struct types do not support user-specified inheritance, and all struct types implicitly inherit from type object.


An interface type defines a contract as a named set of public function members. A class or struct that implements an interface must provide implementations of the interface’s function members. An interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.


A delegate type represents references to methods with a particular parameter list and return type. Delegates make it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates are analogous to function types provided by functional languages. They are also similar to the concept of function pointers found in some other languages, but unlike function pointers, delegates are object-oriented and type-safe.


Class, struct, interface and delegate types all support generics, whereby they can be parameterized with other types.


An enum type is a distinct type with named constants. Every enum type has an underlying type, which must be one of the eight integral types. The set of values of an enum type is the same as the set of values of the underlying type.


C# supports single- and multi-dimensional arrays of any type. Unlike the types listed above, array types do not have to be declared before they can be used. Instead, array types are constructed by following a type name with square brackets. For example, int[] is a single-dimensional array of int, int[,] is a two-dimensional array of int, and int[][] is a single-dimensional array of single-dimensional arrays of int.


Nullable value types also do not have to be declared before they can be used. For each non-nullable value type T there is a corresponding nullable value type T?, which can hold an additional value, null. For instance, int? is a type that can hold any 32-bit integer or the value null.


C#’s type system is unified such that a value of any type can be treated as an object. Every type in C# directly or indirectly derives from the object class type, and object is the ultimate base class of all types. Values of reference types are treated as objects simply by viewing the values as type object. Values of value types are treated as objects by performing boxing and unboxing operations. In the following example, an int value is converted to object and back again to int.


[!code-csharpBoxing]


When a value of a value type is converted to type object, an object instance, also called a “box,” is allocated to hold the value, and the value is copied into that box. Conversely, when an object reference is cast to a value type, a check is made that the referenced object is a box of the correct value type, and, if the check succeeds, the value in the box is copied out.


C#’s unified type system effectively means that value types can become objects “on demand.” Because of the unification, general-purpose libraries that use type object can be used with both reference types and value types.


There are several kinds of variables in C#, including fields, array elements, local variables, and parameters. Variables represent storage locations, and every variable has a type that determines what values can be stored in the variable, as shown below.



		Non-nullable value type
		A value of that exact type








		Nullable value type
		A null value or a value of that exact type








		object
		A null reference, a reference to an object of any reference type, or a reference to a boxed value of any value type








		Class type
		A null reference, a reference to an instance of that class type, or a reference to an instance of a class derived from that class type








		Interface type
		A null reference, a reference to an instance of a class type that implements that interface type, or a reference to a boxed value of a value type that implements that interface type








		Array type
		A null reference, a reference to an instance of that array type, or a reference to an instance of a compatible array type








		Delegate type
		A null reference or a reference to an instance of a compatible that delegate type












[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/porting/project-structure.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Organizing Your Project to Support .NET Framework and .NET Core
description: Organizing Your Project to Support .NET Framework and .NET Core
keywords: .NET, .NET Core
author: conniey
manager: wpickett
ms.date: 07/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 3af62252-1dfa-4336-8d2f-5cfdb57d7724





Organizing Your Project to Support .NET Framework and .NET Core


This article is to help project owners who want to compile their solution against .NET Framework and .NET Core side-by-side.  It provides several options to organize projects to help developers achieve this goal.  Here are some typical scenarios to consider when you are deciding how to setup your project layout with .NET Core.  They may not cover everything you want; prioritize based on your project’s needs.



		Combine existing projects and .NET Core projects into single projects


What this is good for:



		Simplifying your build process by compiling a single project rather than compiling multiple projects, each targeting a different .NET Framework version or platform.


		Simplifying source file management for multi-targeted projects because you have to manage a single project file.  When adding/removing source files, the alternatives require you to manually sync these with your other projects.


		Easily generating a NuGet package for consumption.


		Allows you to write code for a specific .NET Framework version in your libraries through the use of compiler directives.





Unsupported scenarios:



		Does not allow developers without Visual Studio 2015 to open existing projects. To support older versions of Visual Studio, keeping your project files in different folders is a better option.


		Does not allow you to share your .NET Core library across different project types in the same solution file. To support this, creating a Portable Class Library is a better option.


		Does not allow for project build or load modifications that are supported by MSBuild Targets and Tasks. To support this, creating a Portable Class Library is a better option.








		[bookmark: support-vs]Keep existing projects and new .NET Core projects separate


What this is good for:



		Continuing to support development on existing projects without having to upgrade for developers/contributors who may not have Visual Studio 2015.


		Decreasing the possibility in creating new bugs in existing projects because no code churn is required in those projects.








		[bookmark: support-pcl]Keep existing projects and create Portable Class Libraries (PCLs) targeting .NET Core


What this is good for:



		Referencing your .NET Core libraries in desktop and/or web projects targeting the full .NET Framework in the same solution.


		Supporting modifications in the project build or load process. These modifications could be the inclusion of MSBuild Tasks and Targets in your *.csproj file.





Unsupported scenarios:



		Does not allow you to write code for a specific .NET Framework version because the predefined preprocessor symbols are not supported.












Example


Consider the repository below:


[image: Existing project]


Source Code [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library/]


There are several different ways to add support for .NET Core for this repository depending on the constraints and complexity of existing projects which are described below.





Replace Existing Projects with a Multi-targeted .NET Core Project (xproj)


The repository can be reorganized so that any existing *.csproj files are removed and a single *.xproj file is created that targets multiple frameworks.  This is a great option because a single project is able to compile for different frameworks.  It also has the power to handle different compilation options, dependencies, etc. per targeted framework.


[image: Create an xproj that targets multiple frameworks]


Source Code [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library-xproj/]


Changes to note are:



		Addition of global.json


		Replacement of packages.config and *.csproj with project.json and *.xproj


		Changes in the Car’s project.json [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library-xproj/src/Car/project.json] and its test project [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library-xproj/tests/Car.Tests/project.json] to support building for the existing .NET Framework as well as others








Create a Portable Class Library (PCL) to target .NET Core


If existing projects contain complex build operations or properties in their *.csproj file, it may be easier to create a PCL.


[image: ]


Source Code [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library-pcl]


Changes to note are:



		Renaming project.json to {project-name}.project.json
		This prevents potential conflict in Visual Studio when trying to restore packages for the libraries in the same directory. For more information, see the NuGet FAQ [https://docs.nuget.org/consume/nuget-faq#working-with-packages] under “I have multiple projects in the same folder, how can I use separate packages.config or project.json files for each project?”.


		Alternative: Create the PCL in another folder and reference the original source code to avoid this issue.  Placing the PCL in another folder has an added benefit that users who do not have Visual Studio 2015 can still work on the older projects without loading the new solution.








		To target .NET Standard after creating the PCL, in Visual Studio, open the Project’s Properties. Under the Targets section, click on the link “Target .NET Platform Standard”.  This change can be reversed by repeating the same steps.








Keep Existing Projects and Create a .NET Core Project


If there are existing projects that target older frameworks, you may want to leave these projects untouched and use a .NET Core project to target future frameworks.


[image: .NET Core project with existing PCL in different folder]


Source Code [https://github.com/dotnet/core-docs/tree/master/samples/framework/libraries/migrate-library-xproj-keep-csproj/]


Changes to note are:



		The .NET Core and existing projects are kept in separate folders.
		This avoids the package restore issue that was mentioned above due to multiple project.json/package.config files being in the same folder.


		Keeping projects in separate folders avoids forcing you to have Visual Studio 2015 (due to project.json).  You can create a separate solution that only opens the old projects.














See Also


Please see .NET Core porting documentation for more guidance on moving to project.json and xproj.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/program-structure.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Program Structure | A Tour of the C# Language
description: Learn the basic building blocks of a C# program
keywords: .NET .NET Core
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 984f0314-507f-47a0-af56-9011243f5e65





Program Structure


The key organizational concepts in C# are programs, namespaces, types, members, and assemblies. C# programs consist of one or more source files. Programs declare types, which contain members and can be organized into namespaces. Classes and interfaces are examples of types. Fields, methods, properties, and events are examples of members. When C# programs are compiled, they are physically packaged into assemblies. Assemblies typically have the file extension .exe or .dll, depending on whether they implement applications or libraries, respectively.


The example declares a class named Stack in a namespace called Acme.Collections:


[!code-csharpStack]


The fully qualified name of this class is Acme.Collections.Stack. The class contains several members: a field named top, two methods named Push and Pop, and a nested class named Entry. The Entry class further contains three members: a field named next, a field named data, and a constructor. Assuming that the source code of the example is stored in the file acme.cs, the command line


csc /t:library acme.cs






compiles the example as a library (code without a Main entry point) and produces an assembly named acme.dll.



[!IMPORTANT]
The examples above use csc as the command line C# compiler. This compiler is a windows executable. To use C# across other platforms, you should use the tools for .NET Core. The .NET Core ecosystem uses the dotnet CLI to manage command line builds. This includes managing dependencies, and invoking the C# compiler. See this tutorial for a full description of those tools on the platforms supported by .NET Core.



Assemblies contain executable code in the form of Intermediate Language (IL) instructions, and symbolic information in the form of metadata. Before it is executed, the IL code in an assembly is automatically converted to processor-specific code by the Just-In-Time (JIT) compiler of .NET Common Language Runtime.


Because an assembly is a self-describing unit of functionality containing both code and metadata, there is no need for #include directives and header files in C#. The public types and members contained in a particular assembly are made available in a C# program simply by referencing that assembly when compiling the program. For example, this program uses the Acme.Collections.Stack class from the acme.dll assembly:


[!code-csharpUsingStack]


If the program is stored in the file example.cs, when example.cs is compiled, the acme.dll assembly can be referenced using the compiler’s /r option:


csc /r:acme.dll example.cs






This creates an executable assembly named example.exe, which, when run, produces the output:


100
10
1






C# permits the source text of a program to be stored in several source files. When a multi-file C# program is compiled, all of the source files are processed together, and the source files can freely reference each other—conceptually, it is as if all the source files were concatenated into one large file before being processed. Forward declarations are never needed in C# because, with very few exceptions, declaration order is insignificant. C# does not limit a source file to declaring only one public type nor does it require the name of the source file to match a type declared in the source file.



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/porting/libraries.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Porting to .NET Core - Libraries
description: Porting to .NET Core - Libraries
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a0fd860d-d6b6-4659-b325-8a6e6f5fa4a1





Porting to .NET Core - Libraries


With the release of .NET Core 1.0, there is an opportunity to port existing library code so that it can run cross-platform.  This article discusses the .NET Standard Library, unavailable technologies, how to account for the smaller number of APIs available on .NET Core 1.0, how to use the tooling that ships with .NET Core SDK Preview 2, and recommended approaches to porting your code.


Porting is a task that may take time, especially if you have a large codebase.  You should also be prepared to adapt the guidance here as needed to best fit your code.  Every codebase is different, so this article attempts to frame things in a flexible way, but you may find yourself needing to diverge from the prescribed guidance.



Prerequisites


This article assumes you are using Visual Studio 2015 or later on Windows.  The bits required for building .NET Core code are not available on previous versions of Visual Studio.


This article also assumes that you understand the recommended porting process and that you have resolved any issues with third-party dependencies.





Targeting the .NET Standard Library


The best way to build a cross-platform library for .NET Core is to target the .NET Standard Library.  The .NET Standard Library is the formal specification of .NET APIs that are intended to be available on all .NET runtimes.  It is supported by the .NET Core runtime.


What this means is that you’ll have to make a tradeoff between APIs you can use and platforms you can support, and pick the version of the .NET Platform Standard that best suits the tradeoff you wish to make.


As of right now, there are 7 different versions to consider: .NET Standard 1.0 through 1.6.  If you pick a higher version, you get access to more APIs at the cost of running on fewer targets.  If you pick a lower version, your code can run on more targets but at the cost of fewer APIs available to you.


For your convenience, here is a matrix of each .NET Standard version and each specific area it runs on:


| Platform Name | Alias |  |  |  |  |  | | |
| :———- | :——— |:——— |:——— |:——— |:——— |:——— |:——— |:——— |
|.NET Standard | netstandard | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 |
|.NET Core|netcoreapp|

→


|→


|→


|→


|→


|→


|1.0|
|.NET Framework|net|→


|4.5|4.5.1|4.6|4.6.1|4.6.2|4.6.3|
|Mono/Xamarin Platforms||→


|→


|→


|→


|→


|→


|*|
|Universal Windows Platform|uap|→


|→


|→


|→


|10.0|||
|Windows|win|→


|8.0|8.1|||||
|Windows Phone|wpa|→


|→


|8.1|||||
|Windows Phone Silverlight|wp|8.0|||||||


A key thing to understand is that a project targeting a lower version cannot reference a project targeting a higher version.  For example, a project targeting the .NET Platform Standard version 1.2 cannot reference projects that target .NET Platform Standard version 1.3 or higher.  Projects can reference lower versions, though, so a project targeting .NET Platform Standard 1.3 can reference a project targeting .NET Platform Standard 1.2 or lower.


It’s recommended that you pick the lowest possible .NET Standard version and use that throughout your project.


Read more in .NET Platform Standard Library.





Key Technologies Not Yet Available on the .NET Standard or .NET Core


You may be using some technologies available for the .NET Framework that are not currently available for .NET Core.  Each of the following sub-sections corresponds to one of those technologies.  Alternative options are listed if it is feasible for you to adopt them.



App Domains


AppDomains can be used for different purposes on the .NET Framework. For code isolation, we recommend separate processes and/or containers as an alternative. For dynamic loading of assemblies, we recommend the new  @System.Runtime.Loader.AssemblyLoadContext class.





Remoting


For communication across processes, inter-process communication (IPC) mechanisms can be used as an alternative to Remoting, such as Pipes [https://docs.microsoft.com/dotnet/core/api/system.io.pipes] or Memory Mapped Files [https://docs.microsoft.com/dotnet/core/api/system.io.memorymappedfiles.memorymappedfile].


Across machines, you can use a network based solution as an alternative, preferably a low-overhead plain text protocol such as HTTP.  KestrelHttpServer [https://github.com/aspnet/KestrelHttpServer], the web server used by ASP.NET Core, is an option here.  Remote proxy generation via Castle.Core [https://github.com/castleproject/Core] is also an option to consider.





Binary Serialization


As an alternative to Binary Serialization, there are multiple different serialization technologies to choose.  You should choose one that fits your goals for formatting and footprint.  Popular choices include:



		JSON.NET [http://www.newtonsoft.com/json] for JSON


		@System.Runtime.Serialization.DataContractSerializer for both XML and JSON


		@System.Xml.Serialization.XmlSerializer for XML


		protobuf-net [https://github.com/mgravell/protobuf-net] for Protocol Buffers





Refer to the linked resources to learn about their benefits and choose the ones for your needs.  There are many other serialization formats and technologies out there, many of which are open source.





Sandboxes


As an alternative to Sandboxing, you can use operating system provided security boundaries, such as user accounts for running processes with the least set of privileges.







Overview of project.json


The project.json project model is a project model that ships with .NET Core SDK 1.0 Preview 2.  It offers some benefits you may wish to take advantage of today:



		Simple multitargeting where target-specific assemblies can be generated from a single build.


		The ability to easily generate a NuGet package with a build of the project.


		No need to list files in your project file.


		Unification of NuGet package dependencies and project-to-project dependencies.






While project.json is eventually going to be deprecated, it can be used to build libraries on the .NET Standard today.




The Project File: project.json


.NET Core projects are defined by a directory containing a project.json file.  This file is where aspects of the project are declared, such as package dependencies, compiler configuration, runtime configuration, and more.


The dotnet restore command reads this project file, restores all dependencies of the project, and generates a project.lock.json file.  This file contains all the necessary information the build system needs to build the project.


To learn more about the project.json file, read the project.json reference.





The Solution File: global.json


The global.json file is an optional file to include in a solution which contains multiple projects.  It typically resides in the root directory of a set of projects.  It can be used to inform the build system of different subdirectories which can contain projects.  This is for larger systems composed of several projects.


For example, you can organize your code into top-level /src and /test folder as such:


{
    "projects":[ "src", "test" ]
}






You can then have multiple project.json files under their own sub-folders inside /src and /test.





How to Multitarget with project.json


Many libraries multitarget to have as wide of a reach as possible.  With .NET Core, multitargeting is a “first class citizen”, meaning that you can easily generate platform-specific assemblies with a single build.


Multitargeting is as simple as adding the correct Target Framework Moniker (TFM) to your project.json file, using the correct dependencies for each target (dependencies for .NET Core and frameworkAssemblies for .NET Framework), and potentially using #if directives to conditionally compile the source code for platform-specific API usage.


For example, imagine you are building a library where you wanted to perform some network operations, and you wanted that library to run on all .NET Framework versions, a Portable Class Library (PCL) Profile, and .NET Core.  For .NET Core and .NET Framework 4.5+ targets, you may use System.Net.Http library and async/await.  However, for earlier versions of .NET Framework, those APIs aren’t available.


Here’s a sample frameworks section for a project.json that targets the .NET Framework versions 2.0, 3.5, 4.0, 4.5, and .NET Standard 1.6:


{
    "frameworks":{
        "net20":{
            "frameworkAssemblies":{
                "System.Net":""
            }
        },
        "net35":{
            "frameworkAssemblies":{
                "System.Net":""
            }
        },
        "net40":{
            "frameworkAssemblies":{
                "System.Net":""
            }
        },
        "net45":{
            "frameworkAssemblies":{
                "System.Net.Http":"",
                "System.Threading.Tasks":""
            }
        },
        ".NETPortable,Version=v4.5,Profile=Profile259": {
            "buildOptions": {
                "define": [ "PORTABLE" ]
             },
             "frameworkAssemblies":{
                 "mscorlib":"",
                 "System":"",
                 "System.Core":"",
                 "System.Net.Http":""
             }
        },
        "netstandard16":{
            "dependencies":{
                "NETStandard.Library":"1.6.0",
                "System.Net.Http":"4.0.1",
                "System.Threading.Tasks":"4.0.11"
            }
        },
    }
}






Note that PCL targets are special: they require you to specify a build definition for the compiler to recognize, and they require you to specify all of the assemblies you use, including mscorlib.


Your source code could then use the dependencies like this:


#if (NET20 || NET35 || NET40 || PORTABLE)
using System.Net;
#else
using System.Net.Http;
using System.Threading.Tasks;
#endif






Note that all of the .NET Framework and .NET Standard targets have names recognized by the compiler:


.NET Framework 2.0   --> NET20
.NET Framework 3.5   --> NET35
.NET Framework 4.0   --> NET40
.NET Framework 4.5   --> NET45
.NET Framework 4.5.1 --> NET451
.NET Framework 4.5.2 --> NET452
.NET Framework 4.6   --> NET46
.NET Framework 4.6.1 --> NET461
.NET Framework 4.6.2 --> NET462
.NET Standard 1.0    --> NETSTANDARD1_0
.NET Standard 1.1    --> NETSTANDARD1_1
.NET Standard 1.2    --> NETSTANDARD1_2
.NET Standard 1.3    --> NETSTANDARD1_3
.NET Standard 1.4    --> NETSTANDARD1_4
.NET Standard 1.5    --> NETSTANDARD1_5
.NET Standard 1.6    --> NETSTANDARD1_6






As mentioned above, if you are targeting a PCL, then you will have to specify a build definition for the compiler to understand.  There is no default definition that the compiler can use.





Using project.json in Visual Studio


You have two options for using project.json in Visual Studio:



		A new xproj project type.


		A retargeted PCL project which supports .NET Standard.





There are different benefits and drawbacks for each.



When to Pick an Xproj Project


The new Xproj project system in Visual Studio utilizes the capabilities of the project.json-based project model to offer two major features over existing project types: seamless multitargeting by building multiple assemblies and the ability to directly generate a NuGet package on build.


However, it comes at the cost of lacking certain features you may use, such as:



		Support for F# or Visual Basic


		Generating satellite assemblies with localized resource strings


		Directly referencing a .dll file on the filesystem


		The ability to reference a csproj-based project in the Reference Manager (depending on the .dll file directly is supported, though)





If your project needs are relatively minimal and you can take advantage of the new features of xproj, you should pick it as your project system.  This can be done in Visual Studio as such:



		Ensure you are using Visual Studio 2015 or later.


		Select File | New Project.


		Select ”.NET Core” under Visual C#.


		Select the “Class Library (.NET Core)” template.








When to Pick a PCL project


You can target .NET Core with the traditional project system in Visual Studio, by creating a Portable Class Library (PCL) and selecting ”.NET Core” in the project configuration dialog.  Then you’ll need to retarget the project to be based on the .NET Standard:



		Right-click on the project file in Visual Studio and select Properties.


		Under Build, select “Convert to .NET Standard”.





If you have more advanced project system needs, this should be your choice.  Note that if you wish to multitarget by generating platform-specific assemblies like with the xproj project system, you’ll need to create a “Bait and Switch” PCL, as described in How to Make Portable Class Libraries Work for You [https://blogs.msdn.microsoft.com/dsplaisted/2012/08/27/how-to-make-portable-class-libraries-work-for-you/].









Retargeting your .NET Framework Code to .NET Framework 4.6.2


If your code is not targeting .NET Framework 4.6.2, it’s recommended that you retarget.  This ensures that you can use the latest API alternatives for cases where the .NET Standard can’t support existing APIs.


For each of your projects in Visual Studio you wish to port, do the following:



		Right-click on the project and select Properties


		In the “Target Framework” dropdown, select ”.NET Framework 4.6.2”.


		Recompile your projects.





And that’s it!  Because your projects now target .NET Framework 4.6.2, you can use that version of .NET Framework as your base for porting code.





Determining the Portability of Your Code


The next step is to run the API Portability Analyzer (ApiPort) to generate a portability report that you can begin to analyze.


You’ll need to make sure you understand the API Portability tool (ApiPort) [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] and can generate portability reports for targeting .NET Core.  How you do this will likely vary based on your needs and personal tastes.  What follows are a few different approaches - you may find yourself mixing each approach depending on how your code is structured.



Dealing Primarily with the Compiler


This approach may be the best for small projects or projects which don’t use many .NET Framework APIs.  The approach is very simple:



		Optionally run ApiPort on your project.


		If ApiPort was ran, take a quick glance at the report.


		Copy all of your code over into a new .NET Core project.


		Work out compiler errors until it compiles, referring to the portability report if needed.


		Repeat as needed.





Although this approach is very unstructured, the code-focused approach can lead to resolving any issues quickly, and may be the best approach for smaller projects or libraries.  A project that contains only data models may be an ideal candidate here.





Staying on the .NET Framework until Portability Issues are Resolved


This approach may be the best if you prefer to have code that compiles during the entire process.  The approach is as follows:



		Run ApiPort on a project.


		Address issues by using different APIs which are portable.


		Keep note of any areas where you can’t use a direct alternative.


		Repeat steps 1-3 for all projects you’re porting until you’re confident each is ready to be copied over into a .NET Core project.


		Copy the code into a new .NET Core projects.


		Work out any issues that you’ve kept note of.





This careful approach is more structured than simply working out compiler errors, but it is still relatively code-focused and has the benefit of always having code that can compile.  The way you resolve certain issues that couldn’t be addressed by just using another API can vary greatly.  You may find that you need to develop a more comprehensive plan for certain projects, which is covered as the next approach.





Developing a Comprehensive Plan of Attack


This approach may be best for larger and more complex projects, where restructuring of code or rewriting certain areas may be necessary to support .NET Core.  The approach is as follows:



		Run ApiPort on a project.





		Understand where in your code each non-portable type is being used and how that affects overall portability.


a.  Understand the nature of those types.  Are they small in number, but used frequently?  Are they large in number, but used infrequently?  Is their use concentrated, or is it spread throughout your code?


b. Is it easy to isolate code that isn’t portable so you can deal with it more easily?


c. Would you need to refactor your code?


d. For those types which aren’t portable, are there alternative APIs that accomplish the same task?  For example, if you’re using the WebClient class, you may be able to use the HttpClient class instead.


e. Are there different portable APIs you can use to accomplish a task, even if it’s not a drop-in replacement?  For example, if you’re using XmlSchema to help parse XML, but you don’t require XML schema discovery, you could use System.Linq.Xml APIs and hand-parse the data.





		If you have assemblies that are difficult to port, is it worth leaving them on .NET Framework for now?  Here are some things to consider:


a. You may have some functionality in your library that’s incompatible with .NET Core because it relies too heavily on .NET Framework- or Windows-specific functionality.  Is it worth leaving that functionality behind for now and releasing a .NET Core version of your library with less features for the time being?


b. Would a refactor help here?





		Is it reasonable to write your own implementation of an unavailable .NET Framework API?


You could consider instead copying, modifying, and using code from the .NET Framework Reference Source [https://github.com/Microsoft/referencesource].  It’s licensed under the MIT License [https://github.com/Microsoft/referencesource/blob/master/LICENSE.txt], so you have significant freedom in doing this.  Just be sure to properly attribute Microsoft in your code!





		Repeat this process as needed for different projects.





		Once you have a plan, execute that plan.








The analysis phase could take some time depending on how large your codebase is.  Spending time in this phase to thoroughly understand the scope of changes needed and to develop a plan can save you a lot of time in the long run, particularly if you have a more complex codebase.


Your plan could involve making significant changes to your codebase while still targeting .NET Framework 4.6.2, making this a more structured version of the previous approach.  How you go about executing your plan will be dependent on your codebase.





Mixing Approaches


It’s likely that you’ll mix the above approaches on a per-project basis.  You should do what makes the most sense to you and for your codebase.







Porting your Tests


The best way to make sure everything works when you’ve ported your code is to test your code as you port it to .NET Core.  To do this, you’ll need to use a testing framework that will build and run tests for .NET Core.  Currently, you have three options:



		xUnit [https://xunit.github.io/]
		Getting Started [http://xunit.github.io/docs/getting-started-dnx.html]


		Tool to convert an MSTest project to xUnit [https://github.com/dotnet/codeformatter/tree/master/src/XUnitConverter]








		NUnit [http://www.nunit.org/]
		Getting Started [https://github.com/nunit/docs/wiki/Installation]


		Blog post about migrating from MSTest to NUnit [http://www.florian-rappl.de/News/Page/275/convert-mstest-to-nunit]








		MSTest [https://msdn.microsoft.com/library/ms243147.aspx]








Recommended Approach to Porting


Finally, porting the code itself!  Ultimately, the actual porting effort will depend heavily on how your .NET Framework code is structured.  That being said, here is a recommended approach which may work well with your codebase.


A good way to port your code is to begin with the “base” of your library.  This may be data models or some other foundational classes and methods that everything else uses directly or indirectly.



		Port the test project which tests the layer of your library that you’re currently porting.


		Copy over the “base” of your library into a new .NET Core project and select the version of the .NET Standard you wish to support.


		Make any changes needed to get the code to compile.  Much of this may require adding NuGet package dependencies to your project.json file.


		Run tests and make any needed adjustments.


		Pick the next layer of code to port over and repeat steps 2 and 3!





If you methodically move outward from the base of your library and test each layer as needed, porting will be a systematic process where problems are isolated to one layer of code at a time.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Expressions | A tour of the C# language
description: expressions, operands, and operators are building blocks of the C# language
keywords: .NET, csharp, expression, operator, operand
author: BillWagner
manager: wpickett
ms.date: 2016/08/10
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 20d5eb10-7381-47b9-ad90-f1cc895aa27e





Expressions


Expressions are constructed from operands and operators. The operators of an expression indicate which operations to apply to the operands. Examples of operators include +, -, *, /, and new. Examples of operands include literals, fields, local variables, and expressions.


When an expression contains multiple operators, the precedence of the operators controls the order in which the individual operators are evaluated. For example, the expression x + y * z is evaluated as x + (y * z) because the * operator has higher precedence than the + operator.


When an operand occurs between two operators with the same precedence, the associativity of the operators controls the order in which the operations are performed:



		Except for the assignment operators, all binary operators are left-associative, meaning that operations are performed from left to right. For example, x + y + z is evaluated as (x + y) + z.


		The assignment operators and the conditional operator (?:) are right-associative, meaning that operations are performed from right to left. For example, x = y = z is evaluated as x = (y = z).





Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies y by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.


Most operators can be overloaded. Operator overloading permits user-defined operator implementations to be specified for operations where one or both of the operands are of a user-defined class or struct type.


The following summarizes C#’s operators, listing the operator categories in order of precedence from highest to lowest. Operators in the same category have equal precedence. Under each category is a list of expressions in that category along with the description of that expression type.



		Primary
		x.m: Member access


		x(...): Method and delegate invocation


		x[...]: Array and indexer access


		x++: Post-increment


		x--: Post-decrement


		new T(...): Object and delegate creation


		new T(...){...}: Object creation with initializer


		new {...}:  Anonymous object initializer


		new T[...]: Array creation


		typeof(T): Obtain System.Type object for T


		checked(x): Evaluate expression in checked context


		unchecked(x): Evaluate expression in unchecked context


		default(T): Obtain default value of type T


		delegate {...}: Anonymous function (anonymous method)








		Unary
		+x: Identity


		-x: Negation


		!x: Logical negation


		~x: Bitwise negation


		++x: Pre-increment


		--x: Pre-decrement


		(T)x: Explicitly convert x to type T


		await x: Asynchronously wait for x to complete








		Multiplicative
		x * y: Multiplication


		x / y: Division


		x % y: Remainder








		Additive
		x + y: Addition, string concatenation, delegate combination


		x – y: Subtraction, delegate removal








		Shift
		x << y: Shift left


		x >> y: Shift right








		Relational and type testing
		x < y: Less than


		x > y: Greater than


		x <= y: Less than or equal


		x >= y: Greater than or equal


		x is T: Return true if x is a T, false otherwise


		x as T: Return x typed as T, or null if x is not a T








		Equality
		x == y: Equal


		x != y: Not equal








		Logical AND
		x & y: Integer bitwise AND, boolean logical AND








		Logical XOR
		x ^ y: Integer bitwise XOR, boolean logical XOR








		Logical OR
x | y: Integer bitwise OR, boolean logical OR


		Conditional AND
		x && y: Evaluates y only if x is not false








		Conditional OR
		x || y: Evaluates y only if x is not true








		Null coalescing
		X ?? y: Evaluates to y if x is null, to x otherwise








		Conditional
		x ? y : z: Evaluates y if x is true, z if x is false








		Assignment or anonymous function
		x = y: Assignment


		x op= y: Compound assignment; supported operators are
		*=   /=   %=   +=   -=   <<=   >>=   &=  ^=  |=








		(T x) => y: Anonymous function (lambda expression)












[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/porting/nuget-packages.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Porting to .NET Core - NuGet packages
description: Porting to .NET Core - NuGet packages
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 4d823e71-19ac-4419-953e-b47aa58f5538





🔧 Porting to .NET Core - NuGet packages



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach.


Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/delegates.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Delegates | A tour of the C# language
description: Learn late binding with C# delegates
keywords: .NET, csharp, delegate, lambda, late binding
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 3cc27357-3ac2-43a1-aad0-86a77b88f884





Delegates


A delegate type represents references to methods with a particular parameter list and return type. Delegates make it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates are similar to the concept of function pointers found in some other languages, but unlike function pointers, delegates are object-oriented and type-safe.


The following example declares and uses a delegate type named Function.


[!code-csharpDelegateExample]


An instance of the Function delegate type can reference any method that takes a double argument and returns a double value. The Apply method applies a given Function to the elements of a double[], returning a double[] with the results. In the Main method, Apply is used to apply three different functions to a double[].


A delegate can reference either a static method (such as Square or Math.Sin in the previous example) or an instance method (such as m.Multiply in the previous example). A delegate that references an instance method also references a particular object, and when the instance method is invoked through the delegate, that object becomes this in the invocation.


Delegates can also be created using anonymous functions, which are “inline methods” that are created on the fly. Anonymous functions can see the local variables of the surrounding methods. Thus, the multiplier example above can be written more easily without using a Multiplier class:


[!code-csharpLambdaExample]


An interesting and useful property of a delegate is that it does not know or care about the class of the method it references; all that matters is that the referenced method has the same parameters and return type as the delegate.



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/porting/third-party-deps.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Porting to .NET Core - Analyzing your Third-Party Party Dependencies
description: Porting to .NET Core - Analyzing your Third-Party Dependencies
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b446e9e0-72f6-48f6-92c6-70ad0ce3f86a





Porting to .NET Core - Analyzing your Third-Party Party Dependencies


The first step in the porting process is to understand your third party dependencies.  You need to figure out which of them, if any, don’t yet run on .NET Core, and develop a contingency plan for those which don’t run on .NET Core.



Prerequisites


This article will assume you are using Windows and Visual Studio, and that you have code which runs on the .NET Framework today.





Analyzing NuGet Packages


Analyzing NuGet packages for portability is very easy.  Because a NuGet package is itself a set of folders which contain platform-specific assemblies, all you have to do is check to see if there is a folder which contains a .NET Core assembly.


Inspecting NuGet Package folders is easiest with the NuGet Package Explorer [https://github.com/NuGetPackageExplorer/NuGetPackageExplorer] tool.  Here’s how to do it.



		Download and open the NuGet Package Explorer.


		Click “Open package from online feed”.


		Search for the name of the package.


		Expand the “lib” folder on the right-hand side and look at folder names.





You can also see what a package supports on nuget.org [https://www.nuget.org/] under the Dependencies section of the page for that package.


In either case, you’ll need to look for a folder or entry on nuget.org [https://www.nuget.org/] with any of the following names:


netstandard1.0
netstandard1.1
netstandard1.2
netstandard1.3
netstandard1.4
netstandard1.5
netstandard1.6
netcoreapp1.0
portable-net45-win8
portable-win8-wpa8
portable-net451-win81
portable-net45-win8-wpa8-wpa81






These are the Target Framework Monikers (TFM) which map to versions of The .NET Standard Library and traditional Portable Class Library (PCL) profiles which are compatible with .NET Core.  Note that netcoreapp1.0, while compatible, is for applications and not libraries.  Although there’s nothing wrong with using a library which is netcoreapp1.0-based, that library may not be intended for anything other than consumption by other netcoreapp1.0 applications.


There are also some legacy TFMs used in pre-release versions of .NET Core that may also be compatible:


dnxcore50
dotnet5.0
dotnet5.1
dotnet5.2
dotnet5.3
dotnet5.4
dotnet5.5






While these will likely work with your code, there is no guarantee of compatibility.  Packages with these TFMs were built with pre-release .NET Core packages.  Take note of when (or if) packages like this are updated to be netstandard-based.



[!NOTE]
To use a package targeting a traditional PCL or pre-release .NET Core target, you must use the imports directive in your project.json file.




What to do when your NuGet package dependency doesn’t run on .NET Core


There are a few things you can do if a NuGet package you depend on won’t run on .NET Core.



		If the project is open source and hosted somewhere like GitHub, you can engage the developer(s) directly.


		You can contact the author directly on nuget.org [https://www.nuget.org/] by searching for the package and clicking “Contact Owners” on the left hand side of the package’s page.


		You can look for another package that runs on .NET Core which accomplishes the same task as the package you were using.


		You can attempt to write the code the package was doing yourself.


		You could eliminate the dependency on the package by changing the functionality of your app, at least until a compatible version of the package becomes available.





Please remember that open source project maintainers and NuGet package publishers are often volunteers who contribute because they care about a given domain, do it for free, and often have a different daytime job. If you do reach out, you might start with a positive statement about the library before asking about .NET Core support.


If you’re unable to resolve your issue with any of the above, you may have to port to .NET Core at a later date.


The .NET Team would like to know which libraries are the most important to support next with .NET Core. You can also send us mail at dotnet@microsoft.com about the libraries you’d like to use.







Analyzing Dependencies which aren’t NuGet Packages


You may have a dependency that isn’t a NuGet package, such as a DLL in the filesystem.  The only way to determine the portability of that dependency is to run the ApiPort tool [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md].





Next steps


If you’re porting a library, check out Porting your Libraries.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/enums.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Enums | A tour of the C# language
description: Learn about enums, discrete named constants in C#
keywords: .NET, csharp
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 7faba1cc-6ea9-4a19-adb9-0335e4b132e5





Enums


An enum type is a distinct value type with a set of named constants. You define enums when you need to define a type that can have a set of discrete values. They use one of the integral value types as their underlying storage. They provide semantic meaning to the discrete values.


The following example declares and uses an enum type named Color with three constant values, Red, Green, and Blue.


[!code-csharpEnumExample]


Each enum type has a corresponding integral type called the underlying type of the enum type. An enum type that does not explicitly declare an underlying type has an underlying type of int. An enum type’s storage format and range of possible values are determined by its underlying type. The set of values that an enum type can take on is not limited by its enum members. In particular, any value of the underlying type of an enum can be cast to the enum type and is a distinct valid value of that enum type.


The following example declares an enum type named Alignment with an underlying type of sbyte.


[!code-csharpEnumStorage]


As shown by the previous example, an enum member declaration can include a constant expression that specifies the value of the member. The constant value for each enum member must be in the range of the underlying type of the enum. When an enum member declaration does not explicitly specify a value, the member is given the value zero (if it is the first member in the enum type) or the value of the textually preceding enum member plus one.


Enum values can be converted to integral values and vice versa using type casts. For example:


[!code-csharpEnumStorage]


The default value of any enum type is the integral value zero converted to the enum type. In cases where variables are automatically initialized to a default value, this is the value given to variables of enum types. In order for the default value of an enum type to be easily available, the literal 0 implicitly converts to any enum type. Thus, the following is permitted.


[!code-csharpEnumZero]



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/porting/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Porting to .NET Core from .NET Framework
description: Porting to .NET Core from .NET Framework
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 00d00d38-99af-44f4-a75f-defcd9729dc5





Porting to .NET Core from .NET Framework


If you’ve got code running on the .NET Framework, you may be interested in running your code on .NET Core 1.0.  This article covers an overview of the porting process and a list of the tools you may find helpful when porting to .NET Core.



Overview of the Porting Process


The recommended process for porting follows the following series of steps.  Each of these parts of the process are covered in more detail in further articles.



		Identify and account for your third-party dependencies.


This will involve understanding what your third-party dependencies are, how you depend on them, how to see if they also run on .NET Core, and steps you can take if they don’t.





		Retarget all projects you wish to port to target .NET Framework 4.6.2.


This ensures that you can use API alternatives for .NET Framework-specific targets in the cases where .NET Core can’t support a particular API.





		Use the API Portability Analyzer tool [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] to analyze your assemblies and develop a plan to port based on its results.


The API Portability Analyzer tool will analyze your compiled assemblies and generate a report which shows a high-level portability summary and a breakdown of each API you’re using that isn’t available on .NET Core.  You can use this report alongside an analysis of your codebase to develop a plan for how you’ll port your code over.





		Port your tests code.


Because porting to .NET Core is such a big change to your codebase, it’s highly recommended to get your tests ported so that you can run tests as you port code over.  MSTest, xUnit, and NUnit all support .NET Core 1.0 today.





		Execute your plan for porting!











Tools to help


Here’s a short list of the tools you’ll find helpful:



		NuGet - Nuget Client [https://dist.nuget.org/index.html] or NuGet Package Explorer [https://github.com/NuGetPackageExplorer/NuGetPackageExplorer], Microsoft’s package manager for the .NET Platform.


		Api Portability Analyzer - command line tool [https://github.com/Microsoft/dotnet-apiport/releases] or Visual Studio Extension [https://visualstudiogallery.msdn.microsoft.com/1177943e-cfb7-4822-a8a6-e56c7905292b], a toolchain that can generate a report of how portable your code is between .NET Framework and .NET Core, with an assembly-by-assembly breakdown of issues.  See Tooling to help you on the process [https://github.com/Microsoft/dotnet-apiport/blob/master/docs/HowTo/Introduction.md] for more information.


		Reverse Package Search - A useful web service [https://packagesearch.azurewebsites.net] that allows you to search for a type and find packages containing that type.








Next steps


Analyzing your third-party dependencies.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/structures.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Structures (F#)
description: Structures (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 50819506-3210-418f-9602-0ee1c9a52177





Structures


A structure is a compact object type that can be more efficient than a class for types that have a small amount of data and simple behavior.



Syntax


[ attributes ]
type [accessibility-modifier] type-name =
    struct
        type-definition-elements
    end
// or
[ attributes ]
[<StructAttribute>]
type [accessibility-modifier] type-name =
    type-definition-elements









Remarks


Structures are value types, which means that they are stored directly on the stack or, when they are used as fields or array elements, inline in the parent type. Unlike classes and records, structures have pass-by-value semantics. This means that they are useful primarily for small aggregates of data that are accessed and copied frequently.


In the previous syntax, two forms are shown. The first is not the lightweight syntax, but it is nevertheless frequently used because, when you use the struct and end keywords, you can omit the StructAttribute attribute, which appears in the second form. You can abbreviate StructAttribute to just Struct.


The type-definition-elements in the previous syntax represents member declarations and definitions. Structures can have constructors and mutable and immutable fields, and they can declare members and interface implementations. For more information, see Members.


Structures cannot participate in inheritance, cannot contain let or do bindings, and cannot recursively contain fields of their own type (although they can contain reference cells that reference their own type).


Because structures do not allow let bindings, you must declare fields in structures by using the val keyword. The val keyword defines a field and its type but does not allow initialization. Instead, val declarations are initialized to zero or null. For this reason, structures that have an implicit constructor (that is, parameters that are given immediately after the structure name in the declaration) require that val declarations be annotated with the DefaultValue attribute. Structures that have a defined constructor still support zero-initialization. Therefore, the DefaultValue attribute is a declaration that such a zero value is valid for the field. Implicit constructors for structures do not perform any actions because let and do bindings aren’t allowed on the type, but the implicit constructor parameter values passed in are available as private fields.


Explicit constructors might involve initialization of field values. When you have a structure that has an explicit constructor, it still supports zero-initialization; however, you do not use the DefaultValue attribute on the val declarations because it conflicts with the explicit constructor. For more information about val declarations, see Explicit Fields: The val Keyword.


Attributes and accessibility modifiers are allowed on structures, and follow the same rules as those for other types. For more information, see Attributes and Access Control.


The following code examples illustrate structure definitions.


[!code-fsharpMain]





See Also


F# Language Reference


Classes


Records


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/active-patterns.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Active Patterns (F#)
description: Active Patterns (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 11a724ff-f9ff-4056-b5e0-87e9ed986f4a





Active Patterns


Active patterns enable you to define named partitions that subdivide input data, so that you can use these names in a pattern matching expression just as you would for a discriminated union. You can use active patterns to decompose data in a customized manner for each partition.



Syntax


// Complete active pattern definition.
let (|identifer1|identifier2|...|) [ arguments ] = expression
// Partial active pattern definition.
let (|identifier|_|) [ arguments ] = expression









Remarks


In the previous syntax, the identifiers are names for partitions of the input data that is represented by arguments, or, in other words, names for subsets of the set of all values of the arguments. There can be up to seven partitions in an active pattern definition. The expression describes the form into which to decompose the data. You can use an active pattern definition to define the rules for determining which of the named partitions the values given as arguments belong to. The (| and |) symbols are referred to as banana clips and the function created by this type of let binding is called an active recognizer.


As an example, consider the following active pattern with an argument.


[!code-fsharpMain]


You can use the active pattern in a pattern matching expression, as in the following example.


[!code-fsharpMain]


The output of this program is as follows:


7 is odd
11 is odd
32 is even






Another use of active patterns is to decompose data types in multiple ways, such as when the same underlying data has various possible representations. For example, a Color object could be decomposed into an RGB representation or an HSB representation.


[!code-fsharpMain]


The output of the above program is as follows:


Red
R: 255 G: 0 B: 0
H: 0.000000 S: 1.000000 B: 0.500000
Black
R: 0 G: 0 B: 0
H: 0.000000 S: 0.000000 B: 0.000000
White
R: 255 G: 255 B: 255
H: 0.000000 S: 0.000000 B: 1.000000
Gray
R: 128 G: 128 B: 128
H: 0.000000 S: 0.000000 B: 0.501961
BlanchedAlmond
R: 255 G: 235 B: 205
H: 36.000000 S: 1.000000 B: 0.901961






In combination, these two ways of using active patterns enable you to partition and decompose data into just the appropriate form and perform the appropriate computations on the appropriate data in the form most convenient for the computation.


The resulting pattern matching expressions enable data to be written in a convenient way that is very readable, greatly simplifying potentially complex branching and data analysis code.





Partial Active Patterns


Sometimes, you need to partition only part of the input space. In that case, you write a set of partial patterns each of which match some inputs but fail to match other inputs. Active patterns that do not always produce a value are called partial active patterns; they have a return value that is an option type. To define a partial active pattern, you use a wildcard character (_) at the end of the list of patterns inside the banana clips. The following code illustrates the use of a partial active pattern.


[!code-fsharpMain]


The output of the previous example is as follows:


1.100000 : Floating point
0 : Integer
0.000000 : Floating point
10 : Integer
Something else : Not matched.






When using partial active patterns, sometimes the individual choices can be disjoint or mutually exclusive, but they need not be. In the following example, the pattern Square and the pattern Cube are not disjoint, because some numbers are both squares and cubes, such as 64. The following program prints out all integers up to 1000000 that are both squares and cubes.


[!code-fsharpMain]


The output is as follows:


1
64
729
4096
15625
46656
117649
262144
531441
1000000









Parameterized Active Patterns


Active patterns always take at least one argument for the item being matched, but they may take additional arguments as well, in which case the name parameterized active pattern applies. Additional arguments allow a general pattern to be specialized. For example, active patterns that use regular expressions to parse strings often include the regular expression as an extra parameter, as in the following code, which also uses the partial active pattern Integer defined in the previous code example. In this example, strings that use regular expressions for various date formats are given to customize the general ParseRegex active pattern. The Integer active pattern is used to convert the matched strings into integers that can be passed to the DateTime constructor.


[!code-fsharpMain]


The output of the previous code is as follows:


12/22/2008 12:00:00 AM 1/1/2009 12:00:00 AM 1/15/2008 12:00:00 AM 12/28/1995 12:00:00 AM









See Also


F# Language Reference


Match Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/conditional-expressions-if-then-else.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Conditional Expressions: if... then...else (F#)”
description: “Conditional Expressions: if... then...else (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 16e1871c-4d4d-4691-9ab2-bd2c6f65589a





Conditional Expressions: if...then...else


The if...then...else expression runs different branches of code and also evaluates to a different value depending on the Boolean expression given.



Syntax


if boolean-expression then expression1 [ else expression2 ]









Remarks


In the previous syntax, expression1 runs when the Boolean expression evaluates to true; otherwise, expression2 runs.


Unlike in other languages, the if...then...else construct is an expression, not a statement. That means that it produces a value, which is the value of the last expression in the branch that executes. The types of the values produced in each branch must match. If there is no explicit else branch, its type is unit. Therefore, if the type of the then branch is any type other than unit, there must be an else branch with the same return type. When chaining if...then...else expressions together, you can use the keyword elif instead of else if; they are equivalent.





Example


The following example illustrates how to use the if...then...else expression.


[!code-fsharpMain]


John
910 is less than 20
You are only 9 years old and already learning F#? Wow!









See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/resource-management-the-use-keyword.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “Resource Management: The use Keyword (F#)”
description: “Resource Management: The use Keyword (F#)”
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 00c3040e-859f-4dad-a7b5-7b8d44dc232c





Resource Management: The use Keyword


This topic describes the keyword use and the using function, which can control the initialization and release of resources.



Resources


The term resource is used in more than one way. Yes, resources can be data that an application uses, such as strings, graphics, and the like, but in this context, resources refers to software or operating system resources, such as graphics device contexts, file handles, network and database connections, concurrency objects such as wait handles, and so on. The use of these resources by applications involves the acquisition of the resource from the operating system or other resource provider, followed by the later release of the resource to the pool so that it can be provided to another application. Problems occur when applications do not release resources back to the common pool.





Managing Resources


To efficiently and responsibly manage resources in an application, you must release resources promptly and in a predictable manner. The .NET Framework helps you do this by providing the System.IDisposable interface. A type that implements System.IDisposable has the System.IDisposable.Dispose method, which correctly frees resources. Well-written applications guarantee that System.IDisposable.Dispose is called promptly when any object that holds a limited resource is no longer needed. Fortunately, most .NET languages provide support to make this easier, and F# is no exception. There are two useful language constructs that support the dispose pattern: the use binding and the using function.





use Binding


The use keyword has a form that resembles that of the let binding:


use value = expression


It provides the same functionality as a let binding but adds a call to Dispose on the value when the value goes out of scope. Note that the compiler inserts a null check on the value, so that if the value is null, the call to Dispose is not attempted.


The following example shows how to close a file automatically by using the use keyword.


[!code-fsharpMain]



[!NOTE]
You can use use in computation expressions, in which case a customized version of the use expression is used. For more information, see Sequences, Asynchronous Workflows, and Computation Expressions.






using Function


The using function has the following form:


using (expression1) function-or-lambda


In a using expression, expression1 creates the object that must be disposed. The result of expression1 (the object that must be disposed) becomes an argument, value, to function-or-lambda, which is either a function that expects a single remaining argument of a type that matches the value produced by expression1, or a lambda expression that expects an argument of that type. At the end of the execution of the function, the runtime calls Dispose and frees the resources (unless the value is null, in which case the call to Dispose is not attempted).


The following example demonstrates the using expression with a lambda expression.


[!code-fsharpMain]


The next example shows the using expression with a function.


[!code-fsharpMain]


Note that the function could be a function that has some arguments applied already. The following code example demonstrates this. It creates a file that contains the string XYZ.


[!code-fsharpMain]


The using function and the use binding are nearly equivalent ways to accomplish the same thing. The using keyword provides more control over when Dispose is called. When you use using, Dispose is called at the end of the function or lambda expression; when you use the use keyword, Dispose is called at the end of the containing code block. In general, you should prefer to use use instead of the using function.





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/type-extensions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Type Extensions (F#)
description: Type Extensions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: c9d7ce27-f5ad-4766-b9e9-34187da5bc24





Type Extensions


Type extensions let you add new members to a previously defined object type.



Syntax


// Intrinsic extension.
type typename with
    member self-identifier.member-name =
        body
    ...
[ end ]

// Optional extension.
type typename with
    member self-identifier.member-name =
        body
    ...
[ end ]









Remarks


There are two forms of type extensions that have slightly different syntax and behavior. An intrinsic extension is an extension that appears in the same namespace or module, in the same source file, and in the same assembly (DLL or executable file) as the type being extended. An optional extension is an extension that appears outside the original module, namespace, or assembly of the type being extended. Intrinsic extensions appear on the type when the type is examined by reflection, but optional extensions do not. Optional extensions must be in modules, and they are only in scope when the module that contains the extension is open.


In the previous syntax, typename represents the type that is being extended. Any type that can be accessed can be extended, but the type name must be an actual type name, not a type abbreviation. You can define multiple members in one type extension. The self-identifier represents the instance of the object being invoked, just as in ordinary members.


The end keyword is optional in lightweight syntax.


Members defined in type extensions can be used just like other members on a class type. Like other members, they can be static or instance members. These methods are also known as extension methods; properties are known as extension properties, and so on. Optional extension members are compiled to static members for which the object instance is passed implicitly as the first parameter. However, they act as if they were instance members or static members according to how they are declared. Implicit extension members are included as members of the type and can be used without restriction.


Extension methods cannot be virtual or abstract methods. They can overload other methods of the same name, but the compiler gives preference to non-extension methods in the case of an ambiguous call.


If multiple intrinsic type extensions exist for one type, all members must be unique. For optional type extensions, members in different type extensions to the same type can have the same names. Ambiguity errors occur only if client code opens two different scopes that define the same member names.


In the following example, a type in a module has an intrinsic type extension. To client code outside the module, the type extension appears as a regular member of the type in all respects.


[!code-fsharpMain]


You can use intrinsic type extensions to separate the definition of a type into sections. This can be useful in managing large type definitions, for example, to keep compiler-generated code and authored code separate or to group together code created by different people or associated with different functionality.


In the following example, an optional type extension extends the System.Int32 type with an extension method FromString that calls the static member Parse. The testFromString method demonstrates that the new member is called just like any instance member.


[!code-fsharpMain]


The new instance member will appear like any other method of the Int32 type in IntelliSense, but only when the module that contains the extension is open or otherwise in scope.





Generic Extension Methods


Before F# 3.1, the F# compiler didn’t support the use of C#-style extension methods with a generic type variable, array type, tuple type, or an F# function type as the “this” parameter. F# 3.1 supports the use of these extension members.


For example, in F# 3.1 code, you can use extension methods with signatures that resemble the following syntax in C#:


static member Method<T>(this T input, T other)






This approach is particularly useful when the generic type parameter is constrained. Further, you can now declare extension members like this in F# code and define an additional, semantically rich set of extension methods. In F#, you usually define extension members as the following example shows:


type seq<’T> with
    /// Repeat each element of the sequence n times
    member xs.RepeatElements(n: int) =
        seq { for x in xs do for i in 1 .. n do yield x }






However, for a generic type, the type variable may not be constrained. You can now declare a C#-style extension member in F# to work around this limitation. When you combine this kind of declaration with the inline feature of F#, you can present generic algorithms as extension members.


Consider the following declaration:


[<Extension>]
type ExtraCSharpStyleExtensionMethodsInFSharp () =
    [<Extension>]
    static member inline Sum(xs: seq<’T>) = Seq.sum xs






By using this declaration, you can write code that resembles the following sample.


let listOfIntegers = [ 1 .. 100 ]
let listOfBigIntegers = [ 1I to 100I ]
let sum1 = listOfIntegers.Sum()
let sum2 = listOfBigIntegers.Sum()






In this code, the same generic arithmetic code is applied to lists of two types without overloading, by defining a single extension member.





See Also


F# Language Reference


Members








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/strings.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Strings (F#)
description: Strings (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: df7624e5-ca6c-4e77-9e2b-87ca7e5e6f52





Strings



[!NOTE]
The API reference links in this article will take you to MSDN.  The docs.microsoft.com API reference is not complete.



The string type represents immutable text as a sequence of Unicode characters. string is an alias for System.String in the .NET Framework.



Remarks


String literals are delimited by the quotation mark (”) character. The backslash character () is used to encode certain special characters. The backslash and the next character together are known as an escape sequence. Escape sequences supported in F# string literals are shown in the following table.


|Character|Escape sequence|
|———|—————|
|Backspace|\b|
|Newline|\n|
|Carriage return|\r|
|Tab|\t|
|Backslash|\|
|Quotation mark|“|
|Apostrophe|‘|
|Unicode character|\uXXXX or \UXXXXXXXX (where X indicates a hexadecimal digit)|


If preceded by the @ symbol, the literal is a verbatim string. This means that any escape sequences are ignored, except that two quotation mark characters are interpreted as one quotation mark character.


Additionally, a string may be enclosed by triple quotes. In this case, all escape sequences are ignored, including double quotation mark characters. To specify a string that contains an embedded quoted string, you can either use a verbatim string or a triple-quoted string. If you use a verbatim string, you  must specify two quotation mark characters to indicate a single quotation mark character. If you use a triple-quoted string, you can use the single quotation mark characters without them being parsed as the end of the string. This technique can be useful when you work with XML or other structures that include embedded quotation marks.


// Using a verbatim string
let xmlFragment1 = @"<book author=""Milton, John"" title=""Paradise Lost"">"

// Using a triple-quoted string
let xmlFragment2 = """<book author="Milton, John" title="Paradise Lost">"""






In code, strings that have line breaks are accepted and the line breaks are interpreted literally as newlines, unless a backslash character is the last character before the line break. Leading whitespace on the next line is ignored when the backslash character is used. The following code produces a string str1 that has value "abc\n def" and a string str2 that has value "abcdef".


[!code-fsharpMain]


You can access individual characters in a string by using array-like syntax, as follows.


[!code-fsharpMain]


The output is b.


Or you can extract substrings by using array slice syntax, as shown in the following code.


[!code-fsharpMain]


The output is as follows.


abc
def






You can represent ASCII strings by arrays of unsigned bytes, type byte[]. You add the suffix B to a string literal to indicate that it is an ASCII string. ASCII string literals used with byte arrays support the same escape sequences as Unicode strings, except for the Unicode escape sequences.


[!code-fsharpMain]





String Operators


There are two ways to concatenate strings: by using the + operator or by using the ^ operator. The + operator maintains compatibility with the .NET Framework string handling features.


The following example illustrates string concatenation.


[!code-fsharpMain]





String Class


Because the string type in F# is actually a .NET Framework System.String type, all the System.String members are available. This includes the + operator, which is used to concatenate strings, the Length property, and the Chars property, which returns the string as an array of Unicode characters. For more information about strings, see System.String.


By using the Chars property of System.String, you can access the individual characters in a string by specifying an index, as is shown in the following code.


[!code-fsharpMain]





String Module


Additional functionality for string handling is included in the String module in the FSharp.Core namespace. For more information, see Core.String Module [https://msdn.microsoft.com/visualfsharpdocs/conceptual/core.string-module-%5bfsharp%5d].





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/type-inference.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Type Inference (F#)
description: Type Inference (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: 2d5fa4b1-732a-4d71-a62d-07f7ee79fe06





Type Inference


This topic describes how the F# compiler infers the types of values, variables, parameters and return values.



Type Inference in General


The idea of type inference is that you do not have to specify the types of F# constructs except when the compiler cannot conclusively deduce the type. Omitting explicit type information does not mean that F# is a dynamically typed language or that values in F# are weakly typed. F# is a statically typed language, which means that the compiler deduces an exact type for each construct during compilation. If there is not enough information for the compiler to deduce the types of each construct, you must supply additional type information, typically by adding explicit type annotations somewhere in the code.





Inference of Parameter and Return Types


In a parameter list, you do not have to specify the type of each parameter. And yet, F# is a statically typed language, and therefore every value and expression has a definite type at compile time. For those types that you do not specify explicitly, the compiler infers the type based on the context. If the type is not otherwise specified, it is inferred to be generic. If the code uses a value inconsistently, in such a way that there is no single inferred type that satisfies all the uses of a value, the compiler reports an error.


The return type of a function is determined by the type of the last expression in the function.


For example, in the following code, the parameter types a and b and the return type are all inferred to be int because the literal 100 is of type int.


[!code-fsharpMain]


You can influence type inference by changing the literals. If you make the 100 a uint32 by appending the suffix u, the types of a, b, and the return value are inferred to be uint32.


You can also influence type inference by using other constructs that imply restrictions on the type, such as functions and methods that work with only a particular type.


Also, you can apply explicit type annotations to function or method parameters or to variables in expressions, as shown in the following examples. Errors result if conflicts occur between different constraints.


[!code-fsharpMain]


You can also explicitly specify the return value of a function by providing a type annotation after all the parameters.


[!code-fsharpMain]


A common case where a type annotation is useful on a parameter is when the parameter is an object type and you want to use a member.


[!code-fsharpMain]





Automatic Generalization


If the function code is not dependent on the type of a parameter, the compiler considers the parameter to be generic. This is called automatic generalization, and it can be a powerful aid to writing generic code without increasing complexity.


For example, the following function combines two parameters of any type into a tuple.


[!code-fsharpMain]


The type is inferred to be


'a -> 'b -> 'a * 'b









Additional Information


Type inference is described in more detail in the F# Language Specification.





See Also


Automatic Generalization








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/casting-and-conversions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Casting and Conversions (F#)
description: Casting and Conversions (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: db30db67-da21-4206-bf0c-9211bd3cb22f





Casting and Conversions (F#)


This topic describes support for type conversions in F#.



Arithmetic Types


F# provides conversion operators for arithmetic conversions between various primitive types, such as between integer and floating point types. The integral and char conversion operators have checked and unchecked forms; the floating point operators and the enum conversion operator do not. The unchecked forms are defined in Microsoft.FSharp.Core.Operators and the checked forms are defined in Microsoft.FSharp.Core.Operators.Checked. The checked forms check for overflow and generate a runtime exception if the resulting value exceeds the limits of the target type.


Each of these operators has the same name as the name of the destination type. For example, in the following code, in which the types are explicitly annotated, byte appears with two different meanings. The first occurrence is the type and the second is the conversion operator.


[!code-fsharpMain]


The following table shows conversion operators defined in F#.


|Operator|Description|
|——–|———–|
|byte|Convert to byte, an 8-bit unsigned type.|
|sbyte|Convert to signed byte.|
|int16|Convert to a 16-bit signed integer.|
|uint16|Convert to a 16-bit unsigned integer.|
|int32, int|Convert to a 32-bit signed integer.|
|uint32|Convert to a 32-bit unsigned integer.|
|int64|Convert to a 64-bit signed integer.|
|uint64|Convert to a 64-bit unsigned integer.|
|nativeint|Convert to a native integer.|
|unativeint|Convert to an unsigned native integer.|
|float, double|Convert to a 64-bit double-precision IEEE floating point number.|
|float32, single|Convert to a 32-bit single-precision IEEE floating point number.|
|decimal|Convert to System.Decimal.|
|char|Convert to System.Char, a Unicode character.|
|enum|Convert to an enumerated type.|
In addition to built-in primitive types, you can use these operators with types that implement op_Explicit or op_Implicit methods with appropriate signatures. For example, the int conversion operator works with any type that provides a static method op_Explicit that takes the type as a parameter and returns int. As a special exception to the general rule that methods cannot be overloaded by return type, you can do this forop_Explicit and op_Implicit.





Enumerated Types


The enum operator is a generic operator that takes one type parameter that represents the type of the enum to convert to. When it converts to an enumerated type, type inference attempts to determine the type of the enum that you want to convert to. In the following example, the variable col1 is not explicitly annotated, but its type is inferred from the later equality test. Therefore, the compiler can deduce that you are converting to a Color enumeration. Alternatively, you can supply a type annotation, as with col2 in the following example.


[!code-fsharpMain]


You can also specify the target enumeration type explicitly as a type parameter, as in the following code:


let col3 = enum<Color> 3






Note that the enumeration casts work only if the underlying type of the enumeration is compatible with the type being converted. In the following code, the conversion fails to compile because of the mismatch between int32 and uint32.


// Error: types are incompatible
let col4 : Color = enum 2u






For more information, see Enumerations.





Casting Object Types


Conversion between types in an object hierarchy is fundamental to object-oriented programming. There are two basic types of conversions: casting up (upcasting) and casting down (downcasting). Casting up a hierarchy means casting from a derived object reference to a base object reference. Such a cast is guaranteed to work as long as the base class is in the inheritance hierarchy of the derived class. Casting down a hierarchy, from a base object reference to a derived object reference, succeeds only if the object actually is an instance of the correct destination (derived) type or a type derived from the destination type.


F# provides operators for these types of conversions. The :> operator casts up the hierarchy, and the :?> operator casts down the hierarchy.



Upcasting


In many object-oriented languages, upcasting is implicit; in F#, the rules are slightly different. Upcasting is applied automatically when you pass arguments to methods on an object type. However, for let-bound functions in a module, upcasting is not automatic, unless the parameter type is declared as a flexible type. For more information, see Flexible Types.


The :> operator performs a static cast, which means that the success of the cast is determined at compile time. If a cast that uses :> compiles successfully, it is a valid cast and has no chance of failure at run time.


You can also use the upcast operator to perform such a conversion. The following expression specifies a conversion up the hierarchy:


upcast expression






When you use the upcast operator, the compiler attempts to infer the type you are converting to from the context. If the compiler is unable to determine the target type, the compiler reports an error.





Downcasting


The :?> operator performs a dynamic cast, which means that the success of the cast is determined at run time. A cast that uses the :?> operator is not checked at compile time; but at run time, an attempt is made to cast to the specified type. If the object is compatible with the target type, the cast succeeds. If the object is not compatible with the target type, the runtime raises an InvalidCastException.


You can also use the downcast operator to perform a dynamic type conversion. The following expression specifies a conversion down the hierarchy to a type that is inferred from program context:


downcast expression






As for the upcast operator, if the compiler cannot infer a specific target type from the context, it reports an error.


The following code illustrates the use of the :> and :?> operators. The code illustrates that the :?> operator is best used when you know that conversion will succeed, because it throws InvalidCastException if the conversion fails. If you do not know that a conversion will succeed, a type test that uses a match expression is better because it avoids the overhead of generating an exception.


[!code-fsharpMain]


Because generic operators downcast and upcast rely on type inference to determine the argument and return type, in the above code, you can replace


let base1 = d1 :> Base1






with


base1 = upcast d1






In the previous code, the argument type and return types are Derived1 and Base1, respectively.


For more information about type tests, see Match Expressions.







See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/abstract-classes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Abstract Classes (F#)
description: Abstract Classes (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: a3dcc335-433b-4672-ac2d-ae6b11b816f3





Abstract Classes


Abstract classes are classes that leave some or all members unimplemented, so that implementations can be provided by derived classes.



Syntax


// Abstract class syntax.
[<AbstractClass>]
type [ accessibility-modifier ] abstract-class-name =
[ inherit base-class-or-interface-name ]
[ abstract-member-declarations-and-member-definitions ]

// Abstract member syntax.
abstract member member-name : type-signature









Remarks


In object-oriented programming, an abstract class is used as a base class of a hierarchy, and represents common functionality of a diverse set of object types. As the name “abstract” implies, abstract classes often do not correspond directly onto concrete entities in the problem domain. However, they do represent what many different concrete entities have in common.


Abstract classes must have the AbstractClass attribute. They can have implemented and unimplemented members. The use of the term abstract when applied to a class is the same as in other .NET languages; however, the use of the term abstract when applied to methods (and properties) is a little different in F# from its use in other .NET languages. In F#, when a method is marked with the abstract keyword, this indicates that a member has an entry, known as a virtual dispatch slot, in the internal table of virtual functions for that type. In other words, the method is virtual, although the virtual keyword is not used in the F# language. The keyword abstract is used on virtual methods regardless of whether the method is implemented. The declaration of a virtual dispatch slot is separate from the definition of a method for that dispatch slot. Therefore, the F# equivalent of a virtual method declaration and definition in another .NET language is a combination of both an abstract method declaration and a separate definition, with either the default keyword or the override keyword. For more information and examples, see Methods.


A class is considered abstract only if there are abstract methods that are declared but not defined. Therefore, classes that have abstract methods are not necessarily abstract classes. Unless a class has undefined abstract methods, do not use the AbstractClass attribute.


In the previous syntax, accessibility-modifier can be public, private or internal. For more information, see Access Control.


As with other types, abstract classes can have a base class and one or more base interfaces. Each base class or interface appears on a separate line together with the inherit keyword.


The type definition of an abstract class can contain fully defined members, but it can also contain abstract members. The syntax for abstract members is shown separately in the previous syntax. In this syntax, the type signature of a member is a list that contains the parameter types in order and the return types, separated by -> tokens and/or * tokens as appropriate for curried and tupled parameters. The syntax for abstract member type signatures is the same as that used in signature files and that shown by IntelliSense in the Visual Studio Code Editor.


The following code illustrates an abstract class Shape, which has two non-abstract derived classes, Square and Circle. The example shows how to use abstract classes, methods, and properties. In the example, the abstract class Shape represents the common elements of the concrete entities circle and square. The common features of all shapes (in a two-dimensional coordinate system) are abstracted out into the Shape class: the position on the grid, an angle of rotation, and the area and perimeter properties. These can be overridden, except for position, the behavior of which individual shapes cannot change.


The rotation method can be overridden, as in the Circle class, which is rotation invariant because of its symmetry. So in the Circle class, the rotation method is replaced by a method that does nothing.


[!code-fsharpMain]


Output:


Perimeter of square with side length 10.000000 is 40.000000
Circumference of circle with radius 5.000000 is 31.415927
Area of Square: 100.000000
Area of Circle: 78.539816









See Also


Classes


Members


Methods


Properties








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

fsharp/language-reference/units-of-measure.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Units of Measure (F#)
description: Units of Measure (F#)
keywords: visual f#, f#, functional programming
author: dend
manager: danielfe
ms.date: 05/16/2016
ms.topic: language-reference
ms.prod: visual-studio-dev14
ms.technology: devlang-fsharp
ms.assetid: cb2eb658-df6c-422e-afad-97422609c773





Units of Measure


Floating point and signed integer values in F# can have associated units of measure, which are typically used to indicate length, volume, mass, and so on. By using quantities with units, you enable the compiler to verify that arithmetic relationships have the correct units, which helps prevent programming errors.



Syntax


[<Measure>] type unit-name [ = measure ]









Remarks


The previous syntax defines unit-name as a unit of measure. The optional part is used to define a new measure in terms of previously defined units. For example, the following line defines the measure cm (centimeter).


[<Measure>] type cm






The following line defines the measure ml (milliliter) as a cubic centimeter (cm^3).


[<Measure>] type ml = cm^3






In the previous syntax, measure is a formula that involves units. In formulas that involve units, integral powers are supported (positive and negative), spaces between units indicate a product of the two units, * also indicates a product of units, and / indicates a quotient of units. For a reciprocal unit, you can either use a negative integer power or a / that indicates a separation between the numerator and denominator of a unit formula. Multiple units in the denominator should be surrounded by parentheses. Units separated by spaces after a / are interpreted as being part of the denominator, but any units following a * are interpreted as being part of the numerator.


You can use 1 in unit expressions, either alone to indicate a dimensionless quantity, or together with other units, such as in the numerator. For example, the units for a rate would be written as 1/s, where s indicates seconds. Parentheses are not used in unit formulas. You do not specify numeric conversion constants in the unit formulas; however, you can define conversion constants with units separately and use them in unit-checked computations.


Unit formulas that mean the same thing can be written in various equivalent ways. Therefore, the compiler converts unit formulas into a consistent form, which converts negative powers to reciprocals, groups units into a single numerator and a denominator, and alphabetizes the units in the numerator and denominator.


For example, the unit formulas kg m s^-2 and m /s s * kg are both converted to kg m/s^2.


You use units of measure in floating point expressions. Using floating point numbers together with associated units of measure adds another level of type safety and helps avoid the unit mismatch errors that can occur in formulas when you use weakly typed floating point numbers. If you write a floating point expression that uses units, the units in the expression must match.


You can annotate literals with a unit formula in angle brackets, as shown in the following examples.


1.0<cm>
55.0<miles/hour>






You do not put a space between the number and the angle bracket; however, you can include a literal suffix such as f, as in the following example.


// The f indicates single-precision floating point.
55.0f<miles/hour>






Such an annotation changes the type of the literal from its primitive type (such as float) to a dimensioned type, such as float<cm> or, in this case, float<miles/hour>. A unit annotation of <1> indicates a dimensionless quantity, and its type is equivalent to the primitive type without a unit parameter.


The type of a unit of measure is a floating point or signed integral type together with an extra unit annotation, indicated in brackets. Thus, when you write the type of a conversion from g (grams) to kg (kilograms), you describe the types as follows.


let convertg2kg (x : float<g>) = x / 1000.0<g/kg>






Units of measure are used for compile-time unit checking but are not persisted in the run-time environment. Therefore, they do not affect performance.


Units of measure can be applied to any type, not just floating point types; however, only floating point types, signed integral types, and decimal types support dimensioned quantities. Therefore, it only makes sense to use units of measure on the primitive types and on aggregates that contain these primitive types.


The following example illustrates the use of units of measure.


[!code-fsharpMain]


The following code example illustrates how to convert from a dimensionless floating point number to a dimensioned floating point value. You just multiply by 1.0, applying the dimensions to the 1.0. You can abstract this into a function like degreesFahrenheit.


Also, when you pass dimensioned values to functions that expect dimensionless floating point numbers, you must cancel out the units or cast to float by using the float operator. In this example, you divide by 1.0<degC> for the arguments to printf because printf expects dimensionless quantities.


[!code-fsharpMain]


The following example session shows the outputs from and inputs to this code.


Enter a temperature in degrees Fahrenheit.
90
That temperature in degrees Celsius is    32.22.









Using Generic Units


You can write generic functions that operate on data that has an associated unit of measure. You do this by specifying a type together with a generic unit as a type parameter, as shown in the following code example.


[!code-fsharpMain]





Creating Aggregate Types with Generic Units


The following code shows how to create an aggregate type that consists of individual floating point values that have units that are generic. This enables a single type to be created that works with a variety of units. Also, generic units preserve type safety by ensuring that a generic type that has one set of units is a different type than the same generic type with a different set of units. The basis of this technique is that the Measure attribute can be applied to the type parameter.


[!code-fsharpMain]





Units at Runtime


Units of measure are used for static type checking. When floating point values are compiled, the units of measure are eliminated, so the units are lost at run time. Therefore, any attempt to implement functionality that depends on checking the units at run time is not possible. For example, implementing a ToString function to print out the units is not possible.





Conversions


To convert a type that has units (for example, float<'u>) to a type that does not have units, you can use the standard conversion function. For example, you can use float to convert to a float value that does not have units, as shown in the following code.


[!code-fsharpMain]


To convert a unitless value to a value that has units, you can multiply by a 1 or 1.0 value that is annotated with the appropriate units. However, for writing interoperability layers, there are also some explicit functions that you can use to convert unitless values to values with units. These are in the Microsoft.FSharp.Core.LanguagePrimitives [https://msdn.microsoft.com/library/69d08ac5-5d51-4c20-bf1e-850fd312ece3] module. For example, to convert from a unitless float to a float<cm>, use FloatWithMeasure [https://msdn.microsoft.com/library/69520bc7-d67b-46b8-9004-7cac9646b8d9], as shown in the following code.


[!code-fsharpMain]





Units of Measure in the F# Power Pack


A unit library is available in the F# PowerPack. The unit library includes SI units and physical constants.





See Also


F# Language Reference








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/testing/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Unit Testing in .NET Core
description: Unit Testing in .NET Core
keywords: .NET, .NET Core
author: ardalis
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 815ac74c-4bd9-4a94-a87c-78288b27c0e2





Unit Testing in .NET Core


By Steve Smith [http://ardalis.com] and Bill Wagner [https://github.com/BillWagner]


.NET Core has been designed with testability in mind, so that creating
unit tests for your applications is easier than ever before. This article
briefly introduces unit tests (and how they differ from other kinds of tests).
Linked resources demonstrates how to add a test project to your solution and
then run unit tests using either the command line or Visual Studio.



Getting Started with Testing


Having a suite of automated tests is one of the best ways to ensure a
software application does what its authors intended it to do. There are
many different kinds of tests for software applications, including integration
tests, web tests, load tests, and many others. At the lowest level are
unit tests, which test individual software components or methods. Unit
tests should only test code within the developer’s control, and should
not test infrastructure concerns, like databases, file systems, or
network resources. Unit tests may be written using
Test Driven Development (TDD) [http://deviq.com/test-driven-development/],
or they can be added to existing code to confirm its correctness. In
either case, they should be small, well-named, and fast, since ideally
you will want to be able to run hundreds of them before pushing your
changes into the project’s shared code repository.



[!NOTE]
Developers often struggle with coming up with good names for their
test classes and methods. As a starting point, the ASP.NET product
team follows
these conventions [https://github.com/aspnet/Home/wiki/Engineering-guidelines#unit-tests-and-functional-tests].



When writing unit tests, be careful you don’t accidentally introduce
dependencies on infrastructure. These tend to make tests slower and
more brittle, and thus should be reserved for integration tests. You
can avoid these hidden dependencies in your application code by following
the Explicit Dependencies Principle [http://deviq.com/explicit-dependencies-principle/]
and using Dependency Injection [https://docs.asp.net/en/latest/fundamentals/dependency-injection.html]
to request your dependencies from the framework. You can also keep your
unit tests in a separate project from your integration tests, and ensure
your unit test project doesn’t have references to or dependencies on
infrastructure packages.


Learn more about unit testing in .NET Core projects:


Try this walkthrough creating unit tests with xunit and the .NET CLI.


The XUnit team has written a tutorial that shows
how to use xunit with .NET Core and Visual Studio [http://xunit.github.io/docs/getting-started-dotnet-core.html].








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/attributes.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Attributes | A tour of the C# language
description: Learn about declarative programming using attributes in C#
keywords: .NET, csharp
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 753bcfe2-7ddd-4487-9513-ba70937fc8e9





Attributes


Types, members, and other entities in a C# program support modifiers that control certain aspects of their behavior. For example, the accessibility of a method is controlled using the public, protected, internal, and private modifiers. C# generalizes this capability such that user-defined types of declarative information can be attached to program entities and retrieved at run-time. Programs specify this additional declarative information by defining and using attributes.


The following example declares a HelpAttribute attribute that can be placed on program entities to provide links to their associated documentation.


[!code-csharpAttributeDefined]


All attribute classes derive from the @System.Attribute base class provided by the standard library. Attributes can be applied by giving their name, along with any arguments, inside square brackets just before the associated declaration. If an attribute’s name ends in Attribute, that part of the name can be omitted when the attribute is referenced. For example, the HelpAttribute attribute can be used as follows.


[!code-csharpAttributeApplied]


This example attaches a HelpAttribute to the Widget class. It adds another HelpAttribute to the Display method in the class. The public constructors of an attribute class control the information that must be provided when the attribute is attached to a program entity. Additional information can be provided by referencing public read-write properties of the attribute class (such as the reference to the Topic property previously).


When a particular attribute is requested through reflection, the constructor for the attribute class is invoked with the information provided in the program source, and the resulting attribute instance is returned. If additional information was provided through properties, those properties are set to the given values before the attribute instance is returned.



[!div class=”step-by-step”]
Pre







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/arrays.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Arrays | A tour of the C# language
description: Arrays are the most basic collection type in the C# langauge
keywords: .NET, csharp, array, collection
author: BillWagner
manager: wpickett
ms.date: 08/10/2016
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: a440704c-9e88-4c75-97dd-bfe30ca0fb97





Arrays


An array is a data structure that contains a number of variables that are accessed through computed indices. The variables contained in an array, also called the elements of the array, are all of the same type, and this type is called the element type of the array.


Array types are reference types, and the declaration of an array variable simply sets aside space for a reference to an array instance. Actual array instances are created dynamically at runtime using the new operator. The new operation specifies the length of the new array instance, which is then fixed for the lifetime of the instance. The indices of the elements of an array range from 0 to Length - 1. The new operator automatically initializes the elements of an array to their default value, which, for example, is zero for all numeric types and null for all reference types.


The following example creates an array of int elements, initializes the array, and prints out the contents of the array.


[!code-csharpArraySample]


This example creates and operates on a single-dimensional array. C# also supports multi-dimensional arrays. The number of dimensions of an array type, also known as the rank of the array type, is one plus the number of commas written between the square brackets of the array type. The following example allocates a single-dimensional, a two-dimensional, and a three-dimensional array, respectively.


[!code-csharpArrayRank]


The a1 array contains 10 elements, the a2 array contains 50 (10 × 5) elements, and the a3 array contains 100 (10 × 5 × 2) elements.
The element type of an array can be any type, including an array type. An array with elements of an array type is sometimes called a jagged array because the lengths of the element arrays do not all have to be the same. The following example allocates an array of arrays of int:


[!code-csharpArrayAllocation]


The first line creates an array with three elements, each of type int[] and each with an initial value of null. The subsequent lines then initialize the three elements with references to individual array instances of varying lengths.


The new operator permits the initial values of the array elements to be specified using an array initializer, which is a list of expressions written between the delimiters { and }. The following example allocates and initializes an int[] with three elements.


[!code-csharpArrayInitialization]


Note that the length of the array is inferred from the number of expressions between { and }. Local variable and field declarations can be shortened further such that the array type does not have to be restated.


[!code-csharpArrayInitialization]


Both of the previous examples are equivalent to the following:


[!code-csharpArrayAssignment]



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/testing/unit-testing-with-dotnet-test.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Unit Testing in .NET Core using dotnet test
description: Unit Testing in .NET Core using dotnet test
keywords: .NET, .NET Core
author: ardalis
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: bdcdb812-6f13-4f20-9e90-0c0977937142





Unit Testing in .NET Core using dotnet test


By Steve Smith [http://ardalis.com] and Bill Wagner [https://github.com/BillWagner]


View or download sample code [https://github.com/dotnet/core-docs/tree/master/samples/core/getting-started/unit-testing-using-dotnet-test]



Creating the Projects


Writing Libraries with Cross Platform Tools
has information on organizing multi-project solutions for both the
source and the tests. This article follows those conventions. The
final project structure will be something like this:


/unit-testing-using-dotnet-test
|__global.json
|__/src
   |__/PrimeService
      |__Source Files
      |__project.json
|__/test
   |__/PrimeService.Tests
      |__Test Files
      |__project.json






In the root directory, you’ll need to create a global.json that
contains the names of your src and test directories:


{
    "projects": [
        "src",
        "test"
    ]
}







Creating the source project


Then, in the src directory, create the PrimeService directory.
CD into that directory, and run dotnet new -t lib to create the source
project.


Rename Library.cs as PrimeService.cs. To use test-driven development (TDD), you’ll create a failing implementation of the
PrimeService class:


using System;

namespace Prime.Services
{
    public class PrimeService
    {
        public bool IsPrime(int candidate) 
        {
            throw new NotImplementedException("Please create a test first");
        } 
    }
}









Creating the test project


Next, cd into the ‘test’ directory, and create the PrimeServices.Tests directory.
CD into the PrimeServices.Tests directory and create a new project using
dotnet new -t xunittest. dotnet new -t xunittest creates a test project
that uses xunit as the test library.


The generated template configured the test runner
at the root of project.json:


{
  "version": "1.0.0-*",
  "testRunner": "xunit",
  // ...
}






The template also sets the framework node to use
netcoreapp1.0, and include the required imports to
get xUnit.net to work with .NET Core RTM:


  "frameworks": {
    "netcoreapp1.0": {
      "imports": [
        "dotnet54",
        "portable-net45+win8" 
      ]
    }
  }






The test project requires other packages to create and run unit tests.
dotnet new added xunit, and the xunit runner. You need to add the PrimeService
package as another dependency to the project:


"dependencies": {
  "Microsoft.NETCore.App": {
    "type":"platform",
    "version": "1.0.0"
  },
  "xunit":"2.1.0",
  "dotnet-test-xunit": "1.0.0-rc2-192208-24",
  "PrimeService": {
    "target": "project"
  }
}






Notice that the PrimeService project does not include
any directory path information. Because you created the
project structure to match the expected organization of
src and test, and the global.json file indicates
that, the build system will find the correct location
for the project. You add the "target": "project" element
to inform NuGet that it should look in project directories,
not in the NuGet feed. Without this key, you might download
a package with the same name as your internal library.


You can see the entire file in the
samples repository [https://github.com/dotnet/core-docs/blob/master/samples/core/getting-started/unit-testing-using-dotnet-test/test/PrimeService.Tests/project.json]
on GitHub.


After this initial structure is in place, you can write your first test.
Once you verify that first unit test, everything is configured and should run smoothly
as you add features and tests.







Creating the first test


The TDD approach calls for writing one failing test, then making it pass,
then repeating the process. So, let’s write that one failing test. Remove
program.cs from the PrimeService.Tests directory, and create a new
C# file with the following content:


namespace Prime.UnitTests.Services
{
    public class PrimeService_IsPrimeShould
    {
        private readonly PrimeService _primeService;
         public PrimeService_IsPrimeShould()
         {
             _primeService = new PrimeService();
         }

        [Fact]
        public void ReturnFalseGivenValueOf1()
        {
            var result = _primeService.IsPrime(1);

            Assert.False(result, $"1 should not be prime");
        }
    }
}






The [Fact] attribute denotes a method as a single test.


Save this file, then run dotnet build to build the test project.
If you have not already built the PrimeService project, the
build system will detect that and build it because it is a
dependency of the test project.


Now, execute dotnet test to run the tests from the console.
The xunit test runner has the program entry point to run your
tests from the Console. dotnet test starts the
test runner, and provides a command line argument to the
testrunner indicating the assembly that contains your tests.


Your test fails. You haven’t created the implementation yet.
Write the simplest code to make this one test pass:


public bool IsPrime(int candidate) 
{
    if(candidate == 1) 
    { 
        return false;
    } 
    throw new NotImplementedException("Please create a test first");
} 







Adding More Features


Now, that you’ve made one test pass, it’s time to write more.
There are a few other simple cases for prime numbers: 0, -1. You
could add those as new tests, with the [Fact] attribute, but that
quickly becomes tedious. There are other xunit attributes that enable
you to write a suite of similar tests.  A Theory represents a suite
of tests that execute the same code, but have different input arguments.
You can use the [InlineData] attribute to specify values for those
inputs.


Instead of creating new tests, leverage these two attributes
to create a single theory that tests some values less than 2,
which is the lowest prime number:


[Theory]
[InlineData(-1)]
[InlineData(0)]
[InlineData(1)]
public void ReturnFalseGivenValuesLessThan2(int value)
{
    var result = _primeService.IsPrime(value);

    Assert.False(result, $"{value} should not be prime");
}






Run dotnet test and you’ll see that two of these tests fail.
You can make them pass by changing the service. You need to change
the if clause at the beginning of the method:


if(candidate < 2)






Now, these tests all pass.


You continue to iterate by adding more tests, more theories,
and more code in the main library. You’ll quickly end up
with the
finished version of the tests [https://github.com/dotnet/core-docs/blob/master/samples/core/getting-started/unit-testing-using-dotnet-test/test/PrimeService.Tests/PrimeServie_IsPrimeShould.cs]
and the
complete implementation of the library [https://github.com/dotnet/core-docs/blob/master/samples/core/getting-started/unit-testing-using-dotnet-test/src/PrimeService/PrimeService.cs].


You’ve built a small library and a set of unit tests for that library.
You’ve structured this solution so that adding new packages and tests
will be seamless, and you can concentrate on the problem at hand. The
tools will run automatically.



[!TIP]
On Windows platform you can use MSTest. Find out more in the Using MSTest on Windows document.











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/statements.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Statements | A tour of the C# language
description: You create the actions of a C# program using statements
keywords: .NET, csharp, statements, syntax
author: BillWagner
manager: wpickett
ms.date: 2016/08/10
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 5409c379-5622-4fae-88b5-1654276ea8d4





Statements


The actions of a program are expressed using statements. C# supports several different kinds of statements, a number of which are defined in terms of embedded statements.


A block permits multiple statements to be written in contexts where a single statement is allowed. A block consists of a list of statements written between the delimiters { and }.


Declaration statements are used to declare local variables and constants.


Expression statements are used to evaluate expressions. Expressions that can be used as statements include method invocations, object allocations using the new operator, assignments using = and the compound assignment operators, increment and decrement operations using the ++ and -- operators and await expressions.


Selection statements are used to select one of a number of possible statements for execution based on the value of some expression. In this group are the if and switch statements.


Iteration statements are used to execute repeatedly an embedded statement. In this group are the while, do, for, and foreach statements.


Jump statements are used to transfer control. In this group are the break, continue, goto, throw, return, and yield statements.


The try...catch statement is used to catch exceptions that occur during execution of a block, and the try...finally statement is used to specify finalization code that is always executed, whether an exception occurred or not.


The checked and unchecked statements are used to control the overflow-checking context for integral-type arithmetic operations and conversions.


The lock statement is used to obtain the mutual-exclusion lock for a given object, execute a statement, and then release the lock.


The using statement is used to obtain a resource, execute a statement, and then dispose of that resource.


The following lists the kinds of statements that can be used, and provides an example for each.


Local variable declaration


[!code-csharpDeclarations]


Local constant declaration


[!code-csharpConstantDeclarations]


Expression statement


[!code-csharpExpressions]


if statement


[!code-csharpIfStatement]


switch statement


[!code-csharpSwitchStatement]


while statement


[!code-csharpWhileStatement]


do statement


[!code-csharpDoStatement]


for statement


[!code-csharpForStatement]


foreach statement


[!code-csharpForEachStatement]


break statement


[!code-csharpBreakStatement]


continue statement


[!code-csharpContinueStatement]


goto statement


[!code-csharpGotoStatement]


return statement


[!code-csharpReturnStatement]


yield statement


[!code-csharpYieldStatement]


throw statements and try statements


[!code-csharpTryThrow]


checked and unchecked statements


[!code-csharpCheckedUncheckedStatement]


lock statement


[!code-csharpLockStatement]


using statement


[!code-csharpUsingStatement]



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/testing/using-mstest-on-windows.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Use MSTest with .NET Core on Windows
description: How to use MSTest with .NET Core on Windows, using Visual Studio 2015
keywords: MSTest, .NET, .NET Core
author: ncarandini
manager: wpickett
ms.date: 08/18/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: ed447641-3e85-4e50-b7ed-004630048a3e





Unit testing with MSTest and .NET Core on Windows, using Visual Studio 2015


While xUnit could be a better choice when targeting multiple platforms, with .NET Core on Windows is also possible to use MSTest.



Prerequisites


Follow the instructions on Getting started with .NET Core on Windows to create the library project.



Writing the test project using MSTest



		In Solution Explorer, open the context menu for the Solution node and choose Add, New Solution Folder. Name the folder “test”.
This is only a solution folder, not a physical folder.





		Open the context menu for the test folder and choose Add. New Project. In the New Project dialog, choose Console Application (.NET Core). Name it “TestLibrary” and explicitly put it under the Golden\test path.



[!IMPORTANT]
The project needs to be a console application, not a class library.









		In the TestLibrary project, open the context menu for the References node and choose Add Reference.





		In the Reference Manager dialog, check Library under the Projects, Solution node, and then click OK.





		In the TestLibrary project, open the project.json file, and replace "Library": "1.0.0-*" with "Library": {"target": "project"}.


This is to avoid the resolution of the Library project to a NuGet package with the same name. Explicitly setting the target to “project” ensures that the tooling will first search for a project with that name, and not a package.





		Open the context menu for the References node and choose Manage NuGet Packages.





		Choose “nuget.org” as the Package source, and choose the Browse tab. Check the Include prerelease checkbox, and then browse for MSTest.TestFramework version 1.0.1-preview or newer, and then click Install.





		Browse for dotnet-test-mstest version 1.1.1-preview or newer, and then click Install.





		Edit project.json to add "testRunner": "mstest", after the "version" section.





		Add a LibraryTests.cs class file to the TestLibrary project, add the using directives Microsoft.VisualStudio.TestTools.UnitTesting; and using Library; to the top of the file, and add the following code to the class:


[TestClass]
public class LibraryTests
{
    [TestMethod]
    public void ThingGetsObjectValFromNumber()
    {
        Assert.AreEqual(42, new Thing().Get(42));
    }
}







		Optionally, delete the Program.cs file from the TestLibrary project, and remove "buildOptions": {"emitEntryPoint": true}, from project.json.











You should now be able to build the solution.



		On the Test menu, choose Windows, Test Explorer, and in Test Explorer choose Run All.





The test should pass.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/interfaces.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# Interfaces | A tour of the C# language
description: Interfaces define contracts implemented by types in C#
keywords: .NET, csharp, interfaces, multiple inheritance, polymorphism
author: BillWagner
manager: wpickett
ms.date: 2016/08/10
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: a9bf82f4-efd1-4216-bd34-4ef0fa48c968





Interfaces


An interface defines a contract that can be implemented by classes and structs. An interface can contain methods, properties, events, and indexers. An interface does not provide implementations of the members it defines—it merely specifies the members that must be supplied by classes or structs that implement the interface.


Interfaces may employ multiple inheritance. In the following example, the interface IComboBox inherits from both ITextBox and IListBox.


[!code-csharpInterfacesOne]


Classes and structs can implement multiple interfaces. In the following example, the class EditBox implements both IControl and IDataBound.


[!code-csharpInterfacesTwo]


When a class or struct implements a particular interface, instances of that class or struct can be implicitly converted to that interface type. For example


[!code-csharpInterfacesThree]


In cases where an instance is not statically known to implement a particular interface, dynamic type casts can be used. For example, the following statements use dynamic type casts to obtain an object’s IControl and IDataBound interface implementations. Because the run-time actual type of the object is EditBox, the casts succeed.


[!code-csharpInterfacesFour]


In the previous EditBox class, the Paint method from the IControl interface and the Bind method from the IDataBound interface are implemented using public members. C# also supports explicit interface member implementations, enabling the class or struct to avoid making the members public. An explicit interface member implementation is written using the fully qualified interface member name. For example, the EditBox class could implement the IControl.Paint and IDataBound.Bind methods using explicit interface member implementations as follows.


[!code-csharpInterfacesFive]


Explicit interface members can only be accessed via the interface type. For example, the implementation of IControl.Paint provided by the previous EditBox class can only be invoked by first converting the EditBox reference to the IControl interface type.


[!code-csharpInterfacesFive]



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/modern-events.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: The Updated .NET Core Event Pattern
description: The Updated .NET Core Event Pattern
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 9aa627c3-3222-4094-9ca8-7e88e1071e06





The Updated .NET Core Event Pattern


Previous


The previous article discussed the most common event patterns. .NET
Core has a more relaxed pattern. In this version, the
EventHandler<TEventArgs> definition no longer has the constraint that
TEventArgs must be a class derived from System.EventArgs.


This increases flexibility for you, and is backwards compatible. Let’s
start with the flexibility. The class System.EventArgs introduces one
method: MemberwiseClone(), which creates a shallow copy of the object.
That method must use reflection in order to implement
its functionality for any class derived from EventArgs. That
functionality is easier to create in a specific derived class. That
effectively means that deriving from System.EventArgs is a constraint
that limits your designs, but does not provide any additional benefit.
In fact, you can changes the definitions of FileFoundArgs and
SearchDirectoryArgs so that they do not derive from EventArgs.
The program will work exactly the same.


You could also change the SearchDirectoryArgs to a struct, if you
also make one more change:


internal struct SearchDirectoryArgs  
{  
    internal string CurrentSearchDirectory { get; }  
    internal int TotalDirs { get; }  
    internal int CompletedDirs { get; }  
    
    internal SearchDirectoryArgs(string dir, int totalDirs, 
        int completedDirs) : this()  
    {  
        CurrentSearchDirectory = dir;  
        TotalDirs = totalDirs;  
        CompletedDirs = completedDirs;  
    }  
}  






The additional change is to call the default constructor before
entering the constructor that initializes all the fields. Without
that addition, the rules of C# would report that the properties are
being accessed before they have been assigned.


You should not change the FileFoundArgs from a class (reference
type) to a struct (value type). That’s because the protocol for
handling cancel requires that the event arguments are passed by reference. If you made the same change, the file search class could
never observe any changes made by any of the event subscribers. A new
copy of the structure would be used for each subscriber, and that
copy would be a different copy than the one seen by the file search
object.


Next, let’s consider how this change can be backwards compatible.
The removal of the constraint does not affect any existing code. Any
existing event argument types do still derive from System.EventArgs.
Backwards compatibility is one major reason why they will continue
to derive from System.EventArgs. Any existing event subscribers will
be subscribers to an event that followed the classic pattern.


Following similar logic, any event argument type created now would
not have any subscribers in any existing codebases. New event types
that do not derive from System.EventArgs will not break those
codebases.



Events with Async subscribers


You have one final pattern to learn: How to correctly write event
subscribers that call async code. The challenge is described in
the article on async and await. Async methods can
have a void return type, but that is strongly discouraged. When your
event subscriber code calls an async method, you have no choice but
to create an async void method. The event handler signature requires
it.


You need to reconcile this opposing guidance. Somehow, you must
create a safe async void method. The basics of the pattern you need
to implement are below:


worker.StartWorking += async (sender, eventArgs) =>
{
    try 
    {
        await DoWorkAsync();
    }
    catch (Exception e)
    {
        //Some form of logging.
        Console.WriteLine($"Async task failure: {e.ToString()}");
        // Consider gracefully, and quickly exiting.
    }
};






First, notice that the handler is marked as an async handler. Because
it is being assigned to an event handler delegate type, it will have
a void return type. That means you must follow the pattern shown in the
handler, and not allow any exceptions to be thrown out of the context
of the async handler. Because it does not return a task, there is no
task that can report the error by entering the faulted state. Because
the method is async, the method can’t simply throw the exception. (The
calling method has continued execution because it is async.) The
actual runtime behavior will be defined differently for different
environments. It may terminate the thread, it may terminate the program,
or it may leave the program in an undetermined state. None of those
are good outcomes.


That’s why you should wrap the await statement for the async Task
in your own try block. If it does cause a faulted task, you can
log the error. If it is an error from which your application cannot
recover, you can exit the program quickly and gracefully


Those are the major updates to the .NET event pattern. You will see many
examples of the earlier versions in the libraries you work with. However,
you should understand what the latest patterns are as well.


The next article in this series helps you distinguish between using
delegates and events in your designs. They are similar concepts,
and that article will help you make the best decision for your
programs.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-summary.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Expression Trees Summary
description: Expression Trees Summary
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: eb687ebd-1149-4453-9fc1-12a084495a66





Expression Trees Summary


Previous – Translating Expressions


In this series, you’ve seen how you can use expression trees to
create dynamic programs that interpret code as data and build
new functionality based on that code.


You can examine expression trees to understand the intent of
an algorithm. You can not only examine that code. You can build new
expression trees that represent modified versions of the original code.


You can also use expression trees to look at an algorithm, and
translate that algorithm into another language or environment.



Limitations


There are some newer C# language elements that don’t translate
well into expression trees. Expression trees cannot contain
await expressions, or async lambda expressions. Many of the
features added in the C# 6 release don’t appear exactly as written
in expression trees. Instead, newer features will be exposed
in expressions trees in the equivalent, earlier syntax. This
may not be as much of a limitation as you might think. In fact,
it means that your code that interprets expression trees will likely
still work the same when new language features are introduced.


Even with these limitations, expression trees do enable you to
create dynamic algorithms that rely on interpreting and modifying
code that is represetned as a data structure. It’s a powerful
tool, and it’s one of the features of the .NET ecosystem that
enables rich libraries such as Entity Framework to accomplish
what they do.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/delegates-patterns.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Common Patterns for Delegates
description: Common Patterns for Delegates
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 0ff8fdfd-6a11-4327-b061-0f2526f35b43





Common Patterns for Delegates


Previous


Delegates provide a mechanism that enables software designs
involving minimal coupling between components.


One excellent example for this kind of design is LINQ. The LINQ
Query Expression Pattern relies on delegates for all of its
features. Consider this simple example:


var smallNumbers = numbers.Where(n => n < 10);






This filters the sequence of numbers to only those less than the value 10.
The Where method uses a delegate that determines which elements of a
sequence pass the filter. When you create a LINQ query, you supply the
implementation of the delegate for this specific purpose.


The prototype for the Where method is:


public static IEnumerable<TSource> Where<in TSource> (IEnumerable<TSource> source, Func<TSource, bool> predicate);






This example is repeated with all the methods that are part of LINQ. They
all rely on delegates for the code that manages the specific query. This API
design pattern is a very powerful one to learn and understand.


This simple example illustrates how delegates require very little coupling
between components. You don’t need to create a class that derives from a
particular base class. You don’t need to implement a specific interface.
The only requirement is to provide the implementation of one method that
is fundamental to the task at hand.



Building Your Own Components with Delegates


Let’s build on that example by creating a component using a design that
relies on delegates.


Let’s define a component that could be used for log messages in a large
system. The library components could be used in many different environments,
on multiple different platforms. There are a lot of common features in the
component that manages the logs. It will need to accept messages from any
component in the system. Those messages will have different priorities, which
the core component can manage. The messages should have timestamps in their
final archived form. For more advanced scenarios, you could filter messages by
the source component.


There is one aspect of the feature that will change often: where messages are
written. In some environments, they may be written to the error console. In
others, a file. Other possibilities include database storage, OS event logs,
or other document storage.


There are also combinations of output that might be used in different
scenarios. You may want to write messages to the console and to a file.


A design based on delegates will provide a great deal of flexibility, and
make it easy to support storage mechanisms that may be added in the future.


Under this design, the primary log component can be a non-virtual, even
sealed class. You can plug in any set of delegates to write the messages
to different storage media. The built in support for multicast delegates
makes it easy to support scenarios where messages must be written to multiple
locations (a file, and a console).





A First Implementation


Let’s start small: the initial implementation will accept new messages,
and write them using any attached delegate. You can start with one delegate
that writes messages to the console.


public static class Logger
{
    public static Action<string> WriteMessage;
    
    public static void LogMessage(string msg)
    {
        WriteMessage(msg);
    }
}






The static class above is the simplest thing that can work. We need to
write the single implementation for the method that writes messages
to the console:


public static void LogToConsole(string message)
{
    Console.Error.WriteLine(message);
}






Finally, you need to hook up the delegate by attaching it to
the WriteMessage delegate declared in the logger:


Logger.WriteMessage += LogToConsole;









Practices


Our sample so far is fairly simple, but it still demonstrates some
of the important guidelines for designs involving delegates.


Using the delegate types defined in the Core Framework makes it easier
for users to work with the delegates. You don’t need to define new types,
and developers using your library do not need to learn new, specialized
delegate types.


The interfaces used are as minimal and as flexible as possible: To create
a new output logger, you must create one method. That method may be a static
method, or an instance method. It may have any access.





Formatting Output


Let’s make this first version a bit more robust, and then start
creating other logging mechanisms.


Next, let’s add a few arguments to the LogMessage() method so that
your log class creates more structured messages:


// Logger implementation two
public enum Severity
{
    Verbose,
    Trace,
    Information,
    Warning,
    Error,
    Critical
}

public static class Logger
{
    public static Action<string> WriteMessage;
    
    public static void LogMessage(Severity s, string component, string msg)
    {
        var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
        WriteMessage(outputMsg);
    }
}






Next, let’s make use of that Severity argument to filter the messages
that are sent to the log’s output.


public static class Logger
{
    public static Action<string> WriteMessage;
    
    public static Severity LogLevel {get;set;} = Severity.Warning;
    
    public static void LogMessage(Severity s, string component, string msg)
    {
        if (s < LogLevel)
            return;
            
        var outputMsg = $"{DateTime.Now}\t{s}\t{component}\t{msg}";
        WriteMessage(outputMsg);
    }
}









Practices


You’ve added new features to the logging infrastructure. Because
the logger component is very loosely coupled to any output mechanism,
these new features can be added with no impact on any of the code
implementing the logger delegate.


As you keep building this, you’ll see more examples of how this loose
coupling enables greater flexibility in updating parts of the site without
any changes to other locations. In fact, in a larger application, the logger
output classes might be in a different assembly, and not even need to be
rebuilt.





Building a Second Output Engine


The Log component is coming along well. Let’s add one more output
engine that logs messages to a file. This will be a slightly more
involved output engine. It will be a class that encapsulates the
file operations, and ensures that the file is always closed after
each write. That ensures that all the data is flushed to disk after
each message is generated.


Here is that file based logger:


public class FileLogger
{
    private readonly string logPath;
    public FileLogger(string path)
    {
        logPath = path;
        Logger.WriteMessage += LogMessage;
    }
    
    public void DetachLog() => Logger.WriteMessage -= LogMessage;

    // make sure this can't throw.
    private void LogMessage(string msg)
    {
        try {
            using (var log = File.AppendText(logPath))
            {
                log.WriteLine(msg);
                log.Flush();
            }
        } catch (Exception e)
        {
            // Hmm. Not sure what to do.
            // Logging is failing...
        }
    }
}






Once you’ve created this class, you can instantiate it and it attaches
its LogMessage method to the Logger component:


var file = new FileLogger("log.txt");






These two are not mutually exclusive. You could attach both log
methods and generate messages to the console and a file:


var fileOutput = new FileLogger("log.txt");
Logger.WriteMessage += LogToConsole;






Later, even in the same application, you can remove one of the
delegates without any other issues to the system:


Logger.WriteMessage -= LogToConsole;









Practices


Now, you’ve added a second output handler for the logging sub-system.
This one needs a bit more infrastructure to correctly support the file
system. The delegate is an instance method. It’s also a private method.
There’s no need for greater accessibility because the delegate
infrastructure can connect the delegates.


Second, the delegate-based design enables multiple output methods
without any extra code. You don’t need to build any additional infrastructure
to support multiple output methods. They simply become another method
on the invocation list.


Pay special attention to the code in the file logging output method. It
is coded to ensure that it does not throw any exceptions. While this isn’t
always strictly necessary, it’s often a good practice. If either of the
delegate methods throws an exception, the remaining delegates that are
on the invocation won’t be invoked.


As a last note, the file logger must manage its resources by opening and
closing the file on each log message. You could choose to keep the file
open and implement IDisposable to close the file when you are completed.
Either method has its advantages and disadvantages. Both do create a bit
more coupling between the classes.


None of the code in the Logger class would need to be updated
in order to support either scenario.





Handling Null Delegates


Finally, let’s update the LogMessage method so that it is robust
for those cases when no output mechanism is selected. The current
implementation will throw a NullReferenceException when the
WriteMessage delegate does not have an invocation list attached.
You may prefer a design that silently continues when no methods
have been attached. This is easy using the null conditional operator,
combined with the Delegate.Invoke() method:


public static void LogMessage(string msg)
{
    WriteMessage?.Invoke(msg);
}






The null conditional operator (?.) short-circuits when the left operand
(WriteMessage in this case) is null, which means no attempt is made
to log a message.


You won’t find the Invoke() method listed in the documentation for
System.Delegate or System.MulticastDelegate. The compiler generates
a type safe Invoke method for any delegate type declared. In this example,
that means Invoke takes a single string argument, and has a void
return type.





Summary of Practices


You’ve seen the beginnings of a log component that could be expanded
with other writers, and other features. By using delegates in the design
these different components are very loosely coupled. This provides
several advantages. It’s very easy to create new output mechanisms
and attach them to the system. These other mechanisms only need one
method: the method that writes the log message. It’s a design that
is very resilient when new features are added. The contract required
for any writer is to implement one method. That method could be a
static or instance method. It could be public, private, or any other
legal access.


The Logger class can make any number of enhancements or changes without
introducing breaking changes. Like any class, you cannot modify the
public API without the risk of breaking changes. But, because the
coupling between the logger and any output engines is only through
the delegate, no other types (like interfaces or base classes) are
involved. The coupling is as small as possible.


Next








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/expression-trees-interpreting.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Interpreting Expressions
description: Interpreting Expressions
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: adf73dde-1e52-4df3-9929-2e0670e28e16





Interpreting Expressions


Previous – Executing Expressions


Now, let’s write some code to examine the structure of an
expression tree. Every node in an expression tree will be
an object of a class that is derived from Expression.


That design makes visiting all the nodes in an expression tree
a relatively straight forward recursive operation. The general strategy
is to start at the root node and determine what kind of node it is.


If the node type has children, recursively visit the children. At each
child node, repeat the process used at the root node: determine the
type, and if the type has children, visit each of the children.



Examining an Expression with No Children


Let’s start by visiting each node in a very simple expression tree.
Here’s the code that creates a constant expression and then
examines its properties:


var constant = Expression.Constant(24, typeof(int));

Console.WriteLine($"This is a/an {constant.NodeType} expression type");
Console.WriteLine($"The type of the constant value is {constant.Type}");
Console.WriteLine($"The value of the constant value is {constant.Value}");






This will print the following:


This is an Constant expression type
The type of the constant value is System.Int32
The value of the constant value is 24






Now, let’s write the code that would examine this expression and write
out some important properties about it. Here’s that code:





Examining a simple Addition Expression


Let’s start with the addition sample from the
introduction to this section.


Expression<Func<int>> sum = () => 1 + 2;







I’m not using var to declare this expression tree, as it is not possible
because the right-hand side of the assignment is implicitly typed. To understand
this more deeply, read here.



The root node is a LambaExpression. In order to get the interesting
code on the right hand side of the => operator, you need to find one
of the children of the LambdaExpression. We’ll do that with all the
expressions in this section. The parent node does help us find the return
type of the LambdaExpression.


To examine each node in this expression, we’ll need to recursively
visit a number of nodes. Here’s a simple first implementation:


Expression<Func<int, int, int>> addition = (a, b) => a + b;

Console.WriteLine($"This expression is a {addition.NodeType} expression type");
Console.WriteLine($"The name of the lambda is {((addition.Name == null) ? "<null>" : addition.Name)}");
Console.WriteLine($"The return type is {addition.ReturnType.ToString()}");
Console.WriteLine($"The expression has {addition.Parameters.Count} arguments. They are:");
foreach(var argumentExpression in addition.Parameters)
{
    Console.WriteLine($"\tParameter Type: {argumentExpression.Type.ToString()}, Name: {argumentExpression.Name}");
}

var additionBody = (BinaryExpression)addition.Body;
Console.WriteLine($"The body is a {additionBody.NodeType} expression");
Console.WriteLine($"The left side is a {additionBody.Left.NodeType} expression");
var left = (ParameterExpression)additionBody.Left;
Console.WriteLine($"\tParameter Type: {left.Type.ToString()}, Name: {left.Name}");
Console.WriteLine($"The right side is a {additionBody.Right.NodeType} expression");
var right= (ParameterExpression)additionBody.Right;
Console.WriteLine($"\tParameter Type: {right.Type.ToString()}, Name: {right.Name}");






This sample prints the following output:


This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 arguments. They are:
        Parameter Type: System.Int32, Name: a
        Parameter Type: System.Int32, Name: b
The body is a/an Add expression
The left side is a Parameter expression
        Parameter Type: System.Int32, Name: a
The right side is a Parameter expression
        Parameter Type: System.Int32, Name: b






You’ll notice a lot of repetition in the code sample above.
Let’s clean that up and build a more general purpose expression
node visitor. That’s going to require us to write a recursive
algorithm. Any node could be of a type that might have children.
Any node that has children requires us to visit those children
and determine what that node is. Here’s the cleaned up version
that utilizes recursion to visit the addition operations:


// Base Visitor class:
public abstract class Visitor
{
    private readonly Expression node;

    protected Visitor(Expression node)
    {
        this.node = node;
    }

    public abstract void Visit(string prefix);

    public ExpressionType NodeType => this.node.NodeType;
    public static Visitor CreateFromExpression(Expression node)
    {
        switch(node.NodeType)
        {
            case ExpressionType.Constant:
                return new ConstantVisitor((ConstantExpression)node);
            case ExpressionType.Lambda:
                return new LambdaVisitor((LambdaExpression)node);
            case ExpressionType.Parameter:
                return new ParameterVisitor((ParameterExpression)node);
            case ExpressionType.Add:
                return new BinaryVisitor((BinaryExpression)node);
            default:
                Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
                return default(Visitor);
        }
    }
}

// Lambda Visitor
public class LambdaVisitor : Visitor
{
    private readonly LambdaExpression node;
    public LambdaVisitor(LambdaExpression node) : base(node)
    {
        this.node = node;
    }

    public override void Visit(string prefix)
    {
        Console.WriteLine($"{prefix}This expression is a {NodeType} expression type");
        Console.WriteLine($"{prefix}The name of the lambda is {((node.Name == null) ? "<null>" : node.Name)}");
        Console.WriteLine($"{prefix}The return type is {node.ReturnType.ToString()}");
        Console.WriteLine($"{prefix}The expression has {node.Parameters.Count} argument(s). They are:");
        // Visit each parameter:
        foreach (var argumentExpression in node.Parameters)
        {
            var argumentVisitor = Visitor.CreateFromExpression(argumentExpression);
            argumentVisitor.Visit(prefix + "\t");
        }
        Console.WriteLine($"{prefix}The expression body is:");
        // Visit the body:
        var bodyVisitor = Visitor.CreateFromExpression(node.Body);
        bodyVisitor.Visit(prefix + "\t");
    }
}

// Binary Expression Visitor:
public class BinaryVisitor : Visitor
{
    private readonly BinaryExpression node;
    public BinaryVisitor(BinaryExpression node) : base(node)
    {
        this.node = node;
    }

    public override void Visit(string prefix)
    {
        Console.WriteLine($"{prefix}This binary expression is a {NodeType} expression");
        var left = Visitor.CreateFromExpression(node.Left);
        Console.WriteLine($"{prefix}The Left argument is:");
        left.Visit(prefix + "\t");
        var right = Visitor.CreateFromExpression(node.Right);
        Console.WriteLine($"{prefix}The Right argument is:");
        right.Visit(prefix + "\t");
    }
}

// Parameter visitor:
public class ParameterVisitor : Visitor
{
    private readonly ParameterExpression node;
    public ParameterVisitor(ParameterExpression node) : base(node)
    {
        this.node = node;
    }

    public override void Visit(string prefix)
    {
        Console.WriteLine($"{prefix}This is an {NodeType} expression type");
        Console.WriteLine($"{prefix}Type: {node.Type.ToString()}, Name: {node.Name}, ByRef: {node.IsByRef}");
    }
}






This algorithm is the basis of an algorithm that can visit
any arbitrary LambdaExpression. There are a lot of holes,
namely that the code I created only looks for a very small
sample of the possible sets of expression tree nodes that
it may encounter. However, you can still learn quite a bit
from what it produces. (The default case in the Visitor.CreateFromExpression
method prints a message to the error console when a new node type
is encountered. That way, you know to add a new expression type.)


When you run this visitor on the addition expression shown above, you get the
following output:


This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
        This is an Parameter expression type
        Type: System.Int32, Name: a, ByRef: False
        This is an Parameter expression type
        Type: System.Int32, Name: b, ByRef: False
The expression body is:
        This binary expression is a Add expression
        The Left argument is:
                This is an Parameter expression type
                Type: System.Int32, Name: a, ByRef: False
        The Right argument is:
                This is an Parameter expression type
                Type: System.Int32, Name: b, ByRef: False






Now that you’ve built a more general visitor implementation, you
can visit and process many more different types of expressions.





Examining an Addition Expression with Many Levels


Let’s try a more complicated example,
yet still limit the node types to addition only:


Expression<Func<int>> sum = () => 1 + 2 + 3 + 4;






Before you run this on the visitor algorithm, try a thought
exercise to work out what the output might be. Remember that
the + operator is a binary operator: it must have two
children, representing the left and right operands. There
are several possible ways to construct a tree that
could be correct:


Expression<Func<int>> sum1 = () => 1 + (2 + (3 + 4));
Expression<Func<int>> sum2 = () => ((1 + 2) + 3) + 4;

Expression<Func<int>> sum3 = () => (1 + 2) + (3 + 4);
Expression<Func<int>> sum4 = () => 1 + ((2 + 3) + 4);
Expression<Func<int>> sum5 = () => (1 + (2 + 3)) + 4;






You can see the separation into two possible answers to highlight the
most promising. The first represents right associative
expressions. The second represent left associative expressions.
The advantage of both of those two formats is that the format scales
to any arbitrary number of addition expressions.


If you do run this expression through the visitor, you will see this
this output, verifying that the simple addition expression is
left associative.


In order to run this sample, and see the full expression tree, I had to
make one change to the source expression tree. When the expression tree
contains all constants, the resulting tree simply contains the constant
value of 10. The compiler performs all the addition and reduces the
expression to its simplest form. Simply adding one variable in the expression
is sufficient to see the original tree:


Expression<Func<int, int>> sum = (a) => 1 + a + 3 + 4;






Create a visitor for this sum and run the visitor you’ll see this output:


This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
        This is an Parameter expression type
        Type: System.Int32, Name: a, ByRef: False
The expression body is:
        This binary expression is a Add expression
        The Left argument is:
                This binary expression is a Add expression
                The Left argument is:
                        This binary expression is a Add expression
                        The Left argument is:
                                This is an Constant expression type
                                The type of the constant value is System.Int32
                                The value of the constant value is 1
                        The Right argument is:
                                This is an Parameter expression type
                                Type: System.Int32, Name: a, ByRef: False
                The Right argument is:
                        This is an Constant expression type
                        The type of the constant value is System.Int32
                        The value of the constant value is 3
        The Right argument is:
                This is an Constant expression type
                The type of the constant value is System.Int32
                The value of the constant value is 4






You can also run any of the other samples through the visitor code
and see what tree it represents. Here’s an example of the sum3
expression above (with an additional parameter to prevent the compiler from
computing the constant):


Expression<Func<int, int, int>> sum3 = (a, b) => (1 + a) + (3 + b);






Here’s the output from the visitor:


This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 2 argument(s). They are:
        This is an Parameter expression type
        Type: System.Int32, Name: a, ByRef: False
        This is an Parameter expression type
        Type: System.Int32, Name: b, ByRef: False
The expression body is:
        This binary expression is a Add expression
        The Left argument is:
                This binary expression is a Add expression
                The Left argument is:
                        This is an Constant expression type
                        The type of the constant value is System.Int32
                        The value of the constant value is 1
                The Right argument is:
                        This is an Parameter expression type
                        Type: System.Int32, Name: a, ByRef: False
        The Right argument is:
                This binary expression is a Add expression
                The Left argument is:
                        This is an Constant expression type
                        The type of the constant value is System.Int32
                        The value of the constant value is 3
                The Right argument is:
                        This is an Parameter expression type
                        Type: System.Int32, Name: b, ByRef: False






Notice that the parentheses are not part of the output. There are no
nodes in the expression tree that represent the parentheses in the
input expression. The structure of the expression tree contains all the
information necessary to communicate the precedence.





Extending from this sample


The sample deals with only the most rudimentary expression trees. The code
you’ve seen in this section only handles constant integers and the binary
+ operator. As a final sample, let’s update the visitor to handle a more
complicated expression. Let’s make it work for this:


Expression<Func<int, int>> factorial = (n) =>
    n == 0 ? 
    1 : 
    Enumerable.Range(1, n).Aggregate((product, factor) => product * factor);






This code represents one possible implementation for the
mathematical factorial function. The way I’ve written this code highlights
two limitiations of building expression trees by assigning lambda expressions
to Expressions. First, statement lambdas are not allowed. That means I can’t use
loops, blocks, if / else statements, and other control structures common in C#. I’m
limited to using expressions. Second, I can’t recursively call the same expression.
I could if it were already a delegate, but I can’t call it in its expression tree
form. In the section on building expression trees
you’ll learn techniques to overcome these limitations.


In this expression, you’ll encounter nodes of all these types:



		Equal (binary expression)


		Multiply (binary expression)


		Conditional (the ? : expression)


		Method Call Expression (calling Range() and Aggregate())





One way to modify the visitor algorithm is to keep executing it, and write
the node type every time you reach your default clause. After a few
iterations, you’ll have seen each of the potential nodes. Then, you have
all you need. The result would be something like this:


public static Visitor CreateFromExpression(Expression node)
{
    switch(node.NodeType)
    {
        case ExpressionType.Constant:
            return new ConstantVisitor((ConstantExpression)node);
        case ExpressionType.Lambda:
            return new LambdaVisitor((LambdaExpression)node);
        case ExpressionType.Parameter:
            return new ParameterVisitor((ParameterExpression)node);
        case ExpressionType.Add:
        case ExpressionType.Equal:
        case ExpressionType.Multiply:
            return new BinaryVisitor((BinaryExpression)node);
        case ExpressionType.Conditional:
            return new ConditionalVisitor((ConditionalExpression)node);
        case ExpressionType.Call:
            return new MethodCallVisitor((MethodCallExpression)node);
        default:
            Console.Error.WriteLine($"Node not processed yet: {node.NodeType}");
            return default(Visitor);
    }
}






The ConditionalVisitor and MethodCallVisitor process those two nodes:


public class ConditionalVisitor : Visitor
{
    private readonly ConditionalExpression node;
    public ConditionalVisitor(ConditionalExpression node) : base(node)
    {
        this.node = node;
    }

    public override void Visit(string prefix)
    {
        Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
        var testVisitor = Visitor.CreateFromExpression(node.Test);
        Console.WriteLine($"{prefix}The Test for this expression is:");
        testVisitor.Visit(prefix + "\t");
        var trueVisitor = Visitor.CreateFromExpression(node.IfTrue);
        Console.WriteLine($"{prefix}The True clause for this expression is:");
        trueVisitor.Visit(prefix + "\t");
        var falseVisitor = Visitor.CreateFromExpression(node.IfFalse);
        Console.WriteLine($"{prefix}The False clause for this expression is:");
        falseVisitor.Visit(prefix + "\t");
    }
}

public class MethodCallVisitor : Visitor
{
    private readonly MethodCallExpression node;
    public MethodCallVisitor(MethodCallExpression node) : base(node)
    {
        this.node = node;
    }

    public override void Visit(string prefix)
    {
        Console.WriteLine($"{prefix}This expression is a {NodeType} expression");
        if (node.Object == null)
            Console.WriteLine($"{prefix}This is a static method call");
        else
        {
            Console.WriteLine($"{prefix}The receiver (this) is:");
            var receiverVisitor = Visitor.CreateFromExpression(node.Object);
            receiverVisitor.Visit(prefix + "\t");
        }

        var methodInfo = node.Method;
        Console.WriteLine($"{prefix}The method name is {methodInfo.DeclaringType}.{methodInfo.Name}");
        // There is more here, like generic arguments, and so on.
        Console.WriteLine($"{prefix}The Arguments are:");
        foreach(var arg in node.Arguments)
        {
            var argVisitor = Visitor.CreateFromExpression(arg);
            argVisitor.Visit(prefix + "\t");
        }
    }
}






And the output for the expression tree would be:


This expression is a/an Lambda expression type
The name of the lambda is <null>
The return type is System.Int32
The expression has 1 argument(s). They are:
        This is an Parameter expression type
        Type: System.Int32, Name: n, ByRef: False
The expression body is:
        This expression is a Conditional expression
        The Test for this expression is:
                This binary expression is a Equal expression
                The Left argument is:
                        This is an Parameter expression type
                        Type: System.Int32, Name: n, ByRef: False
                The Right argument is:
                        This is an Constant expression type
                        The type of the constant value is System.Int32
                        The value of the constant value is 0
        The True clause for this expression is:
                This is an Constant expression type
                The type of the constant value is System.Int32
                The value of the constant value is 1
        The False clause for this expression is:
                This expression is a Call expression
                This is a static method call
                The method name is System.Linq.Enumerable.Aggregate
                The Arguments are:
                        This expression is a Call expression
                        This is a static method call
                        The method name is System.Linq.Enumerable.Range
                        The Arguments are:
                                This is an Constant expression type
                                The type of the constant value is System.Int32
                                The value of the constant value is 1
                                This is an Parameter expression type
                                Type: System.Int32, Name: n, ByRef: False
                        This expression is a Lambda expression type
                        The name of the lambda is <null>
                        The return type is System.Int32
                        The expression has 2 arguments. They are:
                                This is an Parameter expression type
                                Type: System.Int32, Name: product, ByRef: False
                                This is an Parameter expression type
                                Type: System.Int32, Name: factor, ByRef: False
                        The expression body is:
                                This binary expression is a Multiply expression
                                The Left argument is:
                                        This is an Parameter expression type
                                        Type: System.Int32, Name: product, ByRef: False
                                The Right argument is:
                                        This is an Parameter expression type
                                        Type: System.Int32, Name: factor, ByRef: False









Extending the Sample Library


The samples in this section show the core techniques to visit and
examine nodes in an expression tree. I glossed over many actions
you might need in order to concentrate on the core tasks of
visiting and accessing nodes in an expression tree.


First, the visitors only handle constants
that are integers. Constant values could be any other numeric type,
and the C# language supports conversions and promotions between those
types. A more robust version of this code would mirror all those
capabilities.


Even the last example recognizes a subset of the possible node types.
You can still feed it many expressions that will cause it to fail.
A full implementation is included in the .NET Standard Library
under the name ExpressionVisitor [https://docs.microsoft.com/dotnet/core/api/System.Linq.Expressions.ExpressionVisitor]
and can handle all the possible node types.


Finally, the library I used in this article was built for demonstration
and learning. It’s not optimized. I wrote it to make the structures
used very clear, and to highlight the techniques used to visit
the nodes and analyze what’s there. A production implementation would
pay more attention to performance than I have.


Even with those limitations, you should be well on your way to writing
algorithms that read and understand expression trees.


Next – Building Expressions








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/generics.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Generics
description: Generics
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 63d1fe21-bb1f-46e3-92a0-89efcf0815e8





🔧 Generics



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach. You can track the status and provide input on this
issue [https://github.com/dotnet/core-docs/issues/489] at GitHub.


If you would like to review early drafts and outlines of this topic, please leave a note with your contact information in the issue.


Learn more about how you can contribute on GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/implicitly-typed-lambda-expressions.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Implicitly typed lambda expressions
description: Implicitly typed lambda expressions
keywords: .NET, .NET Core
author: BillWagner
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a3851da9-e018-4389-9922-233db7d0f841





Implicitly typed lambda expressions


I’m not using var to declare this expression tree. You can’t use
an implicitly typed variable declaration to declare a lambda expression.
It creates a circular logic problem for the compiler. The var declaration
tells the compiler to figure out the type of the variable from the type
of expression on the right hand side of the assignment operator. A lambda
expression does not have a compile time type, but is convertible to any
matching delegate or expression type. When you assign a lambda expression
to a variable of a delegate or expression type, you tell the compiler to
try and convert the lambda expression into an expression or delegate that
matches the signature of the ‘assigned to’ variable. The compiler must
try to make the thing on the right hand side of the assignment match
the type on the left hand side of the assignment.


Both sides of the assignment can’t be telling the compiler to look at the
object on the other side of the assignment operator and see if my type
matches.


You can get even more details on why the C# language specifies that behavior
by reading this article [http://download.microsoft.com/download/5/4/B/54B83DFE-D7AA-4155-9687-B0CF58FF65D7/type-inference.pdf] (PDF Download)






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

csharp/tour-of-csharp/structs.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: C# structs | A tour of the C# language
description: Learn the basics of C# value types, called structs
keywords: .NET, C#, struct, value type
author: BillWagner
manager: wpickett
ms.date: 2016/08/10
ms.topic: article
ms.prod: visual-studio-dev-14
ms.technology: devlang-csharp
ms.devlang: csharp
ms.assetid: 88a74571-f741-4a31-a2b5-1ccf165535b8





Structs


Like classes, structs are data structures that can contain data members and function members, but unlike classes, structs are value types and do not require heap allocation. A variable of a struct type directly stores the data of the struct, whereas a variable of a class type stores a reference to a dynamically allocated object. Struct types do not support user-specified inheritance, and all struct types implicitly inherit from type object.


Structs are particularly useful for small data structures that have value semantics. Complex numbers, points in a coordinate system, or key-value pairs in a dictionary are all good examples of structs. The use of structs rather than classes for small data structures can make a large difference in the number of memory allocations an application performs. For example, the following program creates and initializes an array of 100 points. With Point implemented as a class, 101 separate objects are instantiated—one for the array and one each for the 100 elements.


[!code-csharpPointClassUse]


An alternative is to make Point a struct.


[!code-csharpPointStruct]


Now, only one object is instantiated—the one for the array—and the Point instances are stored in-line in the array.


Struct constructors are invoked with the new operator, but that does not imply that memory is being allocated. Instead of dynamically allocating an object and returning a reference to it, a struct constructor simply returns the struct value itself (typically in a temporary location on the stack), and this value is then copied as necessary.


With classes, it is possible for two variables to reference the same object and thus possible for operations on one variable to affect the object referenced by the other variable. With structs, the variables each have their own copy of the data, and it is not possible for operations on one to affect the other. For example, the output produced by the following code fragment depends on whether Point is a class or a struct.


[!code-csharpPointUse]


If Point is a class, the output is 20 because a and b reference the same object. If Point is a struct, the output is 10 because the assignment of a to b creates a copy of the value, and this copy is unaffected by the subsequent assignment to a.x.


The previous example highlights two of the limitations of structs. First, copying an entire struct is typically less efficient than copying an object reference, so assignment and value parameter passing can be more expensive with structs than with reference types. Second, except for ref and out parameters, it is not possible to create references to structs, which rules out their usage in a number of situations.



[!div class=”step-by-step”]
Previous
Next







          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/sdk.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core SDK Overview
description: .NET Core SDK Overview
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 26bc9822-e42b-48ec-b0d6-499dc604add7





.NET Core SDK Overview



Introduction


.NET Core Software Development Kit (SDK) is a set of libraries and tools that allow developers to create .NET Core applications
and libraries. This is the package that developers will most likely acquire.


It contains the following components:



		The .NET Core Command Line Tools that are used to build applications


		.NET Core (libraries and runtime) that allow applications to both be built and run


		The dotnet driver for running the CLI commands as well as running applications








Acquiring the .NET Core SDK


As with any tooling, the first thing is to get the tools to your machine. Depending on your scenario, you can either
use the native installers to install the SDK or use the installation shell script.


The native installers are primarily meant for developer’s machines. The SDK is distributed using each supported platform’s
native install mechanism, for instance DEB packages on Ubuntu or MSI bundles on Windows. These installers will install
and set up the environment as needed for the user to use the SDK immediately after the install. However, they also
require administrative privileges on the machine. You can view the installation instructions on the
.NET Core getting started page [https://aka.ms/dotnetcoregs].


Install scripts, on the other hand, do not require administrative privileges. However, they will also not install any
prerequisites on the machine; you need to install all of the prerequisites manually. The scripts are meant mostly for
setting up build servers or when you wish to install the tools without admin privileges (do note the prerequisites
caveat above). You can find more information on the install script reference topic. If you are
interested in how to set up SDK on your CI build server you can take a look at the SDK with CI servers
document.


By default, the SDK will install in a “side-by-side” (SxS) manner. This means that multiple versions of the CLI tools
can coexist at any given time on a single machine. How the correct version gets used is explained in more detail in
the driver section below.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/windows-prerequisites.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Prerequisites
description: .NET Core Prerequisites
keywords: .NET, .NET Core
author: billwagner
manager: wpickett
ms.date: 07/27/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c33b1241-ab66-4583-9eba-52cf51146f5a





Prerequisites for Windows Development


.NET Core development on Windows with Visual Studio requires:



		A supported version of the Windows client or operating system.


		Visual Studio 2015 Update 3.3 or later


		NuGet Manager extension for Visual Studio


		.NET Core Tooling Preview 2






Supported Windows Versions


.NET Core 1.0 is supported on the following versions of Windows:



		Windows 7+ / Server 2012 R2+


		Windows Nano Server TP5





You can see the full set of supported operating systems [https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0.0.md#rtm-platform-support] in the .NET Core Release Notes [https://github.com/dotnet/core/blob/master/release-notes/1.0/1.0.0.md].





.NET Core dependencies


.NET Core requires the VC++ Redistributable when running on Windows. It is installed for you by the .NET Core installer. You need to install the Visual C++ redistributable manually if you are installing .NET Core via the installer script (dotnet-install.ps1).


The Visual C++ Redistributable version differs by Windows version.



		Windows 10
		Visual C++ Redistributable for Visual Studio 2015 [https://www.microsoft.com/en-us/download/details.aspx?id=48145]








		Windows 7+ (not Windows 10)
		Please make sure that your Windows installation is up-to-date and includes hotfix KB2533623 [https://support.microsoft.com/en-us/kb/2533623] installed through Windows Update.


		Universal CRT update [https://www.microsoft.com/en-us/download/details.aspx?id=48234] (you can get more info on what Universal CRT is in this blog post [https://blogs.msdn.microsoft.com/vcblog/2015/03/03/introducing-the-universal-crt/])














Visual Studio


You need Visual Studio 2015 to develop .NET Core apps. You can download Visual Studio Community 2015 [https://www.visualstudio.com/downloads/download-visual-studio-vs] for free.


Verify that you’re running Visual Studio 2015 Update 3.3 [https://www.visualstudio.com/news/releasenotes/vs2015-update3-vs]:



		On the Help menu, choose About Microsoft Visual Studio.


		In the About Microsoft Visual Studio dialog, the version number should be 14.0.25424.00 or higher, and include “Update 3”.


		If you don’t have Update 3, you can download and install Visual Studio 2015 Update 3 [https://www.visualstudio.com/news/releasenotes/vs2015-update3-vs].


		If you have Update 3, you download and install Visual Studio 2015 Update 3.3 [https://msdn.microsoft.com/library/mt752379.aspx].





You can read more about the changes in Update 3.3 in the release notes [https://www.visualstudio.com/news/releasenotes/vs2015-update3-vs].





NuGet Manager extension for Visual Studio


NuGet is the package manager for the Microsoft development platform including .NET Core. You need NuGet 3.5.0 [https://dist.nuget.org/visualstudio-2015-vsix/v3.5.0-beta/NuGet.Tools.vsix] or higher to build .NET Core apps.





.NET Core Tools for Visual Studio 2015


Download and install the .NET Core Tooling Preview 2 for Visual Studio 2015 [https://go.microsoft.com/fwlink/?LinkID=824849].


The .NET Core Tooling package installs .NET Core, project templates and other tools for Visual Studio 2015.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/migrating-from-dnx.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Migrating from DNX to .NET Core CLI
description: Migrating from DNX to .NET Core CLI
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: c0d70120-78c8-4d26-bb3c-801f42fc2366





Migrating from DNX to .NET Core CLI



Overview


With RC1 release of .NET Core and ASP.NET Core 1.0, we introduced DNX tooling to the world. With RC2 release of .NET
Core and ASP.NET Core 1.0 we transitioned to the .NET Core CLI.


As a slight refresher, let’s recap what DNX was about. DNX was a runtime and a toolset used to build .NET Core and,
more specifically, ASP.NET Core 1.0 applications. It consisted of 3 main pieces:



		DNVM - an install script for obtaining DNX


		DNX (Dotnet Execution Runtime) - the runtime that executes your code


		DNU (Dotnet Developer Utility) - tooling for managing dependencies, building and publishing your applications





With the introduction of the CLI, all of the above are now part of a single toolset. However, since DNX was available in RC1
timeframe, you might have projects that were built using it that you would want to move off to the new CLI tooling.


This migration guide will cover the essentials on how to migrate projects off of DNX and onto .NET Core CLI. If you are just
starting a project on .NET Core from scratch, you can freely skip this document.





Main changes in the tooling


There are some general changes in the tooling that should be outlined first.



No more DNVM


DNVM, short for DotNet Version Manager was a bash/PowerShell script used to install a DNX on your machine. It helped
users get the DNX they need from the feed they specified (or default ones) as well as mark a certain DNX “active”, which
would put it on the $PATH for the given session. This would allow you to use the various tools.


DNVM was discontinued because its feature set was made redundant by changes coming in the .NET Core CLI tools.


The CLI tools come packaged in two main ways, as was explained in the overview document:



		Native installers for a given platform


		Install script for other situations (like CI servers)





Given this, the DNVM install features are not needed. But what about the runtime selection features?


You reference a runtime in your project.json by adding a package of a certain version to your dependencies. With this change,
your application will be able to use the new runtime bits. Getting these bits to your machine is the same as with the CLI:
you install the runtime via one of the native installers it supports or via its install script.





Different commands


If you were using DNX, you used some commands from one of its three parts (DNX, DNU or DNVM). With the CLI, some of these
commands change, some are not available and some are the same but have slightly different semantics.


The table below shows the mapping between the DNX/DNU commands and their CLI counterparts.


| DNX command                       | CLI command       | Description                                                                                                       |
|——————————–   |—————-   |—————————————————————————————————————–  |
| dnx run                           | dotnet run        | Run code from source.                                                                                             |
| dnu build                         | dotnet build      | Build an IL binary of your code.                                                                                  |
| dnu pack                          | dotnet pack       | Package up a NuGet package of your code.                                                                          |
| dnx [command] (for example, “dnx web”)   | N/A*             | In DNX world, run a command as defined in the project.json.                                                       |
| dnu install                       | N/A*             | In the DNX world, install a package as a dependency.                                                              |
| dnu restore                       | dotnet restore    | Restore dependencies specified in your project.json.                                                              |
| dnu publish                       | dotnet publish    | Publish your application for deployment in one of the three forms (portable, portable with native and standalone).    |
| dnu wrap                          | N/A*             | In DNX world, wrap a project.json in csproj.                                                                      |
| dnu commands                      | N/A*             | In DNX world, manage the globally installed commands.                                                             |


(*) - these features are not supported in the CLI by design.







DNX features that are not supported


As the table above shows, there are features from the DNX world that we decided not to support in the CLI, at least for
the time being. This section will go through the most important ones and outline the rationale behind not supporting
them as well as workarounds if you do need them.



Global commands


DNU came with a concept called “global commands”. These were, essentially, console applications packaged up as NuGet
packages with a shell script that would invoke the DNX you specified to run the application.


The CLI does not support this concept. It does, however, support the concept of adding per-project commands that can be
invoked using the familiar dotnet <command> syntax. More about this can be found in the
extensibility overview.





Installing dependencies


As of v1, the .NET Core CLI tools don’t have an install command for installing dependencies. In order to install a
package from NuGet, you would need to add it as a dependency to your project.json file and then run dotnet restore.





Running your code


There are two main ways to run your code. One is from source, with dotnet run. Unlike dnx run, this will not do any
in-memory compilation. It will actually invoke dotnet build to build your code and then run the built binary.


Another way is using the dotnet itself to run your code. This is done by providing a path to your assembly:
dotnet path/to/an/assembly.dll.







Migrating your DNX project to .NET Core CLI


In addition to using new commands when working with your code, there are three major things left in migrating from DNX:



		Migrate the global.json file if you have it to be able to use CLI.


		Migrating the project file (project.json) itself to the CLI tooling.


		Migrating off of any DNX APIs to their BCL counterparts.






Changing the global.json file


The global.json file acts like a solution file for both the RC1 and RC2 (or later) projects. In order for the CLI tools (as well
as Visual Studio) to differentiate between RC1 and later versions, they use the "sdk": { "version" } property to make the distinction
which project is RC1 or later. If global.json doesn’t have this node at all, it is assumed to be the latest.


In order to update the global.json file, either remove the property or set it to the exact version of the
tools that you wish to use, in this case 1.0.0-preview2-003121:


{
    "sdk": {
        "version": "1.0.0-preview2-003121"
    }
}









Migrating the project file


The CLI and DNX both use the same basic project system based on project.json file. The syntax and the semantics of the
project file are pretty much the same, with small differences based on the scenarios. There are also some changes to
the schema which you can see in the schema file [http://json.schemastore.org/project] or in a more friendly
project.json reference.


If you are building a console application, you need to add the following snippet to your project file:


"buildOptions": {
    "emitEntryPoint": true
}






This instructs dotnet build to emit an entry point for your application, effectively making your code runnable. If
you are building a class library, simply omit the above section. Of course, once you add the above snippet to your
project.json file, you need to add a static entry point. With the move off DNX, the DI services it provided are no
longer available and thus this needs to be a basic .NET entry point: static void Main().


If you have a “commands” section in your project.json, you can remove it. Some of the commands that used to exist as
DNU commands, such as Entity Framework CLI commands, are being ported to be
per-project extensions to the CLI. If you built your own commands that you are using in your projects, you need to
replace them with CLI extensions. In this case, the commands node in project.json needs to be replaced by the
tools node and it needs to list the tools dependencies as explained in the
CLI extensibility section.


After these things are done, you need to decide which type of portability you wish for you app. With .NET Core, we have
invested into providing a spectrum of portability options that you can choose from. For instance, you may want to have
a fully portable application or you may want to have a self-contained application. The portable application option is more
like .NET Framework applications work: it needs a shared component to execute it on the target machine
(.NET Core). The self-contained application doesn’t require .NET Core to be installed on the target, but you have to
produce one application for each OS you wish to support. These portability types and more are discussed in the
application portability type document.


Once you make a call on what type of portability you want, you need to change your targeted framework(s). If you were
writing applications for .NET Core, you were most likely using dnxcore50 as  your targeted framework. With the CLI
and the changes that the new .NET Standard Library [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md]
brought, the framework needs to be one of the following:



		netcoreapp1.0 - if you are writing applications on .NET Core (including ASP.NET Core applications)


		netstandard1.5 - if you are writing class libraries for .NET Core





If you are using other dnx targets, like dnx451 you will need to change those as well. dnx451 should be changed to net451.
Please refer to the .NET Standard Library document [https://github.com/dotnet/corefx/blob/master/Documentation/architecture/net-platform-standard.md]
for more information.


Your project.json is now mostly ready. You need to go through your dependencies list and update the dependencies to
their newer versions, especially if you are using ASP.NET Core dependencies. If you were using separate packages for BCL APIs,
you can use the runtime package as explained in the application portability type document.


Once you are ready, you can try restoring with dotnet restore. Depending on the version of your dependencies, you
may encounter errors if NuGet cannot resolve the dependencies for one of the
targeted frameworks above. This is a “point-in-time” problem; as time progresses, more and more packages will include
support for these frameworks. For now, if you run into this, you can use the imports statement within the framework
node to specify to NuGet that it can restore the packages targeting the framework within the “imports” statement.
The restoring errors you get in this case should provide enough information to tell you which frameworks you need to
import. If you are slightly lost or new to this, in general, specifying dnxcore50 and portable-net45+win8 in the
imports statement should do the trick. The JSON snippet below shows how this looks like:


    "frameworks": {
        "netcoreapp1.0": { 
            "imports": ["dnxcore50", "portable-net45+win8"]
        }
    }






Running dotnet build will show any eventual build errors, though there shouldn’t be too many of them. After your code is
building and running properly, you can test it out with the runner. Execute dotnet <path-to-your-assembly> and see it run.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/docker/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Docker and .NET Core
description: Docker and .NET Core
keywords: Docker, .NET, .NET Core
author: spboyer
manager: wpickett
ms.date: 09/01/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: cae32148-aef4-4e64-a7f0-88072bad4400





Docker and .NET Core


The following tutorials are available for learning about using Docker with .NET Core.



		Building Docker Images for .NET Core Applications





For tutorials about developing ASP.NET Core web applications, we suggest you head over to ASP.NET Core documentation [https://docs.asp.net].






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/app-types.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core App Types
description: .NET Core App Types
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 93488a0b-c94c-4ed6-97ea-571bb23a862e





.NET Core App Types



Content moved!


This content has merged and moved to the .NET Core Application Deployment topic.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/deploying/applications.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Deploying .NET Core applications
description: Deploying .NET Core applications
keywords: .NET, .NET Core
author: dotnet-bot
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 1db00fb1-d947-480d-8d7d-7152e67b0585





🔧 Deploying .NET Core applications



Note


This topic hasn’t been written yet!


We welcome your input to help shape the scope and approach.


Learn more about how you can contribute on
GitHub [https://github.com/dotnet/core-docs/blob/master/CONTRIBUTING.md].










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/docker/building-net-docker-images.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Building .NET Core Docker Images
description: Understanding Docker images and .NET Core
keywords: .NET, .NET Core, Docker
author: spboyer
manager: wpickett
ms.date: 08/29/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 03c28597-7e73-46d6-a9c3-f9cb55642739




#Building Docker Images for .NET Core Applications


In order to get an understanding of how to use .NET Core and Docker together, we must first get to know the different Docker images that are offered and when is the right use case for them. Here we will walk through the variations offered, build an ASP.NET Core Web API, use the Yeoman Docker tools to create a debuggable container as well as peek at how Visual Studio Code can assist in the process.



Docker Image Optimizations


When building Docker images for developers, we focused on three main scenarios:



		Images used to develop .NET Core apps


		Images used to build .NET Core apps


		Images used to run .NET Core apps





Why three images?
When developing, building and running containerized applications, we have different priorities.



		Development:  How fast can you iterate changes, and the ability to debug the changes. The size of the image isn’t as important, rather can you make changes to your code and see them quickly. Some of our tools, like yo docker [https://aka.ms/yodocker] for use in VS Code use this image during development time.


		Build: What’s needed to compile your app. This includes the compiler and any other dependencies to optimize the binaries. This image isn’t the image you deploy, rather it’s an image you use to build the content you place into a production image. This image would be used in your continuous integration, or build environment. For instance, rather than installing all the dependencies directly on a build agent, the build agent would instance a build image to compile the application with all the dependencies required to build the app contained within the image. Your build agent only needs to know how to run this Docker image.


		Production: How fast you can deploy and start your image. This image is small so it can quickly travel across the network from your Docker Registry to your Docker hosts. The contents are ready to run enabling the fastest time from Docker run to processing results. In the immutable Docker model, there’s no need for dynamic compilation of code. The content you place in this image would be limited to the binaries and content needed to run the application. For example, the published output using dotnet publish which contains the compiled binaries, images, .js and .css files. Over time, you’ll see images that contain pre-jitted packages.








Docker image variations


To achieve the goals above, we provide image variants under microsoft/dotnet [https://hub.docker.com/r/microsoft/dotnet/].



		microsoft/dotnet:<version>-sdk : that is microsoft/dotnet-preview2-sdk, this image contains the .NET Core SDK which includes the .NET Core and Command Line Tools (CLI). This image maps to the development scenario. You would use this image for local development, debugging and unit testing. For example, all the development you do, before you check in your code. This image can also be used for your build scenarios.


		microsoft/dotnet:<version>-core : that is microsoft/dotnet:1.0.0-core, image which runs portable .NET Core applications and it is optimized for running your application in production. It does not contain the SDK, and is meant to take the optimized output of dotnet publish. The portable runtime is well suited for Docker container scenarios as running multiple containers benefit from shared image layers.








Alternative images


In addition to the optimized scenarios of development, build and production, we provide additional images:



		microsoft/dotnet:<version>-onbuild : that is microsoft/dotnet:onbuild, contains ONBUILD [https://docs.docker.com/engine/reference/builder/#/onbuild] triggers. The build will COPY [https://docs.docker.com/engine/reference/builder/#/copy] your application, run dotnet restore and create an ENTRYPOINT [https://docs.docker.com/engine/reference/builder/#/entrypoint] dotnet run instruction to run the application when the Docker image is run. While not an optimized image for production, some may find it useful to simply copy their source code into an image and run it.


		microsoft/dotnet:<version>-core-deps : that is microsoft/dotnet:1.0.0-core-deps, if you wish to run self-contained applications use this image. It contains the operating system with all of the native dependencies needed by .NET Core. This image can also be used as a base image for your own custom CoreFX or CoreCLR builds. While the onbuild variant is optimized to simply place your code in an image and run it, this image is optimized to have only the operating system dependencies required to run .NET Core apps that have the .NET Runtime packaged with the application. This image isn’t generally optimized for running multiple .NET Core containers on the same host, as each image carries the .NET Core runtime within the application, and you will not benefit from image layering.





Latest versions of each variant:



		microsoft/dotnet or microsoft/dotnet:latest (includes SDK)


		microsoft/dotnet:onbuild


		microsoft/dotnet:core


		microsoft/dotnet:core-deps





Here is a list of the images after a docker pull <imagename> on a development machine to show the various sizes. Notice, the development/build variant, microsoft/dotnet:1.0.0-preview2-sdk is larger as it contains the SDK to develop and build your application. The production variant, microsoft/dotnet:core is smaller, as it only contains the .NET Core runtime.
The minimal image capable of being used on Linux, core-deps, is quite smaller, however your application will need to copy a private copy of the .NET Runtime with it. Since containers are already private isolation barriers, you will lose that optimization when running multiple dotnet based containers.


REPOSITORY          TAG                  IMAGE ID            SIZE
microsoft/dotnet    onbuild              19b6a6c4b1db        540.4 MB
microsoft/dotnet    1.0.0-preview2-sdk   a92c3d9ad0e7        540.4 MB
microsoft/dotnet    core                 5224a9f2a2aa        253.2 MB
microsoft/dotnet    1.0.0-core-deps      c981a2eebe0e        166.2 MB
microsoft/dotnet    core-deps            c981a2eebe0e        166.2 MB
microsoft/dotnet    latest               03c10abbd08a        540.4 MB
microsoft/dotnet    1.0.0-core           b8da4a1fd280        253.2 MB









Prerequisites


To build and run, you’ll need a few things installed:



		.NET Core [http://dot.net]


		Docker for Windows or Docker for Mac [http://www.docker.com/products/docker] from Docker to run your Docker containers locally


		Yeoman generator for ASP.NET [https://github.com/omnisharp/generator-aspnet] for creating the Web API application


		Yeoman generator for Docker [http://aka.ms/yodocker] from Microsoft





Install the Yeoman generators for ASP.NET Core and Docker using npm


npm install -g yo generator-aspnet generator-docker







[!NOTE]
This sample will be using Visual Studio Code [http://code.visualstudio.com] for the editor.






Creating the Web API application


For a reference point, before we containerize the application, first run the application locally.


Create a directory for your application.


Open a command or terminal session in that directory and use the ASP.NET Yeoman generator by typing the following:


yo aspnet






Select Web API Application and type api for the name of the app and tap enter.  Once the application is scaffolded, change to the /api directory and restore the NuGet dependencies using dotnet restore.


cd api
dotnet restore






Test the application using dotnet run and browsing to http://localhost:5000/api/values


[
    "value1",
    "value2"
]






Use Ctrl+C to stop the application.





Adding Docker support


Adding Docker support to the project is achieved using the Yeoman generator from Microsoft. It currently supports .NET Core, Node.js and Go projects by creating a Dockerfile and scripts that help build and run projects inside containers. Visual Studio Code specific files are also added (launch.json, tasks.json) for editor debugging and command palette support.


$ yo docker

     _-----_     ╭──────────────────────────╮
    |       |    │   Welcome to the Docker  │
    |--(o)--|    │        generator!        │
   `---------´   │     Let's add Docker     │
    ( _´U`_ )    │  container magic to your │
    /___A___\   /│           app!           │
     |  ~  |     ╰──────────────────────────╯
   __'.___.'__
 ´   `  |° ´ Y `

? What language is your project using? (Use arrow keys)
❯ .NET Core
  Golang
  Node.js







		Select .NET Core as the project type


		rtm for the version of .NET Core


		Y the project uses a web server


		5000 is the port the Web API application is listening on (http://localhost:5000)


		api for the image name


		api for the service name


		api for the compose project


		Y to overwrite the current Dockerfile





When the generator is complete, the following files are added to the project



		.vscode/launch.json


		Dockerfile.debug


		Dockerfile


		docker-compose.debug.yml


		docker-compose.yml


		dockerTask.ps1


		dockerTask.sh


		.vscode/tasks.json





The generator creates two Dockerfiles.


Dockerfile.debug - this file is based on the microsoft/dotnet:1.0.0-preview2-sdk image which if you note from the list of image variants, includes the SDK, CLI and .NET Core and will be the image used for development and debugging (F5). Including all of these components produces a larger image with a size roughly of 540MB.


Dockerfile - this image is the release image based on microsoft/dotnet:1.0.0-core and should be used for production. This image when built is approximately 253 MB.



Creating the Docker images


Using the dockerTask.sh or dockerTask.ps1 script, we can build or compose the image and container for the api application for a specific environment. Build the debug image by running the following command.


./dockerTask.sh build debug






The image will build the ASP.NET application, run dotnet restore, add the debugger to the image, set an ENTRYPOINT and finally copy the app to the image. The result is a Docker image named api with a TAG of debug.  See the images on the machine using docker images.


docker images

REPOSITORY          TAG                  IMAGE ID            CREATED             SIZE
api                 debug                70e89fbc5dbe        a few seconds ago   779.8 MB






Another way to generate the image and run the application within the Docker container is to open the application in Visual Studio Code and use the debugging tools.


Select the debugging icon in the View Bar on the left side of VS Code.


[image: vscode debugging icon]


Then tap the play icon or F5 to generate the image and start the application within the container. The Web API will be launched using your default web browser at http://localhost:5000.


[image: VSCode Docker Tools Debug]


You may set break points in your application, step through, etc. just as if the application was running locally on your development machine as opposed to inside the container. The benefit to debugging within the container is this is the same image that would be deployed to a production environment.


Creating the release or production image requires simply running the command from the terminal passing the release environment name.


./dockerTask build release






The command creates the image based on the smaller microsoft/dotnet:core base image, EXPOSE [https://docs.docker.com/engine/reference/builder/#/expose] port 5000, sets the ENTRYPOINT [https://docs.docker.com/engine/reference/builder/#/entrypoint] for dotnet api.dll and copies it to the /app directory. There is no debugger, SDK or dotnet restore resulting in a much smaller image. The image is named api with a TAG of latest.


REPOSITORY          TAG                  IMAGE ID            CREATED             SIZE
api                 debug                70e89fbc5dbe        1 hour ago        779.8 MB
api                 latest               ef17184c8de6        1 hour ago        260.7 MB











Summary


Using the Docker generator to add the necessary files to our Web API application made the process simple to create the development and production versions of the images.  The tooling is cross platform by also providing a PowerShell script to accomplish the same results on Windows and Visual Studio Code integration providing step through debugging of the application within the container. By understanding the image variants and the target scenarios, you can optimize your inner-loop development process, while achieving optimized images for production deployments.






          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/deploying/creating-nuget-packages.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Creating a NuGet Package with Cross Platform Tools
description: Creating a NuGet Package with Cross Platform Tools
keywords: .NET, .NET Core, NuGet
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2f0415c1-110b-433d-87c1-ae3d543a8844





How to Create a NuGet Package with Cross Platform Tools



[!NOTE]
The following shows command-line samples using Unix.  The dotnet pack command as shown here works the same way on Windows.



For .NET Core 1.0, libraries are expected to be distributed as NuGet packages.  This is in fact how all of the .NET Standard libraries are distributed and consumed.  This is most easily done with the dotnet pack command.


Imagine that you just wrote an awesome new library that you would like to distribute over NuGet.  You can create a NuGet package with cross platform tools to do exactly that!  The following example assumes a library called SuperAwesomeLibrary which targets netstandard1.0.


If you have transitive dependencies; that is, a project which depends on another project, you’ll need to make sure to restore packages for your entire solution with the dotnet restore command before creating a NuGet package.  Failing to do so will result in the dotnet pack command to not work properly.


After ensuring packages are restored, you can navigate to the directory where a library lives:


$ cd src/SuperAwesomeLibrary


Then it’s just a single command from the command line:


$ dotnet pack


Your /bin/Debug folder will now look like this:


$ ls bin/Debug

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg






Note that this will produce a package which is capable of being debugged.  If you want to build a NuGet package with release binaries, all you need to do is add the -c/--configuration switch and use release as the argument.


$ dotnet pack --configuration release


Your /bin folder will now have a release folder containing your NuGet package with release binaries:


$ ls bin/release

netstandard1.0/
SuperAwesomeLibrary.1.0.0.nupkg
SuperAwesomeLibrary.1.0.0.symbols.nupkg






And now you have the necessary files to publish a NuGet package!



Don’t confuse dotnet pack with dotnet publish


It is important to note that at no point is the dotnet publish command involved.  The dotnet publish command is for deploying applications with all of their dependencies in the same bundle -  not for generating a NuGet package to be distributed and consumed via NuGet.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/deploying/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Application Deployment
description: .NET Core Application Deployment
keywords: .NET, .NET Core, .NET Core deployment
author: rpetrusha
manager: wpickett
ms.date: 09/08/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: da7a31a0-8072-4f23-82aa-8a19184cb701





.NET Core Application Deployment


You can create two types of deployments for .NET Core applications:



		Framework-dependent deployment. As the name implies, framework-dependent deployment (FDD) relies on a shared system-wide version of .NET Core to be present on the target system. Because .NET Core is already present, your app is also portable between installations of .NET Core. Your app contains only its own code and any third-party dependencies that are outside of the .NET Core libraries. FDDs contain .dll files that can be launched by using the dotnet utility from the command line. For example, dotnet app.dll runs an application named app.


		Self-contained deployment. Unlike FDD, a self-contained deployment (SCD) does not rely on any shared components to be present on the target system. All components, including both .NET Core libraries and the .NET Core runtime, are included with the application and are isolated from other .NET Core applications. SCDs include an executable (such as app.exe on Windows platforms for an application named app), which is  a renamed version of the platform-specific .NET Core host, and a .dll file (such as app.dll), which is the actual application.






Framework-dependent deployments (FDD)


For an FDD, you deploy only your app and any third-party dependencies. You do not have to deploy .NET Core, since your app will use the version of .NET Core that’s present on the target system. This is the default deployment model for .NET Core apps.



Why create a framework-dependent deployment?


Deploying an FDD has a number of advantages:



		You do not have to define the target operating systems that your .NET Core app will run on in advance. Because .NET Core uses a common PE file format for executables and libraries regardless of operating system, .NET Core can execute your app regardless of the underlying operating system. For more information on the PE file format, see .NET Assembly File Format.


		The size of your deployment package is small. You only have to deploy your app and its dependencies, not .NET Core itself.


		Multiple apps use the same .NET Core installation, which reduces both disk space and memory usage on host systems.





There are also a few disadvantages:



		Your app can run only if the version of .NET Core that you target, or a later version, is already installed on the host system.


		It is possible for the .NET Core runtime and libraries to change without your knowledge in future releases. In rare cases, this may change the behavior of your app.








Deploying a framework-dependent deployment


Deploying a framework-dependent deployment with no third-party dependencies simply involves building, testing, and publishing the app. A simple example written in C# illustrates the process. The example uses the dotnet utility from the command line; however, you can also use a development environment, such as Visual Studio or Visual Studio Code, to compile, test, and publish the example.



		Create a directory for your project, and from the command line, type dotnet new to create a new C# console project.





		Open the Program.cs file in an editor, and replace the auto-generated code with the following code. It prompts the user to enter text, and then displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.


using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
    public class ConsoleParser
    {
        public static void Main()
        {
             Console.WriteLine("Enter any text, followed by <Enter>:\n");
             String s = Console.ReadLine();
             ShowWords(s);
             Console.Write("\nPress any key to continue... ");
             Console.ReadKey();
      }

      private static void ShowWords(String s)
      {
          String pattern = @"\w+";
          var matches = Regex.Matches(s, pattern);
          if (matches.Count == 0)
              Console.WriteLine("\nNo words were identified in your input.");
          else
          {
              Console.WriteLine("\nThere are {0} words in your string:", matches.Count);
              for (int ctr = 0; ctr < matches.Count; ctr++)
                  Console.WriteLine("   #{0,2}: '{1}' at position {2}", ctr,
                                    matches[ctr].Value, matches[ctr].Index);
          }
      }
  }
}









		Run the dotnet restore command to restore the dependencies specified in your project.





		Create a debug build of your app by using the dotnet build command.





		After you’ve debugged and tested the program, you can create the files to be deployed with your app by using the dotnet publish -f netcoreapp1.0 -c release command. This creates a release (rather than a debug) version of your app.


The resulting files are placed in a directory named publish that is in a subdirectory of your project’s .\bin\release\netcoreapp1.0 subdirectory.





		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.








The complete set of application  files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice.


Before deploying your app, you can also use crossgen to convert it to native code. However, its performance impact is smaller than for self-contained deployments. For more information, see the Native Image Generation section.


In addition to the application binaries, the installer should also either bundle the shared framework installer or check for it as a prerequisite as part of the application installation.  Installation of the shared framework requires Administrator/root access since it is machine-wide.





Deploying a framework-dependent deployment with third-party dependencies


Deploying a framework-dependent deployment with one or more third-party dependencies involves three additional steps before you can run the dotnet restore command:



		Add references to any third-party libraries to the dependencies section of your project.json file. The following  dependencies section uses Json.NET as a third-party library.


"dependencies": {
  "Microsoft.NETCore.App": {
    "type": "platform",
    "version": "1.0.0"
  },
  "Newtonsoft.Json": "9.0.1"
},









		If you haven’t already, download the NuGet package containing the third-party dependency. To download the package, execute the dotnet restore command after adding the dependency. Because the dependency is resolved out of the local NuGet cache at publish time, it must be available on your system.








Note that a framework-dependent deployment with third-party dependencies will only be as portable as its third-party dependencies. For example, if a third-party library only supports macOS, the app will not be portable to Windows systems. This can happen if the third-party dependency itself depends on native code. A good example of this is Kestrel server. When an FDD is created for an application with this kind of third-party dependency, the published output will contain a folder for each Runtime Identifier (RID) that the native dependency supports (and that exists in its NuGet package).







Self-contained deployments (SCD)


For a self-contained deployment, you deploy not only your app and any third-party dependencies, but the version of .NET Core that you build your app with. Creating an SCD does not, however, include the native dependencies of .NET Core [https://github.com/dotnet/core/blob/master/Documentation/prereqs.md] itself on various platforms (for example, OpenSSL on macOS) so these need to be installed before running the application.



Why deploy a Self-contained deployment?


Deploying a Self-contained deployment has two major advantages:



		You have sole control of the version of .NET Core that is deployed with your app. .NET Core can be serviced only by you.


		You can be assured that the target system can run your .NET Core app, since you’re providing the version of .NET Core that it will run on.





It also has a number of disadvantages:



		Because .NET Core is included in your deployment package, you must select the target platforms for which you build deployment packages in advance.


		Presently, the .NET Core runtime files are published from the NuGet cache, which means that they are not crossgen-ed. This can impact performance of your application.


		The size of your deployment package is relatively large, since you have to include .NET Core as well as your app and its third-party dependencies.


		Deploying numerous self-contained .NET Core apps to a system can consume significant amounts of disk space, since each app duplicates .NET Core files.








[bookmark: simpleSelf] Deploying a simple self-contained deployment


Deploying a self-contained deployment with no third-party dependencies involves creating the project, modifying the project.json file, building, testing, and publishing the app.  A simple example written in C# illustrates the process. The example uses the dotnet utility from the command line; however, you can also use a development environment, such as Visual Studio or Visual Studio Code, to compile, test, and publish the example.



		Create a directory for your project, and from the command line, type dotnet new to create a new C# console project.





		Open the Program.cs file in an editor, and replace the auto-generated code with the following code. It prompts the user to enter text, and then displays the individual words entered by the user. It uses the regular expression \w+ to separate the words in the input text.


using System;
using System.Text.RegularExpressions;

namespace Applications.ConsoleApps
{
    public class ConsoleParser
    {
        public static void Main()
        {
             Console.WriteLine("Enter any text, followed by <Enter>:\n");
             String s = Console.ReadLine();
             ShowWords(s);
             Console.Write("\nPress any key to continue... ");
             Console.ReadKey();
      }

      private static void ShowWords(String s)
      {
          String pattern = @"\w+";
          var matches = Regex.Matches(s, pattern);
          if (matches.Count == 0)
              Console.WriteLine("\nNo words were identified in your input.");
          else {
              Console.WriteLine("\nThere are {0} words in your string:", matches.Count);
              for (int ctr = 0; ctr < matches.Count; ctr++)
                  Console.WriteLine("   #{0,2}: '{1}' at position {2}", ctr,
                                    matches[ctr].Value, matches[ctr].Index);
          }
      }
  }
}









		Open the project.json file and in the frameworks section, remove the following line:


"type": "platform",












The Framework section should appear as follows after you’ve modified it:


```json
"frameworks": {
  "netcoreapp1.0": {
    "dependencies": {
      "Microsoft.NETCore.App": {
         "version": "1.0.0"
      }
    }
  }
}
```






Removing the "type": "platform" attribute indicates that the framework is provided as a set of components local to our app, rather than as a system-wide platform package.



		Create a runtimes section in your project.json file that defines the platforms your app targets, and specify the runtime identifier of each platform that you target. See Runtime IDentifier catalog for a list of runtime identifiers. For example, the following runtimes section indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X Version 10.10 operating system.


    "runtimes": {
      "win10-x64": {},
      "osx.10.10-x64": {}
    }












Note that you also need to add a comma to separate the runtimes section from the previous section.
A complete sample project.json file appears later in this section.



		Run the dotnet restore command to restore the dependencies specified in your project.





		Create debug builds of your app on each of the target platforms by using the dotnet build command. Unless you specify the runtime identifier you’d like to build, the dotnet build command creates a build only for the current system’s runtime ID. You can build your app for both target platforms with the commands:


dotnet build -r win10-x64
dotnet build -r osx.10.10-x64












The debug builds of your app for each platform will be found in the project’s .\bin\Debug\netcoreapp1.0\<runtime_identifier> subdirectory.



		After you’ve debugged and tested the program, you can create the files to be deployed with your app for each platform that it targets by using the dotnet publish command for both target platforms as follows:


dotnet publish -c release -r win10-x64
dotnet publish -c release -r osx.10.10-x64












This creates a release (rather than a debug) version of your app for each target platform. The resulting files are placed in a subdirectory named publish that is in a subdirectory of your project’s .\bin\release\netcoreapp1.0\<runtime_identifier> subdirectory. Note that each subdirectory contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.



		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.





The published files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice. Before packaging and deploying your app, you can also use crossgen to convert it to native code. For more information, see the Native Image Generation section.


The following is the complete project.json file for this project.


{
  "version": "1.0.0-*",
  "buildOptions": {
    "debugType": "portable",
    "emitEntryPoint": true
  },
  "dependencies": {},
  "frameworks": {
    "netcoreapp1.0": {
      "dependencies": {
        "Microsoft.NETCore.App": {
          "version": "1.0.0"
        }
      }
    }
  },
  "runtimes": {
    "win10-x64": {},
    "osx.10.10-x64": {}
  }
}









Deploying a self-contained deployment with third-party dependencies


Deploying a self-contained deployment with one or more third-party dependencies involves adding the third party dependency:



		Add references to any third-party libraries to the dependencies section of your project.json file. The following  dependencies section uses Json.NET as a third-party library.


"dependencies": {
  "Microsoft.NETCore.App": "1.0.0",
  "Newtonsoft.Json": "9.0.1"
},









		If you haven’t already, download the NuGet package containing the third-party dependency to your system. To make the dependency available to your app, execute the dotnet restore command after adding the dependency. Because the dependency is resolved out of the local NuGet cache at publish time, it must be available on your system.








The following is the complete project.json file for this project:


{
  "version": "1.0.0-*",
  "buildOptions": {
    "debugType": "portable",
    "emitEntryPoint": true
  },
  "dependencies": {
    "Microsoft.NETCore.App": "1.0.0",
    "Newtonsoft.Json": "9.0.1"
  },
  "frameworks": {
    "netcoreapp1.0": {
    }
  },
  "runtimes": {
    "win10-x64": {},
    "osx.10.10-x64": {}
  }
}






When you deploy your application, any third-party dependencies used in your app are also contained with your application files. Third-party libraries do not already have to be present on the system on which the app is running.


Note that you can only deploy a self-contained deployment with a third-party library to platforms supported by that library. This is similar to having third-party dependencies with native dependencies in your framework-dependent deployment.





Deploying a self-contained deployment with a smaller footprint


If the availability of adequate storage space on target systems is likely to be an issue, you can reduce the overall footprint of your app by excluding some system components. To do this, you explicitly define the .NET Core components that your app includes in your project.json file.


To create a self-contained deployment with a smaller footprint, start by following the first two steps for creating a self-contained deployment. Once you’ve run the dotnet new command and added the C# source code to your app, do the following:



		Open the project.json file and replace the frameworks section with the following:


"frameworks": {
  "netstandard1.6": { }
}












This does two things:


* It indicates that, instead of using the entire `netcoreapp1.0` framework, which includes .NET Core CLR, the .NET Core Library, and a number of other system components, our app uses only the .NET Standard Library.

* By removing the `"type": "platform"` attribute, it indicates that the framework is provided as a set of components local to our app, rather than as a system-wide platform package.







		Replace the dependencies section with the following:


"dependencies": {
  "NETStandard.Library": "1.6.0",
  "Microsoft.NETCore.Runtime.CoreCLR": "1.0.2",
  "Microsoft.NETCore.DotNetHostPolicy":  "1.0.1"
},






This defines the system components used by our app. The system components packaged with our app include the .NET Standard Library, the .NET Core runtime, and the .NET Core host. This produces a self-contained deployment with a smaller footprint.





		As you did in the Deploying a simple self-contained deployment example, create a runtimes section in your project.json file that defines the platforms your app targets and specify the runtime identifier of each platform that you target. See Runtime IDentifier catalog for a list of runtime identifiers. For example, the following runtimes section indicates that the app runs on 64-bit Windows 10 operating systems and the 64-bit OS X Version 10.10 operating system.


    "runtimes": {
      "win10-x64": {},
      "osx.10.10-x64": {}
    }












Note that you also need to add a comma to separate the runtimes section from the previous section.
A complete sample project.json file appears later in this section.



		Run the dotnet restore command to restore the dependencies specified in your project.





		Create debug builds of your app on each of the target platforms by using the dotnet build command. Unless you specify the runtime identifier you’d like to build, the dotnet build command creates a build only for the current system’s runtime ID. You can build your app for both target platforms with the commands:


dotnet build -r win10-x64
dotnet build -r osx.10.10-x64









		After you’ve debugged and tested the program, you can create the files to be deployed with your app for each platform that it targets by using the dotnet publish command for both target platforms as follows:


dotnet publish -c release -r win10-x64
dotnet publish -c release -r osx.10.10-x64












This creates a release (rather than a debug) version of your app for each target platform. The resulting files are placed in a subdirectory named publish that is in a subdirectory of your project’s .\bin\release\netstandard1.6\<runtime_identifier> subdirectory. Note that each subdirectory contains the complete set of files (both your app files and all .NET Core files) needed to launch your app.



		Along with your application’s files, the publishing process emits a program database (.pdb) file that contains debugging information about your app. The file is useful primarily for debugging exceptions; you can choose not to package it with your application’s files.





The published files can be deployed in any way you’d like. For example, you can package them in a zip file, use a simple copy command, or deploy them with any installation package of your choice. Before packaging and deploying your app, you can also use crossgen to convert it to native code. For more information, see the Native Image Generation section.


The following is the complete project.json file for this project.


   {
     "version": "1.0.0-*",
     "buildOptions": {
       "debugType": "portable",
       "emitEntryPoint": true
     },
     "dependencies": {
       "NETStandard.Library": "1.6.0",
       "Microsoft.NETCore.Runtime.CoreCLR": "1.0.2",
       "Microsoft.NETCore.DotNetHostPolicy":  "1.0.1"
     },
     "frameworks": {
       "netstandard1.6": { }
     },
     "runtimes": {
       "win10-x64": {},
       "osx.10.10-x64": {}
     }
   }











[bookmark: crossgen] Native image Generation


NET Core uses a just in time (JIT) compiler that stores application code in an intermediate format and compiles it to native code at runtime.  To increase startup performance, the shared framework is pre-compiled using a tool called crossgen.  To improve performance of your application, you can use the same tool on your application’s binaries.  Its performance impact is more noticeable when deploying a self-contained deploymentlication, since the entire framework is part of the application. Crossgen must be run on a machine of the same platform type that you are targeting, but need not be done on the same machine, unlike ngen for the desktop framework.  If you are producing a platform-specific installer for your application, we recommend that you crossgen as part of the installer build process.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/deploying/reducing-dependencies.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Reducing Package Dependencies with project.json
description: Reducing Package Dependencies with project.json
keywords: .NET, .NET Core
author: cartermp
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 916251e3-87f9-4eee-81ec-94076215e6fa





Reducing Package Dependencies with project.json


This article covers what you need to know about reducing your package dependencies when authoring project.json libraries. By the end of this article, you will learn how to compose your library such that it only uses the dependencies it needs.



Why it’s Important


.NET Core is a product made up of NuGet packages.  An essential package is the .NET Standard Library metapackage [https://www.nuget.org/packages/NETStandard.Library], which is a NuGet package composed of other packages.  It provides you with the set of packages that are guaranteed to work on multiple .NET implementations, such as .NET Framework, .NET Core and Xamarin/Mono.


However, there’s a good chance that your library won’t use every single package it contains.  When authoring a library and distributing it over NuGet, it’s a best practice to “trim” your dependencies down to only the packages you actually use.  This results in a smaller overall footprint for NuGet packages.





How to do it


Currently, there is no official dotnet command which trims package references.  Instead, you’ll have to do it manually.  The general process looks like the following:



		Reference NETStandard.Library version 1.6.0 in a dependencies section of your project.json.


		Restore packages with dotnet restore from the command line.


		Inspect the project.lock.json file and find the NETSTandard.Library section.  It’s near the beginning of the file.


		Copy all of the listed packages under dependencies.


		Remove the .NETStandard.Library reference and replace it with the copied packages.


		Remove references to packages you don’t need.





You can find out which packages you don’t need by one of the following ways:



		Trial and error.  This involves removing a package, restoring, seeing if your library still compiles, and repeating this process.


		Using a tool such as ILSpy [http://ilspy.net] or .NET Reflector [http://www.red-gate.com/products/dotnet-development/reflector] to peek at references to see what your code is actually using.  You can then remove packages which don’t correspond to types you’re using.








Example


Imagine that you wrote a library which provided additional functionality to generic collection types.  Such a library would need to depend on packages such as System.Collections, but may not at all depend on packages such as System.Net.Http.  As such, it would be good to trim package dependencies down to only what this library required!


To trim this library, you start with the project.json file and add a reference to NETStandard.Library version 1.6.0.


{
    "version":"1.0.0",
    "dependencies":{
        "NETStandard.Library":"1.6.0"
    },
    "frameworks": {
        "netstandard1.0": {}
     }
}






Next, you restore packages with dotnet restore, inspect the project.lock.json file, and find all the packages restored for NETSTandard.Library.


Here’s what the relevant section in the project.lock.json file looks like when targeting netstandard1.0:


"NETStandard.Library/1.6.0":{
    "type": "package",
    "dependencies": {
        "Microsoft.NETCore.Platforms": "1.0.1",
        "Microsoft.NETCore.Runtime": "1.0.2",
        "System.Collections": "4.0.11",
        "System.Diagnostics.Debug": "4.0.11",
        "System.Diagnostics.Tools": "4.0.1",
        "System.Globalization": "4.0.11",
        "System.IO": "4.1.0",
        "System.Linq": "4.1.0",
        "System.Net.Primitives": "4.0.11",
        "System.ObjectModel": "4.0.12",
        "System.Reflection": "4.1.0",
        "System.Reflection.Extensions": "4.0.1",
        "System.Reflection.Primitives": "4.0.1",
        "System.Resources.ResourceManager": "4.0.1",
        "System.Runtime": "4.1.0",
        "System.Runtime.Extensions": "4.1.0",
        "System.Text.Encoding": "4.0.11",
        "System.Text.Encoding.Extensions": "4.0.11",
        "System.Text.RegularExpressions": "4.1.0",
        "System.Threading": "4.0.11",
        "System.Threading.Tasks": "4.0.11",
        "System.Xml.ReaderWriter": "4.0.11",
        "System.Xml.XDocument": "4.0.11"
    }
}






Next, copy over the package references into the dependencies section of the library’s project.json file, replacing the NETStandard.Library reference:


{
    "version":"1.0.0",
    "dependencies":{
        "Microsoft.NETCore.Platforms": "1.0.1",
        "Microsoft.NETCore.Runtime": "1.0.2",
        "System.Collections": "4.0.11",
        "System.Diagnostics.Debug": "4.0.11",
        "System.Diagnostics.Tools": "4.0.1",
        "System.Globalization": "4.0.11",
        "System.IO": "4.1.0",
        "System.Linq": "4.1.0",
        "System.Net.Primitives": "4.0.11",
        "System.ObjectModel": "4.0.12",
        "System.Reflection": "4.1.0",
        "System.Reflection.Extensions": "4.0.1",
        "System.Reflection.Primitives": "4.0.1",
        "System.Resources.ResourceManager": "4.0.1",
        "System.Runtime": "4.1.0",
        "System.Runtime.Extensions": "4.1.0",
        "System.Text.Encoding": "4.0.11",
        "System.Text.Encoding.Extensions": "4.0.11",
        "System.Text.RegularExpressions": "4.1.0",
        "System.Threading": "4.0.11",
        "System.Threading.Tasks": "4.0.11",
        "System.Xml.ReaderWriter": "4.0.11",
        "System.Xml.XDocument": "4.0.11"
    },
    "frameworks":{
        "netstandard1.0": {}
    }
}






That’s quite a lot of packages, many of which which certainly aren’t necessary for extending collection types.  You can either remove packages manually or use a tool such as ILSpy [http://ilspy.net] or .NET Reflector [http://www.red-gate.com/products/dotnet-development/reflector] to identify which packages your code actually uses.


Here’s what a trimmed package could look like:


{
    "dependencies":{
        "Microsoft.NETCore.Platforms": "1.0.1",
        "Microsoft.NETCore.Runtime": "1.0.2",
        "System.Collections": "4.0.11",
        "System.Linq": "4.1.0",
        "System.Runtime": "4.1.0",
        "System.Runtime.Extensions": "4.1.0",
        "System.Runtime.Handles": "4.0.1",
        "System.Runtime.InteropServices": "4.1.0",
        "System.Runtime.InteropServices.RuntimeInformation": "4.0.0",
        "System.Threading.Tasks": "4.0.11"
    },
    "frameworks":{
        "netstandard1.0": {}
     }
}






Now, it has a smaller footprint than if it had depended on the NETStandard.Library metapackage.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/blockingcollection-overview.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: BlockingCollection Overview
description: BlockingCollection Overview
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a1a867de-53c2-49ca-9a1a-e5770a942724





BlockingCollection Overview


BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] is a thread-safe collection class that provides the following features:



		An implementation of the Producer-Consumer pattern.


		Thread-safe addition and removal of items from a collection.


		Optional maximum capacity.


		Insertion and removal operations that block when collection is empty or full.


		Insertion and removal “try” operations that do not block or that block up to a specified period of time.


		Encapsulates any collection type that implements IProducerConsumerCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1].


		Cancellation with cancellation tokens.


		Two kinds of enumeration with foreach:
		Read-only enumeration.


		Enumeration that removes items as they are enumerated.












Bounding and Blocking Support


BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] supports bounding and blocking. Bounding means you can set the maximum capacity of the collection. Bounding is important in certain scenarios because it enables you to control the maximum size of the collection in memory, and it prevents the producing threads from moving too far ahead of the consuming threads.


Multiple threads or tasks can add items to the collection concurrently, and if the collection reaches its specified maximum capacity, the producing threads will block until an item is removed. Multiple consumers can remove items concurrently, and if the collection becomes empty, the consuming threads will block until a producer adds an item. A producing thread can call CompleteAdding to indicate that no more items will be added. Consumers monitor the IsCompleted property to know when the collection is empty and no more items will be added. The following example shows a simple BlockingCollection with a bounded capacity of 100. A producer task adds items to the collection as long as some external condition is true, and then calls CompleteAdding. The consumer task takes items until the IsCompleted property is true.


// A bounded collection. It can hold no more 
// than 100 items at once.
BlockingCollection<Data> dataItems = new BlockingCollection<Data>(100);


// A simple blocking consumer with no cancellation.
Task.Run(() => 
{
    while (!dataItems.IsCompleted)
    {

        Data data = null;
        // Blocks if number.Count == 0
        // IOE means that Take() was called on a completed collection.
        // Some other thread can call CompleteAdding after we pass the
        // IsCompleted check but before we call Take. 
        // In this example, we can simply catch the exception since the 
        // loop will break on the next iteration.
        try
        {
            data = dataItems.Take();
        }
        catch (InvalidOperationException) { }

        if (data != null)
        {
            Process(data);
        }
    }
    Console.WriteLine("\r\nNo more items to take.");
});

// A simple blocking producer with no cancellation.
Task.Run(() =>
{
    while (moreItemsToAdd)
    {
        Data data = GetData();
        // Blocks if numbers.Count == dataItems.BoundedCapacity
        dataItems.Add(data);
    }
    // Let consumer know we are done.
    dataItems.CompleteAdding();
});






For a complete example, see How to: Add and Take Items Individually from a BlockingCollection.





Timed Blocking Operations


In timed blocking TryAdd and TryTake operations on bounded collections, the method tries to add or take an item. If an item is available it is placed into the variable that was passed in by reference, and the method returns true. If no item is retrieved after a specified time-out period the method returns false. The thread is then free to do some other useful work before trying again to access the collection. For an example of timed blocking access, see the second example in How to: Add and Take Items Individually from a BlockingCollection.





Cancelling Add and Take Operations


Add and Take operations are typically performed in a loop. You can cancel a loop by passing in a CancellationToken to the TryAdd or TryTake method, and then checking the value of the token’s IsCancellationRequested property on each iteration. If the value is true, then it is up to you to respond the cancellation request by cleaning up any resources and exiting the loop. The following example shows an overload of TryAdd that takes a cancellation token, and the code that uses it:


BlockingCollection<string> bc = new BlockingCollection<string>(new ConcurrentBag<string>(), 1000 );









Specifying the Collection Type


When you create a BlockingCollection<T>;, you can specify not only the bounded capacity but also the type of collection to use. For example, you could specify a ConcurrentQueue

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] for first in-first out (FIFO) behavior, or a ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] for last in-first out (LIFO) behavior. You can use any collection class that implements the IProducerConsumerCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] interface. The default collection type for BlockingCollection<T> is ConcurrentQueue<T>. The following code example shows how to create a BlockingCollection<T> of strings that has a capacity of 1000 and uses a ConcurrentBag&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1]:


BlockingCollection<string> bc = new BlockingCollection<string>(new ConcurrentBag<string>(), 1000 );









IEnumerable Support


BlockingCollection<T> provides a GetConsumingEnumerable method that enables consumers to use a foreach statement to remove items until the collection is completed, which means it is empty and no more items will be added. For more information, see How to: Use ForEach to Remove Items in a BlockingCollection.





Using Many BlockingCollections As One


For scenarios in which a consumer needs to take items from multiple collections simultaneously, you can create arrays of BlockingCollection<T> and use the static methods such as TakeFromAny and AddToAny that will add to or take from any of the collections in the array. If one collection is blocking, the method immediately tries another until it finds one that can perform the operation. For more information, see How to: Use Arrays of Blocking Collections in a Pipeline.





See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Collections and Data Structures


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Thread-Safe Collections
description: Thread-Safe Collections
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 92d5515d-f5d6-4a09-8bbb-31865d678643





Thread-Safe Collections


The System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace includes several collection classes that are both thread-safe and scalable. Multiple threads can safely and efficiently add or remove items from these collections, without requiring additional synchronization in user code. When you write new code, use the concurrent collection classes whenever the collection will be writing to multiple threads concurrently. If you are only reading from a shared collection, then you can use the classes in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace. We recommend that you do not use System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] collection classes unless you are required to target the .NET Framework 1.1 or earlier runtime.



Fine-Grained Locking and Lock-Free Mechanisms


Some of the concurrent collection types use lightweight synchronization mechanisms such as SpinLock [https://docs.microsoft.com/dotnet/core/api/System.Threading.SpinLock], SpinWait [https://docs.microsoft.com/dotnet/core/api/System.Threading.SpinWait], SemaphoreSlim [https://docs.microsoft.com/dotnet/core/api/System.Threading.SemaphoreSlim], and CountdownEvent [https://docs.microsoft.com/dotnet/core/api/System.Threading.CountdownEvent]. These synchronization types typically use busy spinning for brief periods before they put the thread into a true Wait state. When wait times are expected to be very short, spinning is far less computationally expensive than waiting, which involves an expensive kernel transition. For collection classes that use spinning, this efficiency means that multiple threads can add and remove items at a very high rate.


The ConcurrentQueue

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] and ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] classes do not use locks at all. Instead, they rely on Interlocked operations to achieve thread-safety.



[!NOTE]
Because the concurrent collections classes support ICollection [https://docs.microsoft.com/dotnet/core/api/System.Collections.ICollection], they provide implementations for the IsSynchronized and SyncRoot properties, even though these properties are irrelevant. IsSynchronized always returns false and SyncRoot is always null.



The following table lists the collection types in the System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent] namespace.


Type | Description
—- | ———–
BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] | Provides bounding and blocking functionality for any type that implements IProducerConsumerCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1]. For more information, see BlockingCollection Overview.
ConcurrentBag&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] | Thread-safe implementation of an unordered collection of elements.
ConcurrentDictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] | Thread-safe implementation of a dictionary of key-value pairs.
ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] | Thread-safe implementation of a FIFO (first-in, first-out) queue.
ConcurrentStack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] | Thread-safe implementation of a LIFO (last-in, first-out) stack.
IProducerConsumerCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] | The interface that a type must implement to be used in a BlockingCollection.





Thread Synchronization in the .NET Framework version 1.0 and 2.0 Collections


The collections first introduced in the .NET Framework version 1.0 are found in the System.Collections [https://docs.microsoft.com/dotnet/core/api/System.Collections] namespace. These collections, which include the commonly used ArrayList [https://docs.microsoft.com/dotnet/core/api/System.Collections.ArrayList] and Hashtable [https://docs.microsoft.com/dotnet/core/api/System.Collections.Hashtable], provide some thread-safety through the Synchronized property, which returns a thread-safe wrapper around the collection. The wrapper works by locking the entire collection on every add or remove operation. Therefore, each thread that is attempting to access the collection must wait for its turn to take the one lock. This is not scalable and can cause significant performance degradation for large collections. Also, the design is not completely protected from race conditions.


The collection classes first introduced in the .NET Framework version 2.0 are found in the System.Collections.Generic [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic] namespace. These include List

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1], Dictionary&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2], and so on. These classes provide improved type safety and performance compared to the System.Collections classes. However, the System.Collections.Generic collection classes do not provide any thread synchronization; user code must provide all synchronization when items are added or removed on multiple threads concurrently.


We recommend the System.Collections.Concurrent collection classes because they provide not only the type safety of the System.Collections.Generic collection classes, but also more efficient and more complete thread safety than the System.Collections collections provide.





Related Topics


Title | Description
—– | ———–
BlockingCollection Overview | Describes the functionality provided by the BlockingCollection<T> type.
When to Use a Thread-Safe Collection | Explains when is it appropriate to use a thread-safe collection.
How to: Add and Remove Items from a ConcurrentDictionary | Describes how to add and remove elements from a ConcurrentDictionary<TKey, TValue>.
How to: Add and Take Items Individually from a BlockingCollection | Describes how to add and retrieve items from a blocking collection without using the read-only enumerator.
How to: Add Bounding and Blocking Functionality to a Collection | Describes how to use any collection class as the underlying storage mechanism for an IProducerConsumerCollection<T>; collection.
How to: Use ForEach to Remove Items in a BlockingCollection | Describes how to use foreach to remove all items in a blocking collection.
How to: Use Arrays of Blocking Collections in a Pipeline | Describes how to use multiple blocking collections at the same time to implement a pipeline.
How to: Create an Object Pool by Using a ConcurrentBag | Shows how to use a concurrent bag to improve performance in scenarios where you can reuse objects instead of continually creating new ones.





Reference


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-use-arrays-of-blockingcollections.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Use Arrays of Blocking Collections in a Pipeline”
description: “How to: Use Arrays of Blocking Collections in a Pipeline”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 278a6566-09ba-4022-8802-e160e75b86af





How to: Use Arrays of Blocking Collections in a Pipeline


The following example shows how to use arrays of System.Collections.Concurrent.BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] objects with static methods such as TryAddToAny and TryTakeFromAny to implement fast and flexible data transfer between components.



Example


The following example demonstrates a basic pipeline implementation in which each object is concurrently taking data from the input collection, transforming it, and passing it to the output collection.


using System;
using System.Collections.Concurrent;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;


class PipeLineDemo
{
   public static void Main()
   {
      CancellationTokenSource cts = new CancellationTokenSource();

      // Start up a UI thread for cancellation.
      Task.Run(() =>
          {
              if(Console.ReadKey(true).KeyChar == 'c')
              {
                  cts.Cancel();
              }  
          });

      //Generate some source data.
      BlockingCollection<int>[] sourceArrays = new BlockingCollection<int>[5];
      for(int i = 0; i < sourceArrays.Length; i++)
          sourceArrays[i] = new BlockingCollection<int>(500);
      Parallel.For(0, sourceArrays.Length * 500, (j) =>
                          {
                              int k = BlockingCollection<int>.TryAddToAny(sourceArrays, j);
                              if(k >=0)
                                  Console.WriteLine("added {0} to source data", j);
                          });

      foreach (var arr in sourceArrays)
          arr.CompleteAdding();

      // First filter accepts the ints, keeps back a small percentage
      // as a processing fee, and converts the results to decimals.
      var filter1 = new PipelineFilter<int, decimal>
      (
          sourceArrays,
          (n) => Convert.ToDecimal(n * 0.97),
          cts.Token,
          "filter1"
       );

      // Second filter accepts the decimals and converts them to
      // System.Strings.
      var filter2 = new PipelineFilter<decimal, string>
      (
          filter1.m_output,
          (s) => String.Format("{0}", s),
          cts.Token,
          "filter2"
       );

      // Third filter uses the constructor with an Action<T>
      // that renders its output to the screen,
      // not a blocking collection.
      var filter3 = new PipelineFilter<string, string>
      (
          filter2.m_output,
          (s) => Console.WriteLine("The final result is {0}", s),
          cts.Token,
          "filter3"
       );

       // Start up the pipeline!
      try
      {
          Parallel.Invoke(
                       () => filter1.Run(),
                       () => filter2.Run(),
                       () => filter3.Run()
                   );
      }
      catch (AggregateException ae) 
      {
          foreach(var ex in ae.InnerExceptions)
              Console.WriteLine(ex.Message + ex.StackTrace);
      }
      finally 
      {
         cts.Dispose();
      }
      // You will need to press twice if you ran to the end:
      // once for the cancellation thread, and once for this thread.
      Console.WriteLine("Press any key.");
      Console.ReadKey(true);
  }

   class PipelineFilter<TInput, TOutput>
   {
      Func<TInput, TOutput> m_processor = null;
      public BlockingCollection<TInput>[] m_input;
      public BlockingCollection<TOutput>[] m_output = null;
      Action<TInput> m_outputProcessor = null;
      CancellationToken m_token;
      public string Name { get; private set; }

      public PipelineFilter(
          BlockingCollection<TInput>[] input,
          Func<TInput, TOutput> processor,
          CancellationToken token,
          string name)
          {
              m_input = input;
              m_output = new BlockingCollection<TOutput>[5];
              for (int i = 0; i < m_output.Length; i++)
              {
                    m_output[i] = new BlockingCollection<TOutput>(500);
              }      
              m_processor = processor;
              m_token = token;
              Name = name;
            }

      // Use this constructor for the final endpoint, which does
      // something like write to file or screen, instead of
      // pushing to another pipeline filter.
      public PipelineFilter(
          BlockingCollection<TInput>[] input,
          Action<TInput> renderer,
          CancellationToken token,
          string name)
          {
              m_input = input;
              m_outputProcessor = renderer;
              m_token = token;
              Name = name;
          }

      public void Run()
      {
          Console.WriteLine("{0} is running", this.Name);
          while (!m_input.All(bc => bc.IsCompleted) && !m_token.IsCancellationRequested)
          {
              TInput receivedItem;
              int i = BlockingCollection<TInput>.TryTakeFromAny(
                  m_input, out receivedItem, 50, m_token);
              if ( i >= 0)
              {
                  if (m_output != null) // we pass data to another blocking collection
                  {
                      TOutput outputItem = m_processor(receivedItem);
                      BlockingCollection<TOutput>.AddToAny(m_output, outputItem);
                      Console.WriteLine("{0} sent {1} to next", this.Name, outputItem);
                  }
                  else // we're an endpoint
                  {
                      m_outputProcessor(receivedItem);
                  }
              }
              else
              {
                  Console.WriteLine("Unable to retrieve data from previous filter");
              }
          }
          if (m_output != null)
          {
              foreach (var bc in m_output) bc.CompleteAdding();
          }
      }
   }
}









See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/when-to-use-a-thread-safe-collection.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: When to Use a Thread-Safe Collection
description: When to Use a Thread-Safe Collection
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: a2a42d44-f6a5-4f16-9000-026221d66349





When to Use a Thread-Safe Collection


The ConcurrentQueue, ConcurrentStack, ConcurrentDictionary, ConcurrentBag, and BlockingCollection collection types are specially designed to support multi-threaded add and remove operations. To achieve thread-safety, these new types use various kinds of efficient locking and lock-free synchronization mechanisms. Synchronization adds overhead to an operation. The amount of overhead depends on the kind of synchronization that is used, the kind of operations that are performed, and other factors such as the number of threads that are trying to concurrently access the collection.


In some scenarios, synchronization overhead is negligible and enables the multi-threaded type to perform significantly faster and scale far better than its non-thread-safe equivalent when protected by an external lock. In other scenarios, the overhead can cause the thread-safe type to perform and scale about the same or even more slowly than the externally-locked, non-thread-safe version of the type.


The following sections provide general guidance about when to use a thread-safe collection versus its non-thread-safe equivalent that has a user-provided lock around its read and write operations. Because performance may vary depending on many factors, the guidance is not specific and is not necessarily valid in all circumstances. If performance is very important, then the best way to determine which collection type to use is to measure performance based on representative computer configurations and loads. This document uses the following terms:


Pure producer-consumer scenario: Any given thread is either adding or removing elements, but not both.


Mixed producer-consumer scenario: Any given thread is both adding and removing elements.


Speedup: Faster algorithmic performance relative to another type in the same scenario.


Scalability: The increase in performance that is proportional to the number of cores on the computer. An algorithm that scales performs faster on eight cores than it does on two cores.



ConcurrentQueue&lt;


T&gt;


 vs. Queue&lt;


T&gt;





In pure producer-consumer scenarios, where the processing time for each element is very small (a few instructions), then System.Collections.Concurrent.ConcurrentQueue

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] can offer modest performance benefits over a System.Collections.Generic.Queue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Queue-1] that has an external lock. In this scenario, ConcurrentQueue<T> performs best when one dedicated thread is queuing and one dedicated thread is de-queuing. If you do not enforce this rule, then Queue<T> might even perform slightly faster than ConcurrentQueue<T> on computers that have multiple cores.


When processing time is around 500 FLOPS (floating point operations) or more, then the two-thread rule does not apply to ConcurrentQueue<T>, which then has very good scalability. Queue<T> does not scale well in this scenario.


In mixed producer-consumer scenarios, when the processing time is very small, a Queue<T> that has an external lock scales better than ConcurrentQueue<T> does. However, when processing time is around 500 FLOPS or more, then the ConcurrentQueue<T> scales better.





ConcurrentStack vs. Stack


In pure producer-consumer scenarios, when processing time is very small, then System.Collections.Concurrent.ConcurrentStack

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentStack-1] and System.Collections.Generic.Stack&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Stack-1] that has an external lock will probably perform about the same with one dedicated pushing thread and one dedicated popping thread. However, as the number of threads increases, both types slow down because of increased contention, and Stack<T> might perform better than ConcurrentStack<T>. When processing time is around 500 FLOPS or more, then both types scale at about the same rate.


In mixed producer-consumer scenarios, ConcurrentStack<T> is faster for both small and large workloads.


The use of the PushRange and TryPopRange may greatly speed up access times.





ConcurrentDictionary vs. Dictionary


In general, use a System.Collections.Concurrent.ConcurrentDictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentDictionary-2] in any scenario where you are adding and updating keys or values concurrently from multiple threads. In scenarios that involve frequent updates and relatively few reads, the ConcurrentDictionary<TKey, TValue> generally offers modest benefits. In scenarios that involve many reads and many updates, the ConcurrentDictionary<TKey, TValue> generally is significantly faster on computers that have any number of cores.


In scenarios that involve frequent updates, you can increase the degree of concurrency in the ConcurrentDictionary<TKey, TValue> and then measure to see whether performance increases on computers that have more cores. If you change the concurrency level, avoid global operations as much as possible.


If you are only reading key or values, the System.Collections.Generic.Dictionary

&lt;


TKey, TValue&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2] is faster because no synchronization is required if the dictionary is not being modified by any threads.





ConcurrentBag


In pure producer-consumer scenarios, System.Collections.Concurrent.ConcurrentBag

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentBag-1] will probably perform more slowly than the other concurrent collection types.


In mixed producer-consumer scenarios, ConcurrentBag<T> is generally much faster and more scalable than any other concurrent collection type for both large and small workloads.





BlockingCollection


When bounding and blocking semantics are required, System.Collections.Concurrent.BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] will probably perform faster than any custom implementation. It also supports rich cancellation, enumeration, and exception handling.





See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Thread-Safe Collections








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-add-and-take-items.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Add and Take Items Individually from a BlockingCollection”
description: “How to: Add and Take Items Individually from a BlockingCollection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 2b9d39ab-0993-4453-b021-b04870098bf7





How to: Add and Take Items Individually from a BlockingCollection


This example shows how to add and remove items from a BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] in both a blocking and non-blocking manner. For more information on BlockingCollection<T>, see BlockingCollection Overview.


For an example of how to enumerate a BlockingCollection<T> until it is empty and no more elements will be added, see How to: Use ForEach to Remove Items in a BlockingCollection.



Example


using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

class Program
{
   static void Main()
   {
      // Increase or decrease this value as desired.
      int itemsToAdd = 500;

      // Preserve all the display output for Adds and Takes
      Console.SetBufferSize(80, (itemsToAdd * 2) + 3);

      // A bounded collection. Increase, decrease, or remove the
      // maximum capacity argument to see how it impacts behavior.
      BlockingCollection<int> numbers = new BlockingCollection<int>(50);


      // A simple blocking consumer with no cancellation.
      Task.Run(() =>
      {
          int i = -1;
          while (!numbers.IsCompleted)
          {
              try
              {
                  i = numbers.Take();
              }
              catch (InvalidOperationException)
              {
                  Console.WriteLine("Adding was completed!");
                  break;
              }
              Console.WriteLine("Take:{0} ", i);

              // Simulate a slow consumer. This will cause
              // collection to fill up fast and thus Adds will block.
              Thread.SpinWait(100000);
          }

          Console.WriteLine("\r\nNo more items to take. Press the Enter key to exit.");
      });

      // A simple blocking producer with no cancellation.
      Task.Run(() =>
      {
          for (int i = 0; i < itemsToAdd; i++) {
              numbers.Add(i);
              Console.WriteLine("Add:{0} Count={1}", i, numbers.Count);
          }

          // See documentation for this method.
          numbers.CompleteAdding();
      });

      // Keep the console display open in debug mode.
      Console.ReadLine();
   }
}









Example


This second example shows how to add and take items so that the operations will not block. If no item is present, or maximum capacity on a bounded collection has been reached, or the timeout period has elapsed, then the TryAdd or TryTake operation returns false. This allows the thread to do some other useful work for awhile and then try again later to either retrieve a new item, or try to add the same item that could not be added previously. The program also demonstrates how to implement cancellation when accessing a BlockingCollection<T>.


using System;
using System.Collections.Concurrent;
using System.Threading;
using System.Threading.Tasks;

class ProgramWithCancellation
{

    static int inputs = 2000;

    static void Main()
    {
        // The token source for issuing the cancelation request.
        CancellationTokenSource cts = new CancellationTokenSource();

        // A blocking collection that can hold no more than 100 items at a time.
        BlockingCollection<int> numberCollection = new BlockingCollection<int>(100);

        // Set console buffer to hold our prodigious output.
        Console.SetBufferSize(80, 2000);

        // The simplest UI thread ever invented.
        Task.Run(() =>
        {
            if (Console.ReadKey(true).KeyChar == 'c')
                cts.Cancel();
        });

        // Start one producer and one consumer.
        Task t1 = Task.Run(() => NonBlockingConsumer(numberCollection, cts.Token));
        Task t2 = Task.Run(() => NonBlockingProducer(numberCollection, cts.Token));

        // Wait for the tasks to complete execution
        Task.WaitAll(t1, t2);

        cts.Dispose();
        Console.WriteLine("Press the Enter key to exit.");
        Console.ReadLine();
    }

    static void NonBlockingConsumer(BlockingCollection<int> bc, CancellationToken ct)
    {
        while (!bc.IsCompleted)
        {
            int nextItem = 0;
            try
            {
                if (!bc.TryTake(out nextItem, 0, ct))
                {
                    Console.WriteLine(" Take Blocked");
                }
                else
                {
                    Console.WriteLine(" Take:{0}", nextItem);
                }
            }

            catch (OperationCanceledException)
            {
                Console.WriteLine("Taking canceled.");
                break;
            }

            // Slow down consumer just a little to cause
            // collection to fill up faster, and lead to "AddBlocked"
            Thread.SpinWait(500000);
        }

        Console.WriteLine("\r\nNo more items to take.");
    }

    static void NonBlockingProducer(BlockingCollection<int> bc, CancellationToken ct)
    {
        int itemToAdd = 0;
        bool success = false;

        do
        {
            // Cancellation causes OCE. We know how to handle it.
            try
            {
                // A shorter timeout causes more failures.
                success = bc.TryAdd(itemToAdd, 2, ct);
            }
            catch (OperationCanceledException)
            {
                Console.WriteLine("Add loop canceled.");
                // Let other threads know we're done in case
                // they aren't monitoring the cancellation token.
                bc.CompleteAdding();
                break;
            }

            if (success)
            {
                Console.WriteLine(" Add:{0}", itemToAdd);
                itemToAdd++;
            }
            else
            {
                Console.Write(" AddBlocked:{0} Count = {1}", itemToAdd.ToString(), bc.Count);
                // Don't increment nextItem. Try again on next iteration.

                //Do something else useful instead.
                UpdateProgress(itemToAdd);
            }

        } while (itemToAdd < inputs);

        // No lock required here because only one producer.
        bc.CompleteAdding();
    }

    static void UpdateProgress(int i)
    {
        double percent = ((double)i / inputs) * 100;
        Console.WriteLine("Percent complete: {0}", percent);
    }
}









See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


BlockingCollection Overview








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

standard/collections/threadsafe/how-to-add-bounding-and-blocking.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: “How to: Add Bounding and Blocking Functionality to a Collection”
description: “How to: Add Bounding and Blocking Functionality to a Collection”
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 678d5df2-af63-418f-8b2a-e0be7ea2d77b





How to: Add Bounding and Blocking Functionality to a Collection


This example shows how to add bounding and blocking functionality to a custom collection class by implementing the System.Collections.Concurrent.IProducerConsumerCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.IProducerConsumerCollection-1] interface in the class, and then using a class instance as the internal storage mechanism for a System.Collections.Concurrent.BlockingCollection&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1]. For more information about bounding and blocking, see BlockingCollection Overview.



Example


The custom collection class is a basic priority queue in which the priority levels are represented as an array of System.Collections.Concurrent.ConcurrentQueue

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1] objects. No additional ordering is performed within each queue.


In the client code, three tasks are started. The first task just polls for keyboard strokes to enable cancellation at any point during execution. The second task is the producer thread; it adds new items to the blocking collection and gives each item a priority based on a random value. The third task removes items from the collection as they become available.


You can adjust the behavior of the application by making one of the threads run faster than the other. If the producer runs faster, you will notice the bounding functionality as the blocking collection prevents items from being added if it already contains the number of items that is specified in the constructor. If the consumer runs faster, you will notice the blocking functionality as the consumer waits for a new item to be added.


namespace ProdConsumerCS
{
    using System;
    using System.Collections;
    using System.Collections.Concurrent;
    using System.Collections.Generic;
    using System.Diagnostics;
    using System.Linq;
    using System.Text;
    using System.Threading;
    using System.Threading.Tasks;

    // Implementation of a priority queue that has bounding and blocking functionality.
    public class SimplePriorityQueue<TPriority, TValue> : IProducerConsumerCollection<KeyValuePair<int, TValue>>
    {
        // Each internal queue in the array represents a priority level. 
        // All elements in a given array share the same priority.
        private ConcurrentQueue<KeyValuePair<int, TValue>>[] _queues = null;

        // The number of queues we store internally.
        private int priorityCount = 0;
        private int m_count = 0;

        public SimplePriorityQueue(int priCount)
        {
            this.priorityCount = priCount;
            _queues = new ConcurrentQueue<KeyValuePair<int, TValue>>[priorityCount];
            for (int i = 0; i < priorityCount; i++)
            {
                _queues[i] = new ConcurrentQueue<KeyValuePair<int, TValue>>();
            }
        }

        // IProducerConsumerCollection members
        public bool TryAdd(KeyValuePair<int, TValue> item)
        {
            _queues[item.Key].Enqueue(item);
            Interlocked.Increment(ref m_count);
            return true;
        }

        public bool TryTake(out KeyValuePair<int, TValue> item)
        {
            bool success = false;

            // Loop through the queues in priority order
            // looking for an item to dequeue.
            for (int i = 0; i < priorityCount; i++)
            {
                // Lock the internal data so that the Dequeue
                // operation and the updating of m_count are atomic.
                lock (_queues)
                {
                    success = _queues[i].TryDequeue(out item);
                    if (success)
                    {
                        Interlocked.Decrement(ref m_count);
                        return true;
                    }
                }
            }

            // If we get here, we found nothing. 
            // Assign the out parameter to its default value and return false.
            item = new KeyValuePair<int, TValue>(0, default(TValue));
            return false;
        }

        public int Count
        {
            get { return m_count; }
        }

        // Required for ICollection
        void ICollection.CopyTo(Array array, int index)
        {
            CopyTo(array as KeyValuePair<int, TValue>[], index);
        }

        // CopyTo is problematic in a producer-consumer.
        // The destination array might be shorter or longer than what 
        // we get from ToArray due to adds or takes after the destination array was allocated.
        // Therefore, all we try to do here is fill up destination with as much
        // data as we have without running off the end.                
        public void CopyTo(KeyValuePair<int, TValue>[] destination, int destStartingIndex)
        {
            if (destination == null) throw new ArgumentNullException();
            if (destStartingIndex < 0) throw new ArgumentOutOfRangeException();

            int remaining = destination.Length;
            KeyValuePair<int, TValue>[] temp = this.ToArray();
            for (int i = 0; i < destination.Length && i < temp.Length; i++)
            {
                destination[i] = temp[i];
            }    
        }

        public KeyValuePair<int, TValue>[] ToArray()
        {
            KeyValuePair<int, TValue>[] result;

            lock (_queues)
            {
                result = new KeyValuePair<int, TValue>[this.Count];
                int index = 0;
                foreach (var q in _queues)
                {
                    if (q.Count > 0)
                    {
                        q.CopyTo(result, index);
                        index += q.Count;
                    }
                }
                return result;
            }
        }

        IEnumerator IEnumerable.GetEnumerator()
        {
            return GetEnumerator();
        }

        public IEnumerator<KeyValuePair<int, TValue>> GetEnumerator()
        {
            for (int i = 0; i < priorityCount; i++)
            {
                foreach (var item in _queues[i])
                    yield return item;
            }
        }

        public bool IsSynchronized
        {
            get { throw new NotSupportedException(); }
        }

        public object SyncRoot
        {
            get { throw new NotSupportedException(); }
        }
    }

    public class TestBlockingCollection
    {
        static void Main()
        {

            int priorityCount = 7;
            SimplePriorityQueue<int, int> queue = new SimplePriorityQueue<int, int>(priorityCount);
            var bc = new BlockingCollection<KeyValuePair<int, int>>(queue, 50);

            CancellationTokenSource cts = new CancellationTokenSource();

            Task.Run(() =>
                {
                    if (Console.ReadKey(true).KeyChar == 'c')
                    {
                        cts.Cancel();
                    }
                });

            // Create a Task array so that we can Wait on it
            // and catch any exceptions, including user cancellation.
            Task[] tasks = new Task[2];

            // Create a producer thread. You can change the code to 
            // make the wait time a bit slower than the consumer 
            // thread to demonstrate the blocking capability.
            tasks[0] = Task.Run(() =>
            {
                // We randomize the wait time, and use that value
                // to determine the priority level (Key) of the item.
                Random r = new Random();

                int itemsToAdd = 40;
                int count = 0;
                while (!cts.Token.IsCancellationRequested && itemsToAdd-- > 0)
                {
                    int waitTime = r.Next(2000);
                    int priority = waitTime % priorityCount;
                    var item = new KeyValuePair<int, int>(priority, count++);

                    bc.Add(item);
                    Console.WriteLine("added pri {0}, data={1}", item.Key, item.Value);
                }
                Console.WriteLine("Producer is done adding.");
                bc.CompleteAdding();
            },
             cts.Token);

            //Give the producer a chance to add some items.
            Thread.SpinWait(1000000);

            // Create a consumer thread. The wait time is
            // a bit slower than the producer thread to demonstrate
            // the bounding capability at the high end. Change this value to see
            // the consumer run faster to demonstrate the blocking functionality
            // at the low end.

            tasks[1] = Task.Run(() =>
                {
                    while (!bc.IsCompleted && !cts.Token.IsCancellationRequested)
                    {
                        Random r = new Random();
                        int waitTime = r.Next(2000);
                        Thread.SpinWait(waitTime * 70);

                        // KeyValuePair is a value type. Initialize to avoid compile error in if(success)
                        KeyValuePair<int, int> item = new KeyValuePair<int, int>();
                        bool success = false;
                        success = bc.TryTake(out item);
                        if (success)
                        {
                            // Do something useful with the data.
                            Console.WriteLine("removed Pri = {0} data = {1} collCount= {2}", item.Key, item.Value, bc.Count);
                        }
                        else
                            Console.WriteLine("No items to retrieve. count = {0}", bc.Count);
                    }
                    Console.WriteLine("Exited consumer loop");
                },
                cts.Token);

            try 
            {
                Task.WaitAll(tasks, cts.Token);
            }
            catch (OperationCanceledException e) 
            {
                if (e.CancellationToken == cts.Token)
                    Console.WriteLine("Operation was canceled by user. Press any key to exit");
            }
            catch (AggregateException ae) 
            {
                foreach (var v in ae.InnerExceptions)
                    Console.WriteLine(v.Message);
            }
            finally 
            {
                cts.Dispose();
            }

            Console.ReadKey(true);

        }
    }

}






By default, the storage for a BlockingCollection

&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.BlockingCollection-1] is ConcurrentQueue&lt;


T&gt;


 [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent.ConcurrentQueue-1].





See Also


System.Collections.Concurrent [https://docs.microsoft.com/dotnet/core/api/System.Collections.Concurrent]


Thread-Safe Collections


BlockingCollection Overview








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/rid-catalog.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core Runtime IDentifier (RID) catalog
description: .NET Core Runtime IDentifier (RID) catalog
keywords: .NET, .NET Core
author: blackdwarf
manager: wpickett
ms.date: 08/22/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: b2032f5d-771f-48d9-917c-587d9509035c





.NET Core Runtime IDentifier (RID) catalog



What are RIDs?


RID is short for Runtime IDentifier. RIDs are used to identify target operating systems where an application or asset
(that is, assembly) will run. They look like this: “ubuntu.14.04-x64”, “win7-x64”, “osx.10.11-x64”.
For the packages with native dependencies, it will designate on which platforms the package can be restored.


It is important to note that RIDs are really opaque strings. This means that they have to match exactly for operations
using them to work. As an example, let us consider the case of Elementary OS [https://elementary.io/], which is a straightforward clone of
Ubuntu 14.04. Although .NET Core and CLI work on top of that version of Ubuntu, if you try to use them on Elementary OS
without any modifications, the restore operation for any package will fail. This is because we currently don’t
have a RID that designates Elementary OS as a platform.


RIDs that represent concrete operating systems usually follow this pattern: [os].[version]-[arch] where:



		[os] is the operating system moniker, for example, ubuntu.


		[version] is the operating system version in the form of a dot (.) separated version number, for example, 15.10,
accurate enough to reasonably enable assets to target operating system platform APIs represented by that version.
		This shouldn’t be marketing versions, as they often represent multiple discrete versions of the operating
system with varying platform API surface area.








		[arch] is the processor architecture, for example, x86, x64, arm, arm64, etc.





The RID graph is defined in a package called Microsoft.NETCore.Platforms in a file called runtime.json, which you can
see on the CoreFX repo [https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/runtime.json]. If
you use this file, you will notice that some of the RIDs have an "#import" statement in them. These statements are
compatibility statements. That means that a RID that has an imported RID in it can be a target for restoring packages
for that RID. Slightly confusing, but let’s look at an example. Let’s take a look at macOS:


"osx.10.11-x64": {
    "#import": [ "osx.10.11", "osx.10.10-x64" ]
}






The above RID specifies that osx.10.11-x64 imports osx.10.10-x64. This means that when restoring packages, NuGet will
be able to restore packages that specify that they need osx.10.10-x64 on osx.10.11-x64.


A slightly bigger example RID graph:



		win10-arm
		win10


		win81-arm
		win81


		win8-arm
		win8
		win7
		win
		any









































All RIDs eventually map back to the root any RID.


Although they look easy enough to use, there are some special things about RIDs that you have to keep in mind when
working with them:



		They are opaque strings and should be treated as black boxes
		You should not construct RIDs programmatically








		You need to use the RIDs that are already defined for the platform and this document shows that


		The RIDs do need to be specific so don’t assume anything from the actual RID value; please consult this document
to determine which RID(s) you need for a given platform








Using RIDs


In order to use RIDs, you have to know which RIDs there are. New RIDs are added regularly to the platform.
For the latest version, please check the runtime.json [https://github.com/dotnet/corefx/blob/master/pkg/Microsoft.NETCore.Platforms/runtime.json] file on CoreFX repo.



[!NOTE]
We are working towards getting this information into a more interactive form.
When that happens, this page will be updated to point to that tool and/or its usage documentation.






Windows RIDs



		Windows 7 / Windows Server 2008 R2
		win7-x64


		win7-x86








		Windows 8 / Windows Server 2012
		win8-x64


		win8-x86


		win8-arm








		Windows 8.1 / Windows Server 2012 R2
		win81-x64


		win81-x86


		win81-arm








		Windows 10 / Windows Server 2016
		win10-x64


		win10-x86


		win10-arm


		win10-arm64














Linux RIDs



		Red Hat Enterprise Linux
		rhel.7.0-x64


		rhel.7.1-x64


		rhel.7.2-x64








		Ubuntu
		ubuntu.14.04-x64


		ubuntu.14.10-x64


		ubuntu.15.04-x64


		ubuntu.15.10-x64


		ubuntu.16.04-x64


		ubuntu.16.10-x64








		CentOS
		centos.7-x64








		Debian
		debian.8-x64








		Fedora
		fedora.23-x64


		fedora.24-x64








		OpenSUSE
		opensuse.13.2-x64


		opensuse.42.1-x64








		Oracle Linux
		ol.7-x64


		ol.7.0-x64


		ol.7.1-x64


		ol.7.2-x64








		Currently supported Ubuntu derivatives
		linuxmint.17-x64


		linuxmint.17.1-x64


		linuxmint.17.2-x64


		linuxmint.17.3-x64


		linuxmint.18-x64














OS X RIDs



		osx.10.10-x64


		osx.10.11-x64


		osx.10.12-x64











          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/getting-started.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Getting started with .NET Core
description: Getting started with .NET Core
keywords: .NET, .NET Core
author: mairaw
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: d1453a0d-317c-4da6-b68e-422a2c0bfe49





Getting started with .NET Core


.NET Core runs on Windows, Linux, and macOS / OS X



Windows


Install .NET Core on Windows [https://www.microsoft.com/net/core#windows].


You can get started developing .NET Core apps by following these step-by-step tutorials.



		Getting started with .NET Core on Windows, using Visual Studio 2015 - Use Visual Studio [https://www.visualstudio.com/], the full-featured integrated development environment (IDE) for Windows.


		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor. This tutorial is written for macOS, but Visual Studio Code also works on Windows.


		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).





.NET Core is supported by the following versions of Windows (both 32-bit and 64-bit):



		Windows 7 SP1


		Windows 8.1


		Windows 10


		Windows Server 2008 R2 SP1 (Full Server or Server Core)


		Windows Server 2012 SP1 (Full Server or Server Core)


		Windows Server 2012 R2 SP1 (Full Server or Server Core)


		Windows Server 2016 (Full Server, Server Core or Nano Server)








Linux


Install Linux on your distribution/version:



		Red Hat Enterprise Linux 7 Server [https://www.microsoft.com/net/core#redhat]


		Ubuntu 14.04, 16.04 & Linux Mint 17 [https://www.microsoft.com/net/core#ubuntu]


		Debian 8.2 [https://www.microsoft.com/net/core#debian]


		Fedora 23 [https://www.microsoft.com/net/core#fedora]


		CentOS 7.1 & Oracle Linux 7.1 [https://www.microsoft.com/net/core#centos]


		openSUSE 13.2 [https://www.microsoft.com/net/core#opensuse]





You can get started developing .NET Core apps by following these step-by-step tutorials.



		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor. This tutorial is written for macOS, but Visual Studio Code also works on Linux.


		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).





.NET Core is supported by the Linux distributions and versions listed above in the installation links.


[bookmark: macos]





OS X / macOS


Install .NET Core for Mac OS X 10.11 [https://www.microsoft.com/net/core#macos].


You can get started developing .NET Core apps by following these step-by-step tutorials.



		Getting started with .NET Core on macOS, using Visual Studio Code - Use Visual Studio Code [https://www.visualstudio.com/products/code-vs], Microsoft’s lightweight cross-platform code editor.


		Getting started with .NET Core using the command line - Use any code editor with the .NET Core cross-platform command-line interface (CLI).





.NET Core is supported by 64-bit OS X 10.11 (El Capitan). It isn’t yet supported by macOS Sierra, but will be soon.








          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/index.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: .NET Core
description: .NET Core
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: f2b312cb-f80c-4b0d-9101-93908f06a6fa





.NET Core



Check out the “Getting Started” tutorials to learn how to create a simple .NET Core application. It only takes a few minutes to get your first app up and running.



.NET Core is a general purpose development platform maintained by Microsoft and the .NET community on GitHub [https://github.com/dotnet/core]. It is cross-platform, supporting Windows, macOS and Linux, and can be used in device, cloud, and embedded/IoT scenarios.


The following characteristics best define .NET Core:



		Flexible deployment: Can be included in your app or installed side-by-side user- or machine-wide.


		Cross-platform: Runs on Windows, macOS and Linux; can be ported to other OSes. The supported Operating Systems (OS) [https://github.com/dotnet/core/blob/master/roadmap.md], CPUs and application scenarios will grow over time, provided by Microsoft, other companies, and individuals.


		Command-line tools:  All product scenarios can be exercised at the command-line.


		Compatible: .NET Core is compatible with .NET Framework, Xamarin and Mono, via the .NET Standard Library.


		Open source: The .NET Core platform is open source, using MIT and Apache 2 licenses. Documentation is licensed under CC-BY [http://creativecommons.org/licenses/by/4.0/]. .NET Core is a .NET Foundation [http://www.dotnetfoundation.org/] project.


		Supported by Microsoft: .NET Core is supported by Microsoft, per .NET Core Support [https://www.microsoft.com/net/core/support/]






Composition


.NET Core is composed of the following parts:



		A .NET runtime [https://github.com/dotnet/coreclr], which provides a type system, assembly loading, a garbage collector, native interop and other basic services.


		A set of framework libraries [https://github.com/dotnet/corefx], which provide primitive data types, app composition types and fundamental utilities.


		A set of SDK tools [https://github.com/dotnet/cli] and language compilers [https://github.com/dotnet/roslyn] that enable the base developer experience, available in the .NET Core SDK.


		The ‘dotnet’ app host, which is used to launch .NET Core apps. It selects the runtime and hosts the runtime, provides an assembly loading policy and launches the app. The same host is also used to launch SDK tools in much the same way.






Languages


The C# language (F# and VB are coming) can be used to write applications and libraries for .NET Core. The compilers run on .NET Core, enabling you to develop for .NET Core anywhere it runs. In general, you will not use the compilers directly, but indirectly using the SDK tools.


The C# Roslyn compiler and the .NET Core tools are or can be integrated into several text editors and IDEs, including Visual Studio, Visual Studio Code [https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp], Sublime Text and Vim, making .NET Core development an option in your favorite coding environment and OS. This integration is provided, in part, by the good folks of the OmniSharp project [http://www.omnisharp.net/].





.NET APIs and Compatibility


.NET Core can be thought of as a cross-platform version of the .NET Framework, at the layer of the .NET Framework Base Class Libraries (BCL). It implements the .NET Standard Library specification. .NET Core provides a subset of the APIs that are available in the .NET Framework or Mono/Xamarin. In some cases, types are not fully implemented (some members are not available or have been moved).


Look at the .NET Core roadmap [https://github.com/dotnet/core/blob/master/roadmap.md] to learn more about the .NET Core API roadmap.





Relationship to the .NET Standard Library


The .NET Standard Library is an API spec that describes the consistent set of .NET APIs that developers can expect in each .NET implementation. .NET implementations need to implement this spec in order to be considered .NET Standard Library compliant and to support libraries that target the .NET Standard Library.


.NET Core implements the .NET Standard Library, and therefore supports .NET Standard Libraries.





Workloads


By itself, .NET Core includes a single application model – console apps – which is useful for tools, local services and text-based games. Additional application models have been built on top of .NET Core to extend its functionality, such as:



		ASP.NET Core [http://asp.net]


		Windows 10 Universal Windows Platform (UWP) [https://developer.microsoft.com/windows]


		Xamarin.Forms [https://www.xamarin.com/forms]








Open Source


.NET Core [https://github.com/dotnet/core] is open source (MIT license) and was contributed to the .NET Foundation [http://dotnetfoundation.org] by Microsoft in 2014. It is now one of the most active .NET Foundation projects. It can be freely adopted by individuals and companies, including for personal, academic or commercial purposes. Multiple companies use .NET Core as part of apps, tools, new platforms and hosting services. Some of these companies make significant contributions to .NET Core on GitHub and provide guidance on the product direction as part of the .NET Foundation Technical Steering Group [http://www.dotnetfoundation.org/blog/tsg-welcome].







Acquisition


.NET Core is distributed in two main ways, as packages on NuGet.org and as standalone distributions.



Distributions


You can download .NET Core at the .NET Core Getting Started [https://www.microsoft.com/net/core] page.



		The Microsoft .NET Core distribution includes the CoreCLR runtime, associated libraries, a console application host and the dotnet app launcher. It is described by the Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App] metapackage.


		The Microsoft .NET Core SDK distribution includes .NET Core and a set of tools for restoring NuGet packages and compiling and building apps.





Typically, you will first install the .NET Core SDK to get started with .NET Core development. You may choose to install additional .NET Core (perhaps pre-release) builds.





Packages



		.NET Core Packages contain the .NET Core runtime and libraries (reference assemblies and implementations). For example, System.Net.Http [https://www.nuget.org/packages/System.Net.Http/].


		.NET Core Metapackages describe various layers and app-models by referencing the appropriate set of versioned library packages.










Architecture


.NET Core is a cross-platform .NET implementation. The primary architectural concerns unique to .NET Core are related to providing platform-specific implementations for supported platforms.



Environments


.NET Core is supported by Microsoft on Windows, macOS and Linux. On Linux, Microsoft primarily supports .NET Core running on Red Hat Enterprise Linux (RHEL) and Debian distribution families.


.NET Core currently supports X64 CPUs. On Windows, X86 is also supported. ARM64 and ARM32 are in progress.


The .NET Core Roadmap [https://github.com/dotnet/core/blob/master/roadmap.md] provides more detailed information on workload and OS and CPU environment support and plans.


Other companies or groups may support .NET Core for other app types and environment.





Designed for Adaptability


.NET Core has been built as a very similar but unique product relative to other .NET products. It has been designed to enable broad adaptability to new platforms, for new workloads and with new compiler toolchains. It has several OS and CPU ports in progress and may be ported to many more. An example is the LLILC [https://github.com/dotnet/llilc] project, which is an early prototype of native compilation for .NET Core via the LLVM [http://llvm.org/] compiler.


The product is broken into several pieces, enabling the various parts to be adapted to new platforms on different schedules. The runtime and platform-specific foundational libraries must be ported as a unit. Platform-agnostic libraries should work as-is on all platforms, by construction. There is a project bias to reducing platform-specific implementations to increase developer efficiency, preferring platform-neutral C# code whenever an algorithm or API can be implemented in-full or in-part that way.


People commonly ask how .NET Core is implemented in order to support multiple operating systems. They typically ask if there are separate implementations or if conditional compilation [https://en.wikipedia.org/wiki/Conditional_compilation] is used. It’s both, with a strong bias towards conditional compilation.


You can see in the chart below that the vast majority of CoreFX [https://github.com/dotnet/corefx] is platform-neutral code that is shared across all platforms. Platform-neutral code can be implemented as a single portable assembly that be used on all platforms.


[image: CoreFX: Lines of Code per Platform]


Windows and Unix implementations are similar in size. Windows has a larger implementation since CoreFX implements some Windows-only features, such as Microsoft.Win32.Registry [https://github.com/dotnet/corefx/tree/master/src/Microsoft.Win32.Registry] but does not yet implement any Unix-only concepts. You will also see that the majority of the Linux and macOS implementations are shared across a Unix implementation, while the Linux- and macOS-specific implementations are roughly similar in size.


There are a mix of platform-specific and platform-neutral libraries in .NET Core. You can see the pattern in a few examples:



		CoreCLR [https://github.com/dotnet/coreclr] is platform-specific. It’s built in C/C++, so is platform-specific by construction.


		System.IO [https://github.com/dotnet/corefx/tree/master/src/System.IO] and System.Security.Cryptography.Algorithms [https://github.com/dotnet/corefx/tree/master/src/System.Security.Cryptography.Algorithms] are platform-specific, given that the storage and cryptography APIs differ significantly on each OS.


		System.Collections [https://github.com/dotnet/corefx/tree/master/src/System.Collections] and System.Linq [https://github.com/dotnet/corefx/tree/master/src/System.Linq] are platform-neutral, given that they create and operate over data structures.










Comparisons to other .NET Platforms


It is perhaps easiest to understand the size and shape of .NET Core by comparing it to existing .NET platforms.



Comparison with .NET Framework


The .NET platform was first announced by Microsoft in 2000 and then evolved from there. The .NET Framework has been the primary .NET product produced by Microsoft during that 15+ year span.


The major differences between .NET Core and the .NET Framework:



		App-models – .NET Core does not support all the .NET Framework app-models, in part because many of them are built on Windows technologies, such as WPF (built on top of DirectX). The console and ASP.NET Core app-models are supported by both .NET Core and .NET Framework.


		APIs – .NET Core contains many of the same, but fewer, APIs as the .NET Framework, and with a different factoring (assembly names are different; type shape differs in key cases). These differences currently typically require changes to port source to .NET Core. .NET Core implements the .NET Standard Library API, which will grow to include more of the .NET Framework BCL API over time.


		Subsystems – .NET Core implements a subset of the subsystems in the .NET Framework, with the goal of a simpler implementation and programming model. For example, Code Access Security (CAS) is not supported, while reflection is supported.


		Platforms – The .NET Framework supports Windows and Windows Server while .NET Core also supports macOS and Linux.


		Open Source – .NET Core is open source, while a read-only subset of the .NET Framework [https://github.com/microsoft/referencesource] is open source.





While .NET Core is unique and has significant differences to the .NET Framework and other .NET platforms, it is straightforward to share code, using either source or binary sharing techniques.





Comparison with Mono


Mono [http://www.mono-project.com/] is the original cross-platform and open source [https://github.com/mono/mono] .NET implementation, first shipping in 2004. It can be thought of as a community clone of the .NET Framework. The Mono project team relied on the open .NET standards [https://github.com/dotnet/coreclr/blob/master/Documentation/project-docs/dotnet-standards.md] (notably ECMA 335) published by Microsoft in order to provide a compatible implementation.


The major differences between .NET Core and Mono:



		App-models – Mono supports a subset of the .NET Framework app-models (for example, Windows Forms) and some additional ones (for example, Xamarin.iOS [https://www.xamarin.com/platform]) through the Xamarin product. .NET Core doesn’t support these.


		APIs – Mono supports a large subset [http://docs.go-mono.com/?link=root%3a%2fclasslib] of the .NET Framework APIs, using the same assembly names and factoring.


		Platforms – Mono supports many platforms and CPUs.


		Open Source – Mono and .NET Core both use the MIT license and are .NET Foundation projects.


		Focus – The primary focus of Mono in recent years is mobile platforms, while .NET Core is focused on cloud workloads.













          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

core/packages.html


    
      Navigation


      
        		
          index


        		DotnetCore stable documentation »

 
      


    


    
      
          
            
  

title: Packages, Metapackages and Frameworks
description: Packages, Metapackages and Frameworks
keywords: .NET, .NET Core
author: richlander
manager: wpickett
ms.date: 06/20/2016
ms.topic: article
ms.prod: .net-core
ms.technology: .net-core-technologies
ms.devlang: dotnet
ms.assetid: 609b0845-49e7-4864-957b-21ffe1b93bf2





Packages, Metapackages and Frameworks


.NET Core is a platform made of NuGet packages. Some product experiences benefit from fine-grained definition of packages while others from coarse-grained. To accommodate this duality, the product is distributed as a fine-grained set of packages and then described in courser chunks with a package type informally called a “metapackage”.


Each of the .NET Core packages support being run on multiple .NET runtimes, represented as
frameworks. Some of those frameworks are traditional frameworks, like net46, representing the .NET Framework. Another set is new frameworks that can be thought of as “package-based frameworks”, which establish a new model for defining frameworks. These package-based frameworks are entirely formed and defined as packages, forming a strong relationship between packages and frameworks.



Packages


.NET Core is split into a set of packages, which provide primitives, higher-level data types, app composition types and common utilities. Each of these packages represent a single assembly of the same name. For example, System.Runtime [https://www.nuget.org/packages/System.Runtime] contains System.Runtime.dll.


There are advantages to defining packages in a fine-grained manner:



		Fine-grained packages can ship on their own schedule with relatively limited testing of other packages.


		Fine-grained packages can provide differing OS and CPU support.


		Fine-grained packages can have dependencies specific to only one library.


		Apps are smaller because unreferenced packages don’t become part of the app distribution.





Some of these benefits are only used in certain circumstances. For example, NET Core packages will typically ship on the same schedule with the same platform support. In the case of servicing, fixes can be distributed and installed as small single package updates. Due to the narrow scope of change, the validation and time to make a fix available is limited to what is needed for a single library.


The following is a list of the key NuGet packages for .NET Core:



		System.Runtime [https://www.nuget.org/packages/System.Runtime] - The most fundamental .NET Core package, including Object [http://docs.microsoft.com/dotnet/core/api/System.Object], String [http://docs.microsoft.com/dotnet/core/api/System.String], Array [http://docs.microsoft.com/dotnet/core/api/System.Array], Action [http://docs.microsoft.com/dotnet/core/api/System.Action] and IList&lt;


T&gt;


 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.IList-1].


		System.Collections [https://www.nuget.org/packages/System.Collections] - A set of (primarily) generic collections, including List&lt;


T&gt;


 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.List-1] and Dictionary&lt;


K,V&gt;


 [http://docs.microsoft.com/dotnet/core/api/System.Collections.Generic.Dictionary-2].


		System.Net.Http [https://www.nuget.org/packages/System.Net.Http] - A set of types for HTTP network communication, including HttpClient [http://docs.microsoft.com/dotnet/core/api/System.Net.Http.HttpClient] and HttpResponseMessage [http://docs.microsoft.com/dotnet/core/api/System.Net.Http.HttpResponseMessage].


		System.IO.FileSystem [https://www.nuget.org/packages/System.IO.FileSystem] - A set of types for reading and writing to local or networked disk-based storage, including File [http://docs.microsoft.com/dotnet/core/api/System.IO.File] and Directory [http://docs.microsoft.com/dotnet/core/api/System.IO.Directory].


		System.Linq [https://www.nuget.org/packages/System.Linq] - A set of types for querying objects, including Enumerable and ILookup&lt;


TKey, TElement&gt;


 [http://docs.microsoft.com/dotnet/core/api/System.Linq.ILookup-2];.


		System.Reflection [https://www.nuget.org/packages/System.Reflection] - A set of types for loading, inspecting and activating types, including Assembly [http://docs.microsoft.com/dotnet/core/api/System.Reflection.Assembly], TypeInfo [http://docs.microsoft.com/dotnet/core/api/System.Reflection.TypeInfo] and MethodInfo [http://docs.microsoft.com/dotnet/core/api/System.Reflection.MethodInfo].





Packages are referenced in project.json. In the example below, the System.Runtime [https://www.nuget.org/packages/System.Runtime/] package is referenced.


{
  "dependencies": {
    "System.Runtime": "4.1.0"
  },
  "frameworks": {
    "netstandard1.5": {}
  }
}






In most cases, you will not reference the lower-level .NET Core packages directly since you’ll end up with too many packages to manage. Instead, you’ll reference a metapackage.





Metapackages


Metapackages are a NuGet package convention for describing a set of packages that are meaningful together. They represent this set of packages by making them dependencies. They can optionally establish a
framework for this set of packages by specifying a framework.


By referencing a metapackage, you are, in effect, adding a reference to each of its dependent packages as a single gesture. That means that all of the libraries in those packages (refs or libs) are available for IntelliSense (or similar experience) and for publishing (libs only) your app.


Note: The ‘lib’ and ‘ref’ terms refer to folders in NuGet packages. ‘ref’ folders describe the public API of a package via assembly metadata. ‘lib’ folders contain the implementation of that public API for a given
framework.


There are advantages to using metapackages:



		Provides a convenient user experience to reference a large set of fine-grained packages.


		Defines a set of packages (including specific versions) that are tested and work well together.





The .NET Standard Library metapackage:



		NETStandard.Library [https://www.nuget.org/packages/NETStandard.Library] - Describes the libraries that are part of the ”.NET Standard Library”. Applies to all .NET implementations (for example, .NET Framework, .NET Core and Mono) that support the .NET Standard Library. Establishes the ‘netstandard’ framework.





These are the key .NET Core metapackages:



		Microsoft.NETCore.App [https://www.nuget.org/packages/Microsoft.NETCore.App] - Describes the libraries that are part of the .NET Core distribution. Establishes the .NETCoreApp framework [https://github.com/dotnet/core-setup/blob/master/pkg/projects/Microsoft.NETCore.App/Microsoft.NETCore.App.pkgproj]. Depends on the smaller NETStandard.Library.


		Microsoft.NETCore.Portable.Compatibility [https://www.nuget.org/packages/Microsoft.NETCore.Portable.Compatibility] - A set of compatibility facades that enable mscorlib-based Portable Class Libraries (PCLs) to run on .NET Core.





Metapackages are referenced just like any other NuGet package in project.json.


In the following example, the NETStandard.Library meta package is referenced, which is used for creating libraries that are portable across .NET runtimes.


{
  "dependencies": {
    "NETStandard.Library": "1.5.0"
  },
  "frameworks": {
    "netstandard1.5": {}
  }
}






In the following example, the Microsoft.NETCore.App metapackage is referenced, which is used for creating apps and libraries that are intended to run on and take full advantage of .NET Core. It provides access to a larger set of libraries than are provided by NETStandard.Library.


{
  "dependencies": {
    "Microsoft.NETCore.App": "1.0.0"
  },
  "frameworks": {
    "netcoreapp1.0": {}
  }
}









Frameworks


.NET Core packages each support a set of frameworks, declared with framework folders (within the lib and ref folders mentioned earlier). Frameworks describe an available API set (and potentially other characteristics) that you can rely on when you target a given framework. They are versioned as new APIs are added.


For example, System.IO.FileSystem [https://www.nuget.org/packages/System.IO.FileSystem] supports the following frameworks:



		.NETFramework,Version=4.6


		.NETStandard,Version=1.3


		6 Xamarin platforms (for example, xamarinios10)





It is useful to contrast the first two of these frameworks, since they are examples of the two different ways that frameworks are defined.


The .NETFramework,Version=4.6 framework represents the available APIs in the .NET Framework 4.6. You can produce libraries  compiled with the .NET Framework 4.6 reference assemblies and then distribute those libraries in NuGet packages in a net46 lib folder. It will be used for apps that target the .NET Framework 4.6 or that are compatible with it. This is how all frameworks have traditionally worked.


The .NETStandard,Version=1.3 framework is a package-based framework. It relies on packages that target the framework to define and expose APIs in terms of the framework.





Package-based Frameworks


There is a two-way relationship between frameworks and packages. The first part is defining the APIs available for a given framework, for example netstandard1.3. Packages that target netstandard1.3 (or compatible frameworks, like netstandard1.0) define the APIs available for netstandard1.3. That may sound like a circular definition, but it isn’t. By virtue of being “package-based”, the API definition for the framework comes from packages. The framework itself doesn’t define any APIs.


The second part of the relationship is asset selection. Packages can contain assets for multiple frameworks. Given a reference to a set of packages and/or metapackages, the framework is needed to determine which asset should be selected, for example net46 or netstandard1.3. It is important to select the correct asset. For example, a net46 asset is not likely to be compatible with .NET Framework 4.0 or .NET Core 1.0.


[image: Package-based Framework Composition]


You can see this relationship in the image above. The API targets and defines the framework. The framework is used for asset selection. The asset gives you the API.


It is an interesting question of where a package-based framework’s definition ends and where consumption of that definition starts. One can consider your view of the framework as a function of a given project.json file. Your dependencies create your view of the framework, independent of the publisher(s) of those dependencies.


The two primary package-based frameworks used with .NET Core are:



		netstandard


		netcoreapp






.NET Standard


The .NET Standard (TFM: netstandard) framework represents the APIs defined by and built on top of the .NET Standard Library. Libraries that are intended to run on multiple runtimes should target this framework. They will be supported on any .NET Standard compliant runtime, such as .NET Core, .NET Framework and Mono/Xamarin. Each of these runtimes supports a set of .NET Standard versions, depending on which APIs they implement.


The NETStandard.Library metapackage targets the netstandard framework. The most common way to target netstandard is by referencing this metapackage. It describes and provides access to the ~40 .NET  libraries and associated APIs that define the .NET Standard Library. You can reference additional packages that target netstandard to get access to additional APIs.


A given NETStandard.Library version matches the highest netstandard version it exposed (via its closure). The framework reference in project.json is used to select the correct assets from the underlying packages. In this case, netstandard1.5 assets are required, as opposed to netstandard1.4 or net46, for example.


{
  "dependencies": {
    "NETStandard.Library": "1.5.0"
  },
  "frameworks": {
    "netstandard1.5": {}
  }
}






The framework and metapackage references in project.json do not need to match. For example, the following project.json is valid.


{
  "dependencies": {
    "NETStandard.Library": "1.5.0"
  },
  "frameworks": {
    "netstandard1.3": {}
  }
}






It may seem strange to target netstandard1.3 but use the 1.5.0 version of NETStandard.Library. It is a valid use-case, since the metapackage maintains support for older netstandard versions. It could be the case you’ve standardized on the 1.5.0 version of the metapackage and use it for all your libraries, which target a variety of netstandard versions. With this approach, you only need to restore NETStandard.Library 1.5.0 and not earlier versions.


The reverse would not be valid: targeting netstandard1.5 with the 1.3.0 version of NETStandard.Library. You cannot target a higher framework with a lower metapackage, since the lower version metapackage will not expose any assets for that higher framework. The [versioning scheme] for metapackages asserts that metapackages match the highest version of the framework they describe. By virtue of the versioning scheme, the first version of NETStandard.Library is v1.5.0 given that it contains netstandard1.5 assets. v1.3.0 is used in the example above, for symmetry with the example above, but does not actually exist.





.NET Core Application


The .NET Core Application (TFM: netcoreapp) framework represents the packages and associated APIs that come with the .NET Core distribution and the console application model that it provides. .NET Core apps must use this framework, due to targeting the console application model, as should libraries that intended to run only on .NET Core. Using this framework restricts apps and libraries to running only on .NET Core.


The Microsoft.NETCore.App metapackage targets the netcoreapp framework. It provides access to ~60 libraries, ~40 provided by the NETStandard.Library package and ~20 more in addition. You can reference additional libraries that target netcoreapp or compatible frameworks, such as netstandard, to get access to additional APIs.


Most of the additional libraries provided by Microsoft.NETCore.App also target netstandard given that their dependencies are satisfied by other netstandard libraries. That means that netstandard libraries can also reference those packages as dependencies.










          

      

      

    


    
        © Copyright 2016.
      Created using Sphinx 1.3.5.
    

  

